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KERNEL HILBERT SPACE AND THE KERNELIZED

ADAMS–BASHFORTH–MOULTON METHOD∗
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Abstract. This paper introduces techniques for the estimation of solutions to fractional order
differential equations (FODEs) and the approximation of a function’s Caputo fractional derivative.
These techniques are based on scattered data interpolation via reproducing kernel Hilbert spaces
(RKHSs). Specifically, an RKHS is generated for the purpose of estimating fractional derivatives
from the Mittag-Leffler function. The RKHS, called the Mittag-Leffler RKHS, as well as others are
utilized to estimate Caputo fractional derivatives and to introduce a modified Adams–Bashforth–
Moulton method for the estimation of the solution to FODEs.
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1. Introduction. In recent decades, fractional order calculus has seen a wide ar-
ray of applications. Fractional order calculus has been employed to model viscoelastic
materials [5, 6, 7] and diffusion processes [21]. Moreover, it has found many appli-
cations in control theory, such as analogues of PID controllers [33], fractional order
optimal control [2, 3], and other applications [23]. Of the variety of fractional order
derivatives available for scientific applications, the Caputo fractional derivative is the
most widely used. This is because fractional order differential equations (FODEs)
arising from the Caputo fractional derivative require initial conditions of integer or-
der, which can be related to physical quantities. This differs from FODEs arising
from the Riemann–Liouville fractional derivative, where the initial conditions rely on
fractional derivatives of the state.

Given T ∈ R+, for a sufficiently regular function, f : [0, T ]→ C, and m ∈ N, the
Caputo fractional derivative of order q ∈ (m− 1,m) at s ∈ [0, T ] is given by

(1) Dq
∗f(s) :=

1

Γ(m− q)

∫ s

0

(s− t)m−q−1f (m)(t)dt

and arises from the application of the Riemann–Liouville fractional integration opera-
tor of order m−q, Jm−q0 , to the mth order derivative of f . Further details concerning
the definition can be found in [8].

The challenge of approximating the Caputo fractional derivative of a function is
the nonlocal property of the fractional derivative. Unlike integer order derivatives, the
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Caputo fractional derivative cannot be calculated using only local information about
a point [8, 18]. The integral in (1) necessitates the utilization of the entire history of
a function to compute the fractional derivative.

Various approaches to approximating Caputo fractional derivatives and to ap-
proximating solutions to FODEs arising from the Caputo fractional derivative have
been developed. Previous efforts toward the approximation of the Caputo fractional
derivative have investigated approximations through Grünwald–Letnikov methods [8]
as well as approximations by Chebychev polynomials [29] and collocation with Bessel
functions [30]. In [11], the approximation of the Caputo fractional derivative was
performed by using methods of Gaussian quadrature. In [16], a method was intro-
duced to approximate the fractional order derivative of a signal with noise via Jacobi
orthogonal polynomials. Other significant works toward the approximations of the
Caputo fractional derivative and related FODEs can be found in [8, 9, 10].

To the authors’ knowledge, the theory surrounding reproducing kernel Hilbert
spaces (RKHSs), a common tool in approximation theory [22, 28], has not been utilized
to estimate a function’s fractional derivative, nor has it been employed to estimate
a numerical solution of a FODE. The focus of this paper is the introduction of new
RKHSs and algorithms for the estimate of Caputo fractional derivatives and solutions
of FODEs related to the Caputo fractional derivative.

To this end, this paper introduces the Mittag-Leffler RKHS (of order q) for the
purpose of approximating a function’s Caputo fractional derivative. In particular, the
Mittag-Leffler RKHS leverages the fact that the Mittag-Leffler function is an eigen-
function for the Caputo fractional derivative (cf. [8, 12]) to simplify the estimation of
a function’s Caputo fractional derivative.

The Mittