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Abstract: For individuals with movement impairments due to neurological injuries, rehabilitative
therapies such as functional electrical stimulation (FES) and rehabilitation robots hold vast potential
to improve their mobility and activities of daily living. Combining FES with rehabilitation robots
results in intimately coordinated human–robot interaction. An example of such interaction is FES
cycling, where motorized assistance can provide high-intensity and repetitive practice of coordinated
limb motion, resulting in physiological and functional benefits. In this paper, the development
of multiple FES cycling testbeds and safeguards is described, along with the switched nonlinear
dynamics of the cycle–rider system. Closed-loop FES cycling control designs are described for
cadence and torque tracking. For each tracking objective, the authors’ past work on robust and
adaptive controllers used to compute muscle stimulation and motor current inputs is presented
and discussed. Experimental results involving both able-bodied individuals and participants with
neurological injuries are provided for each combination of controller and tracking objective. Trade-
offs for the control algorithms are discussed based on the requirements for implementation, desired
rehabilitation outcomes and resulting rider performance. Lastly, future works and the applicability
of the developed methods to additional technologies including teleoperated robotics are outlined.

Keywords: rehabilitation; FES; NMES; robotics; human–robot interaction; nonlinear control; adaptive
control; cycling

1. Introduction

For individuals with movement impairments due to neurological injuries (NIs) such
as stroke, spinal cord injury or traumatic brain injury, their activities of daily living and
independence may be compromised [1–3]. Movement impairments are characterized by
reduced leg coordination, abnormal muscle activity, decreased muscle strength and limited
endurance. Therefore, novel rehabilitation and therapeutic methods are needed to improve
and restore function in these populations. Functional electrical stimulation (FES) and
rehabilitation robotics have been used independently and together to facilitate lower-
limb movement and yield cardiovascular, neurological and physiological benefits [4–6].
A critical factor for inducing neuroplasticity and lasting mobility improvements is the
promotion of high-intensity and repetitive practice of coordinated limb movements coupled
with neural feedback [7–9].

Functional electrical stimulation (FES) of the lower body muscles is often used by ther-
apists to facilitate cycling and yield improvements in musculoskeletal and cardiorespiratory
fitness as well as other neurological, physiological and psychological measures [10–13].
Stationary FES cycling is a popular rehabilitative therapy because fall risks associated with
other therapies are mitigated and it is relatively inexpensive compared to other robotic
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rehabilitation devices. Moreover, motorized assistance (i.e., incorporating an electric motor
to the stationary cycle [14,15]) in FES cycling facilitates continuous and consistent pedaling
and can maximize the training time by reducing the duty cycle of electrical stimulation
(thereby delaying the early onset of neuromuscular fatigue). Because the inclusion of mo-
torized assistance in FES cycling results in intimate coordinated human–robot interaction,
the design, safety and stability of the closed-loop control algorithms for the human and the
robot (i.e., cycle) must be systematically addressed.

The interactions between the human and cycle can be designed and controlled to
achieve shared, separate and coupled goals in FES cycling. For a shared control objective,
the rider’s muscles and the cycle’s motor jointly contribute to the same objective (e.g.,
attaining a desired cadence on the FES cycle) [15,16]. Similarly, when dealing with separate
objectives, the cycle’s motor can be tasked with keeping the cycle at a desired cadence,
while the rider’s muscles maintain the desired interaction torque [17,18]. Finally, the rider’s
muscles and the cycle’s motor can also have coupled tracking objectives, as in the case
of indirect torque control or admittance control [19,20]. While each of these methods has
their inherent advantages (e.g., cadence tracking requires no torque feedback), admittance
control [21] is of particular interest because it modifies the cycle’s behavior based on the
interaction torque between the cycle and rider and offers a method to promote safety
over performance by resolving conflicts in motion between the robot and human [22].
Furthermore, admittance control has been widely used for rehabilitation robots in the past
decade [23–25] as well as for hybrid exoskeletons (which combine FES with rehabilitation
robotics, as in FES cycling) [26,27].

For the aforementioned objectives, the authors implemented two closed-loop control
approaches on FES-cycles: robust [15,17,19] and adaptive [16,18,20] control. A fundamental
use of feedback for automatic control is to provide robustness to uncertainty or undesired
effects such as disturbances. For FES cycling, uncertainty in the human includes neuro-
muscular parameters that are difficult to measure (e.g., viscous–elastic effects of the muscle
tissue) and other factors such as changes in metabolism, hydration and spastic muscle
contractions during pedaling [15]. Uncertainty and disturbances include the cycle’s un-
known damping and changes in motor load. A robust control approach exploits high-gain
and high-frequency (e.g., sliding mode) tools to compensate for the known upper bounds.
To illustrate stability, the robust control design can be coupled with a Lyapunov-based
stability analysis to guarantee the tracking objective is achieved and the error signals and
control inputs always remain bounded [28].

Adaptive control compensates for dynamic uncertainties by exploiting inherent prop-
erties of the system (e.g., uncertain constant parameters that satisfy the linear-parameters
property [29,30]) or a characteristic of the desired task or process (e.g., a periodicity or
iterative nature of movement [31,32]). In adaptive control, an estimate of an uncertain
function or unknown parameter is computed using an adaptive update law that exploits
the feedback of the system (e.g., tracking errors). A caveat is that the adaptive estimate
may not converge to the true parameter value [30]. However, even without guaranteeing
the convergence of the estimated dynamics, the tracking objective can still be achieved, and
the estimate can be guaranteed to remain bounded. Due to the periodic nature of cycling,
an adaptive repetitive learning control approach is motivated. A key difference between
repetitive learning control and classical adaptive control is that learning controllers do
not require knowledge of the structure of the uncertain function or parameter. Repetitive
learning control is suited for systems that track periodic or iterative trajectories, as is the
case for FES cycling. In adaptive and learning-based control, a stability analysis ensures
the tracking objectives are achieved and both the adaptive estimates and control inputs
remain bounded.

In this paper, control objectives and methods are presented for FES cycling in the
context of human–robot interaction. Specifically, this paper addresses the scenarios in
which the human and motorized cycle have shared, separate and coupled tracking ob-
jectives that yield significant challenges in the control design and stability analysis of
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the human–robot system. To address the challenges, the authors’ previous work on FES
cycling is discussed [15–20] for each combination of controller (robust and adaptive) and
tracking objective (cadence, direct torque and indirect torque tracking). By comparing and
contrasting the results, many considerations involved in intimate human–robot interaction
are discussed. The motivation behind this paper is to synthesize and coalesce the authors’
recent findings surrounding FES cycling in a tutorial-like fashion to highlight the control
design, tracking objectives and experimental results.

The rest of the paper is organized as follows. Section 2 describes the Materials and
Methods and includes a technical overview of neuromuscular electrical stimulation (NMES).
Additionally, two experimental testbeds (a single-crank and split-crank FES cycle) are de-
scribed including the cycles’ mechanical components, sensors and electric motors, the elec-
trical stimulation unit and hardware and software safety measures. A nonlinear model
of the cycle–rider system that includes the effects of switching across muscle and motor
inputs is developed and used for the subsequent control design. Section 3 describes the
results pertaining to cadence, direct torque and indirect torque control objectives, including
mathematical details of the error signals that quantify the tracking objectives. Within each
tracking objective, robust and adaptive control results are described, and brief sketches of
the control inputs are provided. Section 4 presents a discussion of the results and insights
into future work. Section 5 provides concluding remarks.

2. Materials and Methods

The following subsections provide a detailed description of the electrical and mechan-
ical components comprising single and split-crank FES cycle–rider systems. Because the
cycles are powered and controlled, they are considered robotic as well as mechatronic
systems. Furthermore, because the cycles are physically coupled to humans (i.e., the rider),
they are also considered powered exoskeletons (the FES cycles can also be considered as
end-effector exoskeletons), as well as rehabilitation robots.

2.1. Functional Electrical Stimulation

Neuromuscular electrical stimulation (NMES) is the application of electrical stimuli
to skeletal muscles to produce tetanic contractions (i.e., thereby activating lower motor
neurons by stimulating nerve fibers) [6,33]. NMES is referred to as functional electrical
stimulation (FES) when electrically elicited muscle contractions are coordinated to perform
a functional task (e.g., walking [34–36], cycling [14,15] and upper-limb motion [37]). FES
enables functions by replacing or assisting a user’s voluntary muscle efforts.

The muscle response to electrical stimuli is modulated by adjusting three stimulation
parameters: pulse frequency, pulse amplitude and pulse duration (also called pulse width).
Figure 1 depicts the stimulation parameters of a pulse train. Pulse frequency is the number
of pulses applied per second. A stimulus frequency of 30–80 Hertz (Hz) is typically needed
to achieve a tetanic contraction [33]. A constant stimulation frequency is used in practice
to produce a smooth muscle contraction and avoid discomfort [38]. A high stimulation
frequency is usually associated with a faster muscular fatigue rate [39]. The pulse amplitude
or pulse intensity is quantified in milliamps (mA). The pulse width or pulse duration is
the time span of a single pulse, and it is quantified in microseconds (µs). Relatively
high stimulation amplitudes and long duration pulses activate more motor units, thus
increasing the contraction force [33]. Commonly, during neuromuscular stimulation, either
the pulse amplitude or duration is fixed and the other factor is controlled to evoke a desired
muscle response. Factors which determine the fixing or controlling of the stimulation pulse
amplitude and duration include an individual’s tolerance to stimulation and the electrical
stimulation unit specifications.

In the cycling results presented in Section 3, the stimulation frequency was fixed
at 60 Hz. The pulse amplitude was fixed at 90 mA for the quadriceps, 80 mA for the
hamstrings and 70 mA for the gluteal muscle groups. The developed muscle controllers
in Section 3 determined the pulse duration (or pulse width) of each muscle. The pulse
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duration was varied because the electrical stimulation unit (i.e., the Hasomed Rehastim
neuromuscular electrical stimulator) had a greater resolution for the pulse width (in a range
of 20–500 µs in steps of 1 µs) than the current amplitude (in the range 0–126 mA in steps
of 2 mA). Stimulation waveforms are typically either monophasic (unidirectional pulses)
or biphasic. Furthermore, pulses can be symmetric or asymmetric in shape. Stimulation
waveforms using doublets [40,41] and N-let pulse trains [42] have been developed as
alternatives to traditional stimulation waveforms with the motivation to reduce muscle
fatigue. The effectiveness of the electrical stimuli to evoke muscle contractions depends
on the size, number and placement of electrodes over the muscle belly [38,43]. Typical
surface (i.e., transcutaneous) electrodes are self-adhesive to ensure a robust skin–electrode
interface. Larger electrodes activate more tissue area, thus decreasing the current den-
sity [33,38]. Alternatively, smaller electrodes increase the current density at the expense of
inducing discomfort or pain [38]. Electrodes can be arranged in a monopolar or bipolar
configuration [6]. In both configurations, only one of the electrodes is active at any given
time. In the monopolar configuration, the other electrode is the reference electrode or
ground. In a bipolar configuration, the active and the reference electrodes switch to reverse
the current flow and thus stimulate the tissue underneath both electrodes (i.e., the current
is distributed) [44].

Figure 1. A representative pulse train consisting of two biphasic pulses depicting the pulse frequency
(Hz), pulse width (µs), and pulse amplitude (mA). Reprinted with permission from ref. [45].

Conventional synchronous stimulation uses a single-channel pair of surface electrodes
to deliver the pulse trains to a muscle. However, conventional single-channel electrical
stimulation is prone to accelerate muscle fatigue due to the need for high stimulation
frequencies. Alternatively, asynchronous stimulation uses multiple pairs of electrodes to
target multiple areas of a muscle [43,46]. In FES cycling, surface electrodes are applied
over the quadriceps, hamstrings and gluteal muscle groups using a singlemchannel in a
bipolar configuration and using biphasic symmetric pulses [14,15,47]. In our experiments,
electrodes were placed in proximal–lateral and distal–medial positions over the muscles in
accordance with the manufacturer’s placement manual.

Limitations of FES arise due to the reduced efficiency and selectivity in recruiting
motor units, and the early onset of neuromuscular fatigue [6,33,38]. Neuromuscular fatigue
is the decay in the peak force for a given stimulation input. The rate of muscle fatigue
is faster with FES than with voluntary contractions, which is possibly due to the reverse
recruitment order of motor units (in opposition to the physiological size principle) or due
to evidence suggesting that electrical stimulation recruits motor units in a nonselective,
synchronous and spatially fixed pattern [48,49]. This simultaneous activation of muscle
fibers might produce uncoordinated or inefficient motion rather than graded force genera-
tion with centrally evoked contractions [38]. In addition to muscle fatigue, the control of
FES is challenging due to the nonlinear muscle activation dynamics [50] and the presence
of an electromechanical input delay. Despite the limitations and challenges associated
with FES, it has medical benefits such as increased blood flow, increased muscle mass,
improved muscle strength, an improved joint range of motion and increased bone min-
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eral density [6,38]. In therapeutic applications, FES is used to counteract muscle atrophy
and improve voluntary function by inducing lasting physiological changes that remain
after the electrical stimulation is removed and physical training is completed [6,38]. An ac-
tive research topic is the examination of the long-term functional and therapeutic benefits
of hybrid rehabilitation methods that combine FES and robotic machines (e.g., a motorized
cycle or powered exoskeleton) that provide continuous cycling or locomotion training.

2.2. Single-Crank FES Cycle

For the subsequent control results, a custom FES cycle was developed. Compared to
commercially available options (e.g., the RT300 from Restorative Therapies [38,51]), a new
cycle was required to implement the low-level real-time control of the cycle’s motor and
rider’s muscles. The single-crank FES cycle was constructed by retrofitting a Terratrike
Rover x8 recumbent tricycle with a variety of custom mounts, sensors and actuators. Prior
to adding any equipment, the original chain, crankset, pedals and rear derailleur were
removed. To measure the crank arm’s angular position and velocity (i.e., cadence), a shaft
encoder was mounted underneath the cycle’s boom or crank extender. A pair of spur gears
were then affixed to the encoder’s shaft and the cycle’s spindle. To ensure the index of
encoder maps directly to the position of the crank arm, it was necessary for each gear
ti gave an identical number of teeth, ensuring that one revolution of the crank arm was
equivalent to one revolution of the encoder.

Once the gear was affixed to the cycle’s spindle, an SRM Science Road power-meter
was attached to the spindle. The power-meter was used to wirelessly measure the interac-
tion torque between the cycle and the rider, and the signal was routed through an SRM
Torque Analysis System. To securely fix the rider’s feet to the cycle’s pedals, orthotic boots
(Ossur Rebound Air Tall) were mounted to the pedals. The boots maintained the sagittal
alignment of the legs and prevented the dorsiflexion/plantarflexion of the ankles.

To equip the cycle with an electric motor, a motor mounting plate was attached to the
cycle’s frame. A 250 W DC electric motor was interfaced with the drive chain through a
sprocket or spur gear. The lateral positioning of the motor and tensioners was then adjusted
such that the interfacing of the chain with the power-meter, motors, tensioners and cassette
was as straight as possible. Note, as a result of removing the rear derailleur, the cycle lost
the ability to shift gears and effectively became a single-speed freewheel cycle. Once the
cycle’s modifications were completed, it was placed on a bike trainer and riser rings.

The cycle’s motor was powered with an ADVANCED Motion Controls (AMC) PS300W24,
(AMC, Camarillo, CA, USA) power supply and controlled with an AB25A100 (AMC, Camar-
illo, USA) motor driver. A FC15030 (AMC, Camarillo, USA) filter card was added between
the driver and the motor to reduce electrical noise. AMC supported the development of
this testbed by providing discounts on their items.To interface with the sensors and the
motor driver, a Quanser Q-PIDe data acquisition (DAQ) board was connected to a desktop
computer running Windows 10. All controllers were implemented in MATLAB/Simulink
using Quanser’s Quarc software at 500 Hz.

The rider’s leg muscles were stimulated with a Hasomed Rehastim neuromuscular
electrical stimulator, which interfaced with the desktop computer. The stimulator deliv-
ered transcutaneous, symmetric, biphasic and rectangular pulses via bipolar self-adhesive
PALS® electrodes (surface electrodes for this study were provided by Axelgaard Manu-
facturing Co., Ltd., Fallbrook, CA, USA) to the rider’s quadriceps, hamstrings and gluteal
muscle groups at respective amplitudes of 90 mA, 80 mA and 70 mA. Stimulation was
applied at a frequency of 60 Hz, and the pulse width of each muscle group was modulated
automatically by the muscle controllers and calculated in MATLAB/Simulink. A rider
seated on the motorized FES cycle is depicted in Figure 2.
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Figure 2. A rider seated on the motorized single-crank functional electrical stimulation (FES) cycle
with identifying labels: (A) encoder, (B) power-meter, (C) electrodes, (D) emergency-stop, (E) filter
card and (F) neuromuscular electrical stimulator. The cycle’s electric motor was interfaced with the
drive chain below the rider’s seat. Reprinted with permission from ref. [17].

2.3. Split-Crank FES Cycle

FES cycles can mask asymmetries in the rider due to coupled pedals and a single
torque sensor. The coupled pedals allow the rider to effectively “cheat” by using their
unimpaired side to pedal the cycle. Previous works in the literature include methods
to promote symmetric rehabilitation by isolating the torque contributions of each leg by
instrumenting cycles with torque sensors on each pedal [52,53], decoupling the pedals (i.e.,
split-crank cycling) [54,55] or pedaling with one leg at a time [56]. Furthermore, results such
as [53] derived symmetry controllers to stimulate each leg differently. Because FES cycling
has been shown to improve symmetry in hemiplegic individuals [52], further research into
asymmetric rehabilitation is warranted.

For these reasons, the authors constructed a split-crank FES cycle in a similar manner
to the single-crank FES cycle with a few notable exceptions; namely, the rear cassette of
the cycle was removed and replaced with a rear hub assembly which had single-speed
freewheel cogs on either side of the tire on the rear axle. This effectively allowed the cycle
to be propelled, or mechanically powered, using two chains, with one on either side of the
cycle. Another notable difference was that the spindle in the bottom bracket was cut into
two equal-length pieces. By severing the spindle, the two pedals operated independently
and consequently could be controlled independently.

Subsequently, the power-meter/encoder assembly was mirrored around the bottom
bracket, along with the motor/tensioner assembly. Finally, a second chain was added and
tensioned. Thus, the split-crank cycle used two encoders, two power-meters, two power
supplies, two motor drivers, two motors, two filter cards and two chains. As with the
single-crank cycle, the split-crank cycle was interfaced with the desktop computer using a
single DAQ board; however, it required twice the number of input/output ports due to the
increased number of sensors and actuators.

2.4. Safety Measures

Safety is paramount for any physical human–robot interaction, especially when inter-
acting with people who have a movement impairment and may have a myriad of factors
(e.g., type and severity of injury, time since injury, rehabilitation history, exercise habits, etc.)
that can affect their body, muscles, bone structure, etc., and lead to increased vulnerability.
Some injuries affect sensory function, and the individual may not be able to detect and
report an adverse or harmful event or motion. For this reason, each FES cycle was equipped
with a number of hardware and software safety measures to protect the rider.
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In terms of hardware, each cycle was equipped with an emergency stop button within
easy reach of the rider. When the button was pressed, power to the motor and electrical
stimulation units was interrupted and needed to be reset by hand before the cycle could
resume normal operation. The cycle was also outfitted with a chain guide tube to protect
the rider’s hands and legs during cycle operation. To further ensure the safety of the
rider, additional safeguards were built into the cycle by design. For example, by using a
tricycle with a low center-of-gravity, there was a low risk of tipping or falling. Moreover,
when seating the rider, the operator needed to adjust the rider’s seat to ensure there was a
minimum bend of 15◦ in the rider’s knee when their leg was fully extended. Not only did
this bend assist with determining the rider’s stimulation pattern, but it also prevented the
hyperextension of the rider’s knees. Additionally, both the motor and muscle controller
needed to be designed to ensure predictable and stable performance in all operating
conditions. Software safety measures included maximum and minimum cadence limits
(at steady state-operation), maximum torque limits, maximum current limits, maximum
run-time limits and a software emergency stop for the study staff member operating
the cycle.

2.5. Dynamics

To properly apply current to the cycle’s electric motor, stimulate the rider’s muscles
and conduct a rigorous stability analysis, a basic understanding of the system’s dynam-
ics was required. The nonlinear, uncertain dynamics of the cycle–rider system can be
represented as [15,57,58]

τe(t) + τm(q(t), q̇(t), t) + τv(t) = M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + G(q(t))
+P(q(t), q̇(t)) + bq̇(t) + d(t), (1)

where q : R≥t0 → Q denotes the measurable crank arm angle, the set Q ⊆ R contains all
possible crank angles, q̇ : R≥t0 → R denotes the measurable angular velocity (i.e., cadence)
and q̈ : R≥t0 → R denotes the unknown angular acceleration. The rider’s volitional torque
contribution is denoted by τv : R≥t0 → R and the torque from the cycle’s electric motor is
denoted by τe : R≥t0 → R, and defined as

τe(t) , Beue(t), (2)

where the constant motor control effectiveness relating the motor’s input current to output
torque is denoted by Be ∈ R>0 and the subsequently designed motor control current is
denoted by ue : R≥t0 → R. The combined torque from the rider’s stimulated muscle
groups is denoted by τmQ×R×R≥t0 → R and defined as

τm(q(t), q̇(t), t) , ∑
m∈M

bm(q(t), q̇(t))σm(q(t))uh(t), (3)

where the unknown, nonlinear individual muscle control effectiveness mapping the FES
input to the muscle torque output is denoted by bm : Q × R → R>0 and the piecewise
right-continuous switching signal for activating individual muscle groups is denoted by
σm : Q → {0, 1}, ∀m ∈ M, where the setM includes the right (R) and left (L) quadriceps
femoris (Q), hamstring (H) and gluteal (G) muscle groups (i.e., the stimulated muscle groups).
The switching signal was triggered based on the crank’s position such that each muscle,
when stimulated, contributed a non-negligible amount of torque to propel the crank forward
(interested readers may refer to [15] for additional details on the design and implementation
of the switching signal). The combination of all stimulation regions is referred to as the FES
region, and the remainder of the crank cycle is referred to as the kinematic dead zone (KDZ).
The KDZ was present in the regions of the crank where it was kinematically inefficient to
stimulate a muscle and thus no muscle stimulation was applied. Figure 3 provides a visual
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representation of the FES region and KDZ. In Equation (3), the subsequently designed muscle
control input is used across all muscle groups and denoted by uh : R≥t0 → R.

In Equation (1), the inertial, centripetal–Coriolis and gravitational effects of the com-
bined cycle-rider system are denoted by M : Q → R, C : Q×R → R, and G : Q → R,
respectively. The rider’s passive viscoelastic tissue torques and the cycle’s friction are
denoted by P : Q×R→ R and b ∈ R>0, respectively, while the system disturbances are
denoted by d : R≥t0 → R. The Euler Lagrange dynamics in Equation (1) are developed
and explained in detail in [57]. The passive–viscous tissue forces and muscle dynamics
are modeled using the experimental and simulation results in [50,59–61] that applied neu-
romuscular electrical stimulation to lower-limb muscles. The cycle–rider dynamics were
used to inform the control design and develop the stability analysis. However, explicit
knowledge of the dynamics was not exploited or required to design and implement the
robust and learning controllers discussed in the subsequent section.

Figure 3. The crank cycle partitioned into muscle stimulation regions, FES regions and the kinematic
dead zones (KDZs). Positions qFES and qKDZ denote the angles at which the crank entered the FES
and KDZ regions, respectively. Reprinted with permission from ref. [17].

3. Results

Compared to traditional human–robot interaction, FES cycling diverges significantly
because both the human and the robot must be controlled during the interaction (as op-
posed to only controlling the robot). Because two systems must be actuated (i.e., the cycle’s
electric motor and the rider’s muscles), two controllers must be designed and simultane-
ously implemented. Controllers are predicated on the tracking objectives (e.g., cadence
tracking and torque tracking) that define the desired behavior of the system; tracking
objectives are then described in terms of error systems.

In the following, an overview of the authors’ previous results on FES cycling is pre-
sented [15–20]. Sections are divided by tracking objectives:(1) cadence control, where the
cycle and rider have a shared tracking objective [15,16]; (2) direct torque control, where
the cycle and rider have separate tracking objectives [17,18]; and (3) indirect torque control,
where the cycle and rider have coupled tracking objectives [19,20]. Within each section (i.e.,
for each tracking objective), the results are further divided into robust [15,17,19] and adap-
tive control [16,18,20]. For each result, sample experimental results are provided to highlight
various measures and metrics including average tracking errors and standard deviations.
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3.1. Cadence Control

When actuating the FES cycle under a cadence control paradigm, the cycle’s motor and
the rider’s muscles work together to accomplish a shared tracking objective; i.e., keeping the
cycle’s crank rotating at a desired cadence. The cadence tracking objective is described by
the tracking error e : R≥t0 → R and the auxiliary, or filtered, tracking error r : R≥t0 → R,
respectively, defined as

e(t) , qd(t)− q(t), (4)

r(t) , ė(t) + αe(t), (5)

where qd : R≥t0 → R denotes the twice-differentiable desired position trajectory
and α ∈ R>0 denotes a selectable constant control gain. The two error systems can then be
combined in a composite error system z : R≥t0 → R2 defined as

z(t) ,
[

e(t) r(t)
]T . (6)

The following results use both error systems described in Equations (4) and (5).
The first cadence tracking result provides a robust control approach [15], while the second
result leverages an adaptive learning-based controller [16]. For these controllers, the rider’s
muscles were stimulated in the FES region and the cycle’s motor was activated in the KDZ.
Between the rider’s muscles and the cycle’s motor, seven actuators were engaged and
disengaged within approximately 1.2 s of each other (i.e., approximately one crank cycle at
50 RPM).

3.1.1. Robust Cadence Control

For cadence control, the cycle’s motor and rider’s muscles work together to keep the
cycle’s crank rotating at a constant cadence. Because there is a single objective, the same
controller can be implemented on both the cycle’s motor and rider’s muscles. Depending
on whether the crank is in the FES region or the KDZ, the control input can be redirected
to the rider’s muscles or cycle’s motor, respectively, through the use of an appropriately
designed switching signal. For the result in [15], the control inputs to the cycle’s motor and
the rider’s muscles were designed as

ue(t) = keσeu(t), (7)

uh(t) = khu(t), (8)

where ke ∈ R>0 denotes a constant motor control gain, σe : Q → {0, 1} denotes a motor
switching signal which is activated in the KDZ and kh ∈ R>0 denotes a constant muscle
control gain. In Equations (7) and (8), u : R≥t0 → R denotes the shared cadence controller,
defined as

u(t) = k1r(t) +
(

k2 + k3‖z(t)‖+ k4‖z(t)‖2
)

sgn(r(t)), (9)

where ki ∈ R>0, ∀i ∈ {1, ..., 4} denote constant control gains, ‖·‖ denotes a Euclidean
norm and sgn(·) denotes the signum function. A block diagram of robust cadence control
is shown in Figure 4.

The philosophy behind the control design in Equation (9) is to use high-frequency
feedback to stabilize the system and compensate for the uncertainties/disturbances in the
cycle–rider system. The robust cadence controller in Equation (9) was implemented and
tested in cycling experiments with five able-bodied individuals who were instructed to
provide no volition, remain passive and were blind to the objective and results. Their aver-
age tracking results are presented in Table 1, and a sample result is presented in Figure 5.
To illustrate system stability, a Lyapunov-like switched system stability assessment was
conducted [15].
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Figure 4. The closed-loop block diagram of robust cadence control implemented on the FES cycle.
The motor and muscle controller share the cadence tracking objective.

Figure 5. A sample result from [15] demonstrating robust cadence control on an able-bodied indi-
vidual. Top: The position error of the cycle’s crank. Center-top: The cadence error of the cycle’s
crank. Center-bottom: The stimulation pulse width (µs) delivered to the rider’s muscles. Bottom:
The current (A) delivered to the cycle’s motor. For this participant, the average position and cadence
errors were 24.38± 2.90◦ and 0.00± 2.07 RPM, respectively.
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Table 1. Tracking objectives, results and number of participants.

Ref.

Motor Assignment Muscle Assignment Setpoint * Tracking Errors (Able-Bodied) Tracking Errors (NI) Participants

Type Tracking Objective Type Objective Torque Cadence Torque Cadence Torque Able NI(Nm) (RPM) (Nm) (RPM) (Nm)

[15] Robust Cadence Robust Cadence N/A 0.00 ± 2.91 N/A N/A N/A 5 0

[16] Adaptive Cadence Adaptive Cadence N/A 0.03 ± 3.70 N/A 0.04 ± 3.31 N/A 5 3

[17] Robust Cadence Robust Direct Torque 1.91 † 0.01 ± 1.03 0.00 ± 0.17 0.02 ± 1.87 0.00 ± 0.47 7 6

[18] Robust Cadence Adaptive Direct Torque 1.91 †,‡ 0.02 ± 1.17 0.42 ± 0.30 0.01 ± 1.23 0.21 ± 0.11 5 3

[19] Robust Indirect Torque Robust Cadence 0.50, 0.00 || 1.75 ± 2.06 −0.30 ± 0.55 4.76 ± 1.36 −0.53 ± 0.48 3 4

[20] � Adaptive Indirect Torque Robust Cadence 0.50, 0.23 ||,4 1.03 ± 1.47 −0.33 ± 3.60 0.77 ± 1.66 −0.20 ± 2.51 1 3

* The cadence setpoint is 50 RPM. † Desired torque produced from the rider. ‡ The peak torque was selected as 1.91 Nm and then shaped
according to the rider’s torque transfer ratio. || Desired interaction torque between the cycle and rider. The two values denote setpoints for the
able-bodied population and population with neurological injuries (NI), respectively. 4 Average desired interaction torque of NI population
(setpoints range from 0.2 Nm to 0.3 Nm, depending on the participant). � Numerical results for the split-crank cycle have been averaged between
the right and left sides.

3.1.2. Adaptive Cadence Control

Repetitive learning control is a non-parametric adaptive approach designed to estimate
and compensate for, the desired periodic dynamics resulting from cycling. The rationale
behind this approach is that by accurately estimating the periodic dynamics, tracking errors
can be reduced. A repetitive learning controller exploits inputs from past trials or iterations
to improve tracking performance. However, due to uncertainties and disturbances, which
are non-periodic in the cycle-rider system, additional robust control terms are needed to
ensure stability. Therefore, the learning control component acts as a feedforward input that
can be added to a robust cadence controller to compensate for the periodic and non-periodic
dynamics of cycling [16]. By adding the learning component to the cadence controller,
the effects of high-gain and high-frequency control terms can be reduced, decreasing
chattering and lowering the stimulation magnitudes, which are theorized to contribute to
accelerated muscle fatigue.

In [16], the control inputs to the cycle’s motor and rider’s muscles were the same as in
Equations (7) and (8), but instead of using the robust cadence controller in Equation (9),
the repetitive learning controller was developed as

u(t) = Ŵd(t) + k1r(t) + k2ρ2(‖z(t)‖)r(t) +
(
k3 + k4

∣∣Ŵd(t)
∣∣)sgn(r(t)), (10)

where ki ∈ R>0, ∀i ∈ {1, ... , 4} denote constant control gains, ρ(·) ∈ R is a known,
positive, radially unbounded, nondecreasing function and Ŵd : R≥t0 → R is the repetitive
control law. The repetitive control law is designed and updated as

Ŵd(t) = satβr(Ŵd(t− T)) + µr(t), (11)

where satβr(·) is the saturation function, βr ∈ R is a positive bounding constant, µ ∈ R>0
is a positive control gain and T ∈ R is the known period. The saturation function outputs a
value equal to its input if the magnitude of the input is less than or equal to the positive
constant βr ∈ R. Alternatively, the saturation function outputs the product of βr ∈ R and
the sign of the input if the magnitude of the input is greater than βr ∈ R. The learning-
based cadence tracking controller in [16] uses a single adaptive update law that stores the
muscle and motor inputs in a single buffer and requires the selection of a single constant
learning gain. A sample experiment implementing the learning controller is presented
in Figure 6. In this tracking result, the muscle groups and the electric motor exploit the
learning controller in the FES region and KDZ region, respectively. In [16], a total of five
able-bodied participants and three participants with neurological injuries were included,
and their average tracking results are presented in Table 1.
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Figure 6. A representative cadence tracking result introduced in [16] to illustrate the performance of
the adaptive learning-based controller on an able-bodied individual. (Top) the cadence root-mean-
squared error (RMS) using two moving averages. (Bottom) the instantaneous cadence tracking
error. The vertical solid line in the top panel corresponds to the time when the learning controller is
activated. As shown in the top panel, the cadence tracking error decays asymptotically with time
(i.e., the magnitude of the oscillations is reduced). For this participant, the average cadence error was
0.03 ± 3.47 RPM during five minutes of FES cycling.

3.2. Direct Torque Control

Power (i.e., torque) tracking is another desirable objective because a high power output
can help to prevent muscle atrophy, increase cardiovascular parameters and provide
additional health benefits [62–67]. Because power is the product of torque and speed
(P = τq̇), by successfully tracking a desired torque and speed, a desired power can also be
achieved (Pd = τd q̇d). The torque tracking objective ensures that the estimated torque about
the crank shaft produced by stimulating the rider’s muscles, denoted by τ̂a : R≥t0 → R,
tracks the desired torque τd : R≥t0 → R. To facilitate the analyses, the torque tracking
objective was nested within a integral, denoted by eτ : R≥t0 → R and defined as

eτ(t) ,
∫ t

tc
(τd(ψ)− τ̂a(ψ))dψ, (12)

where tc ∈ R≥0 represents the time of controller activation. To quantify the cadence tracking
objective, the error systems introduced in Equations (4)–(6) are used. The following results
from [17,18] highlight strategies for robust and learning-based control algorithms for direct
torque control, respectively.

3.2.1. Robust Direct Torque Control

To accomplish simultaneous cadence and torque control, each of these objectives must
be assigned to either the cycle’s motor or the rider’s muscles. While the result in [17]
showcases various possible assignments, the most successful strategy used the cycle’s
motor to regulate the cadence of the cycle–rider system and the rider’s muscles to track
instantaneous torque. Unlike the previous results presented on cadence tracking, due to the
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two unique tracking objectives, two unique controllers were implemented. The controllers
for the cycle’s motor and rider’s muscles were respectively designed as [17]

ue(t) = k1r(t) +
(

k2 + k3‖z(t)‖+ k4‖z(t)‖2 + k5|uh(t)|
)

sgn(r(t)), (13)

uh(t) = k6eτ(t) + k7sgn(eτ(t)), (14)

where ki ∈ R>0, ∀i ∈ {1, ... , 7} denote constant control gains. While the cycle’s motor
was always active (i.e., in the FES region and the KDZ), the rider’s muscles were only
stimulated in the FES region of the crank cycle. A block diagram of robust direct torque
control is shown in Figure 7.

Figure 7. The closed-loop block diagram of robust direct torque control and robust cadence control
implemented on the FES cycle. In this setup, the cycle’s motor is responsible for regulating the
system’s cadence and the rider’s muscles are responsible for directly tracking the desired torque.

As shown in Equation (13), because the cycle’s motor was regulating the cadence
of the system, it was designed to compensate for the torque from the rider. Using a
Lyapunov-based stability analysis, it was then shown that the cadence error system was
always globally exponentially stable [17]. Conversely, because the rider’s muscles were
not activated at all times, a dwell-time analysis was required for the torque error system.
By selecting appropriate gain conditions, it was then shown that the torque error system
was always uniformly ultimately bounded [17]. An illustrative result is depicted in Figure 8.
A total of seven able-bodied participants and six participants with neurological injuries
were included in this result, and their average tracking results are presented in Table 1.
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Figure 8. A sample result from [17] demonstrating robust direct torque (power) tracking on a
participant with a spinal cord injury (T8-9 Complete, T9-10 Fusion, AIS A). Both the cadence and
power of the system are driven toward their desired values of 50 RPM and 10 W, respectively. Due
to system disturbances and modelling errors, the errors are not held at zero, but instead driven to
zero when disturbed. For this participant, the average cadence is 50.02± 2.79 RPM and the average
power is 9.80± 0.74 W.

3.2.2. Adaptive Direct Torque Control

Instead of using a high-frequency robust controller, the result in [18] uses an adaptive
approach for direct torque tracking. Specifically, a learning-based torque controller is de-
signed for the rider’s muscles to track a state-periodic desired torque trajectory. The desired
torque is designed as a modified function of the knee joint torque transfer ratio [15], which
is a function of the crank position (thus termed as spatially periodic because the crank
cycle resets every 2π radians). The muscle spatial learning controller is updated using the
crank angle and inputs from past crank cycles. As with the previous result for robust direct
torque tracking [17], the cycle’s motor achieves cadence tracking using a robust controller.
The stability analysis of the learning-based torque controller and robust cadence controller
uses passivity theory. For a passive system, the energy supplied to a system is greater
than or equal to the energy stored by the system (quantified by a storage function) over a
certain time interval [28,68]. The rest of the energy is dissipated because a passive system
cannot generate energy on its own. By virtue of passivity, the electric motor complies with
the muscle torque output instead of rejecting it. The controllers for the cycle’s motor and
rider’s muscles were respectively designed as [18]

ue = −(k1 + 1)r− (k2 + k3ρ(‖z‖)‖z‖)sgn(r), (15)

uh = k4eτ + (k5 + 1)Ŵd, (16)

where ki ∈ R>0, ∀i ∈ {1, ... , 5} denote positive constant control gains and Ŵd : R≥t0 → R
is the repetitive learning input, which is defined and updated as

Ŵd(t) = Γsatβr(Ŵd(t− T)) + kLeτ(t), (17)

where Γ ∈ (0, 1] is a selectable constant, satβr(·) is the saturation function, βr ∈ R is a
positive saturation threshold and kL is a positive constant learning gain. The saturation
function is described above in the paragraph following Equation (11). The cycle’s cadence
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tracking controller was always active (i.e., in the FES region and the KDZ) and the rider’s
muscles (i.e., torque controller) were only stimulated in the FES region of the crank cycle.
The implementable form of Equation (17) requires a mapping between time and space, which
exists because the crank position q is a strictly increasing function of time (i.e., q = f (t) is
analytic and its inverse exists globally). Thus, any function of time can be expressed as a
function of the state q. An experiment of the adaptive direct tracking result is illustrated
in Figure 9. In this result, the performance of the controller is quantified by the mismatch
between the desired power (i.e., the product of the desired speed and torque) and active
power (i.e., the product of the actual cadence and the active torque produced by the
muscles). A total of five able-bodied participants and three participants with neurological
injuries were included in this result, and their average tracking results are presented in
Table 1.

Figure 9. A direct torque tracking result introduced in [18] to illustrate the performance of the
learning torque controller on a healthy individual. In this experiment, the desired cadence was set
to 50 RPM and the peak power to 10 W. (Top) Desired power PD and active power Pa plotted as a
function of the crank angle during the first 50 crank cycles. (Bottom) Desired power and active power
in the subsequent 50 crank cycles. For this participant, the average cadence error was 0.02± 0.85 RPM
and the average torque error was 0.41 ± 0.30 Nm

3.3. Indirect Torque Control

Instead of directly tracking torque using a torque-based error system as in Equation (12)
for feedback [17,18], the torque error can instead be transformed to a new, modified cadence
trajectory using admittance control. In this control paradigm, an admittance filter is em-
ployed in an outer-loop of the controller to modify the desired cadence trajectory before
being tracked with an inner-loop position controller. By assigning the cycle’s motor the
objective of tracking this admitted trajectory, it is indirectly tasked with tracking the desired
torque. The admittance filter was designed as

τint(t)− τd(t) , Md q̈a(t) + Bd q̇a(t), (18)

where τd : R≥t0 → R denotes the desired interaction torque between the cycle and rider;
τint : R≥t0 → R denotes the measurable interaction torque; q̇a, q̈a : R≥t0 → R denote the
admitted velocity and acceleration, respectively; and Md, Bd ∈ R>0 denote the desired
inertia and damping, respectively. The input to the filter is a torque error defined as
eτ , τint − τd (redefined from Equation (12)) and the output is the admitted trajectory
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qa, q̇a, q̈a. The inner-loop position controller tracks the admittance error system quantified
by ξ : R≥t0 → R and ψ : R≥t0 → R, defined as

ξ(t) , qa(t) + qd(t)− q(t), (19)

ψ(t) , ξ̇(t) + βξ(t), (20)

where β ∈ R>0 denotes a selectable constant control gain. The two error systems can then
be combined in a composite error system ζ : R≥t0 → R2 defined as

ζ(t) ,
[

ξ(t) ψ(t)
]T . (21)

Thus, if the cycle’s motor can regulate the errors in Equations (19) and (20), the cy-
cle’s motor can be used for the indirect torque tracking objective. Simultaneously, as in
Section 3.1, the rider’s muscles can be used for the cadence tracking objective. For simulta-
neous cadence and indirect torque tracking, the following two results use the cadence error
systems in Equations (4)–(6) and the admittance error systems in Equations (18)–(21).

3.3.1. Robust Indirect Torque Control

By comparing the cadence error system in Equations (4) and (5) to the admittance
error system in Equations (19) and (20), it can be seen that, although they are unique, they
are also coupled. Because both systems are predicated on position errors, they are unable
to simultaneously converge to zero, unless the torque error in Equation (18) is always
zero. Therefore, one error system must be designated as the dominant or convergent error
system. For the result in [19], the cadence error system was prioritized, selected as the
dominant system and assigned to the rider’s muscles. Both the cycle’s motor and the
rider’s muscles were actuated using robust controllers designed as [19]

ue(t) = k1ψ(t) +
(

k2 + k3‖φ(t)‖+ k4‖φ(t)‖2
)

sgn(ψ(t)), (22)

uh(t) = k5r(t) +
(

k6 + k7‖z(t)‖+ k8‖z(t)‖2 + k9|ue(t)|
)

sgn(r(t)), (23)

where ki ∈ R>0, ∀i ∈ {1, ... , 9} denote constant control gains and the vector φ : R≥t0 → R4

is defined as φ ,
[
ζ(t)T , q̇a(t), q̈a(t)

]T . A block diagram of robust indirect torque control
is shown in Figure 10.

Figure 10. The closed-loop block diagram of robust indirect torque control and robust cadence control
implemented on the FES cycle. In this setup, the cycle’s motor is responsible for indirectly tracking
the desired torque and the rider’s muscles are responsible for regulating the system’s cadence.
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As seen in Equation (23), the rider’s muscle controller is designed to compensate for
the motor’s torque by cancelling out the motor’s control input. According to the stability
analysis in [19], this combination of controllers renders the admittance error system always
passive and the cadence error system exponentially stable in the FES regions. An illustrative
result from a participant with spina bifida is depicted in Figure 11. In [19], a total of three
able-bodied participants and four participants with neurological injuries were included,
and their average tracking results are presented in Table 1. Another feature of this result is
that it includes a demonstration of the rider volitionally contributing to the pedaling task.
It is also noted that volitional contributions do not destabilize the error systems but still
guarantee tracking performance. Using admittance control, the behavior between the cycle
and rider was more compliant than in direct torque tracking. Because of the inherent
compliance (modifiable based on the selected admittance parameters), admittance control
is viewed as an assist-as-needed control paradigm.

Figure 11. A sample result from [19] demonstrating robust indirect torque tracking on a participant
with spina bifida. (Top) Measured (q̇), admitted (q̇a), and desired cadences (q̇d). (Bottom) Measured
torque (τ) and estimated power (P) produced by the rider. The vertical line indicates time of controller
activation. The horizontal line indicates desired trajectories. For a desired cadence of 50 RPM and
desired torque of 1 Nm, the average cadence error was −0.47± 1.61 RPM, the average admitted
cadence error was −0.05± 0.86 RPM, and the average torque error was 0.18± 0.72 Nm; this resulted
in an average power output of 6.75± 3.75 W.

3.3.2. Adaptive Indirect Torque Control

Compared to [19], a more recent result in [20] was obtained by equipping the FES cycle
with an adaptive indirect torque controller (i.e., admittance controller). Moreover, this result
is unique because the controllers were employed on the split-crank FES cycle described
in Section 2, as opposed to the single-crank cycle in [19]. By utilizing the split-crank
cycle, a variety of highly-customizable trajectories can be investigated between the right
and left sides of the cycle–rider system. The adaptive component of the controller was
implemented on the cycle’s motor and therefore selected as the convergent or dominant
error system. Furthermore, the adaptive component was trained using a gradient-descent
algorithm, as opposed to a repetitive learning controller [18]. Lastly, the muscle controller
was saturated in the control design, instead of solely in experiments, leading to a more
rigorous stability analysis. The motor and muscle controllers were designed as [20]

uh(t) = satρ

[
k1r(t) +

(
k2 + k3‖z(t)‖+ k4‖z(t)‖2

)
sgn(r(t))

]
, (24)

ue(t) = Y(q̇d, q̈d, t)θ̂(t) + k5ψ(t) + (k6 + k7‖φ(t)‖+ k8|uh(t)|)sgn(ψ(t)), (25)

where satρ[·] denotes the saturation function with saturation limit ρ ∈ R>0, ki ∈ R>0, ∀i ∈
{1, ..., 8} denote constant control gains, Y : R2 × R≥0 → R1×8 denotes a computable
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regression matrix and θ̂ : R≥0 → R8×1 denotes a time-varying estimate of the constant
system parameters [20]. The estimates for the system parameters in Equation (25) were
generated on-line according to

˙̂θ(t) = proj
(

ΓY(t)Tψ(t)
)

, (26)

where Γ ∈ R8×8 denotes a constant positive definite learning gain and proj(·) denotes a
projection algorithm operator ([69] Appendix E).

As indicated in Equation (25), the motor’s controller is designed to compensate for
the torque originating from the rider; this is done to promote the convergence of the
adaptive estimates of the system parameters. According to the stability analysis in [20],
the admittance controller globally asymptotically regulates the admittance error system and
the position error system is passive for all time. Figure 12 shows a result for a participant
with Parkinson’s disease using the adaptive indirect torque controller. A total of one
able-bodied participant and three participants with neurological injuries were included in
this result, and their average tracking results are presented in Table 1. Using the adaptive
controller on the split-crank cycle, errors were successfully brought closer to zero than when
using a robust controller on the same cycle, indicating an increase in cycling performance.
Additionally, the standard deviation of the cycle’s cadence was reduced, resulting in a
smoother pedaling experience for the rider.

Figure 12. A sample result from [20] demonstrating adaptive indirect torque tracking on a participant
with Parkinson’s disease. (Top) The measured cadence for the left (q̇L) and right (q̇R) leg, admitted
cadence (q̇a) and desired cadence (q̇d). (Middle) RMS error of ξ̇ for the left and right legs. (Bottom)
RMS error of ė for the left and right legs. The vertical line indicates time of controller activation.
For a desired cadence of 50 RPM and a desired torque of 0.2 Nm, the average cadence error was
−0.09± 1.46 RPM, the average admitted cadence error was −0.19± 1.52 RPM, and the average
torque error was 0.03± 2.56 Nm for the rider’s left side only (additional results on the rider’s right
side are available in [20]).

4. Discussion

As presented in Section 3, there are numerous options for controlling the operation
of FES cycles. The aforementioned studies include cadence control [15,16], direct torque
control [17,18] and indirect torque control via admittance control [19,20]. To select the
most appropriate strategy, one must consider a number of factors including the type
of sensors available for feedback, rehabilitation objectives and the rider’s capabilities.
Selecting the most appropriate controller and FES cycle is determined by numerous factors,
but at minimum, the authors would recommend taking advantage of all sensors available.
For example, if there is a torque sensor available, it should not only record data but also
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be used in feedback. Moreover, by measuring the interaction torque between the cycle
and rider, additional safety measures can be implemented to limit the maximum allowable
forces between the cycle and rider. By tracking torque in addition to cadence, more
rehabilitative outcomes can be achieved.

The aforementioned controllers can be divided into robust and adaptive categories.
While adaptive controllers do offer the promise of improved performance and reduced
tracking errors (particularly on the split-crank cycle), they can significantly increase the
complexity of the control design and stability analysis. The authors would refer interested
readers to the references cited above for specific details on controller implementation (e.g.,
to compare a repetitive learning algorithm to a gradient descent algorithm). Depending on
the complexity of the controller, gains may also require extensive tuning time; this time
may result in prolonged experiments and early fatigue. Therefore, in implementation, one
must consider the benefits of increased cycling performance at the expense of complexity.

When comparing direct to indirect torque tracking, several factors need consideration;
namely, in direct torque control, the motor should be used to regulate the cycle’s cadence
and the rider’s muscles used to regulate the torque production. Conversely, in indirect
torque tracking, we would recommend that the motor be used to regulate the interaction
torque between the cycle and rider, and the rider should be responsible for keeping the
cycle at the desired cadence. Details are available in Table 1. Because admittance control
uses an inner-loop position controller, it can be viewed as an assist-as-needed control
paradigm and used to support the rider in their cadence tracking objective. When the rider
is tasked with keeping the cycle at the desired cadence, and because the rider’s muscles are
not activated at all times, it is expected that the cadence error would be larger than when
the motor is used to regulate cadence (compare [19,20] to [15–18] in Table 1). Additionally,
because the cycle is tracking torque indirectly, it is anticipated that the torque error would
be larger than the direct torque tracking approach (compare [17,18] to [19,20]) on Table 1.
Despite the larger tracking errors, the cycle exhibits compliant behavior compared to the
other approaches and accommodates the rider’s capabilities, rather than rejecting them.

Additionally, in the direct torque tracking approach, the desired torque in Table 1 is the
desired torque produced by the rider, not the desired interaction torque, as in the indirect
torque tracking approach. The difference is that, in [17,18], a measurement of the passive
torque required to actuate the rider’s body is taken and then subtracted from the measured
torque. This increases the complexity of the approach and requires a pretrial to obtain
this value but provides a more accurate measurement of the rider’s net torque production.
In comparison, in [19,20], the authors were instead concerned about the interaction torque
between the cycle and rider, resulting in a simplified approach.

Regardless of the selected tracking objective and controller, as in any human–robot
interaction task, the safety of the human must be the highest priority, particularly for
individuals with neurological injuries or movement impairments. To guarantee appro-
priate system behavior, any controller developed for human–robot interaction should
be accompanied with a rigorous stability analysis. FES cycling is inherently a nonlinear,
unknown and uncertain dynamical system, and it requires nonlinear control techniques
for analysis [28]. Furthermore, because FES cycling involves discrete switching between
different muscle groups, and in some cases the cycle’s motor, it should also be analyzed for
stability using switched systems tools [70]. The controllers referenced in Section 3 are all
accompanied with rigorous Lyapunov and/or passivity-based switched systems stability
analysis [15–20].

Control design methods are needed to compensate for the time-varying muscle input
delay (i.e., the delay between the application of NMES and muscle contraction). The elec-
tromechanical input delay affects the rate of muscle force production, and thus cycling
tracking performance is potentially compromised. For example, the input delay requires
modifying the muscle stimulation patterns (or FES regions) by a phase shift to generate
muscle force earlier in the crank cycle and prevent inadvertent tracking error accumula-
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tion [15]. Future work will seek to incorporate a time-varying estimate of the input delay
during FES cycling using adaptive-based control methods.

The intersection between FES cycling and teleoperation is an emerging research area.
A challenge in teleoperated systems is to guarantee that the control inputs, kinematic
trajectories and interaction torques between the coupled robotic systems (i.e., leader and
follower) remain bounded in the presence of human input. Teleoperated robotic systems
for FES cycling facilitate the development of home-based training programs in which
therapists can remotely adjust cycling parameters (e.g., the cycle’s load or target cadence)
using an input device that directly influences the cycling performance of the rider. FES
cycling programs that are supervised and adapted by therapists could further accelerate
the adoption of FES cycles at home and increase rider engagement during exercise. These
results offer new and exciting inroads to FES cycling, as well as maturing the field of
rehabilitation to applications such as telemedicine.

Potential future works include overlaying augmented and virtual reality (AR/VR)
with closed-loop FES cycling. AR/VR is designed to more completely immerse the rider
in a holistic cycling experience engaging both the body and the mind. AR/VR may also
encourage an individual to participate in a regular rehabilitation or training regimen by
implementing game-like features. An open challenge related to the coupling of AR/VR
technologies with FES cycling is to determine how to map changes in physical variables
such as torque and cadence to intuitive visual stimuli that boost the rider’s cycling per-
formance. Additional future works include the possibility of controlling the system with
biological signals such as electroencephalography (EEG). The incorporation of biological
signals as control signals could offer individuals suffering from paresis or paralysis a whole
new level of independence in their rehabilitation or training regimes. This brain–computer
interface is commonly referred to as brain–computer interaction (BCI) [71]. Additionally,
more investigation is warranted for studies that not only accommodate but encourage the
human’s volitional contributions.

5. Conclusions

The variety of controllers, objectives and FES cycles presented in this article offer
promising insights into rehabilitation and human–robot interaction. The developed control
algorithms can be translated to clinical settings by matching primary outcome measures
with the tracking objectives and control methods described in this article. For example,
if a study’s primary goal is to reduce muscle spasticity, it is recommended to use a testbed
that monitors changes in the leg resistance during cycling (i.e., torque feedback) and
implement a control algorithm that adjusts the torque or resistance experienced by the
rider as needed. Alternatively, if the main goal is to increase cardiorespiratory output,
implementing a control algorithm that guarantees satisfactory performance at sufficiently
large cadences is advisable. Autonomous rehabilitation systems developed to provide
assistance for people with movement impairments have the potential to improve functional
outcomes and overall quality of life. In addition, FES activates paralyzed muscles and
contributes to restoring neuromuscular control. The synergy between FES and robotic
machines (e.g., motorized cycles and powered lower-limb exoskeletons) is capable of
balancing competing goals such as maximizing the active muscle torque, exercise duration
and task intensity. Lastly, to ensure user safety and maximize rehabilitative benefits, these
therapies should accommodate and encourage user participation while guaranteeing stable
motion and performance.
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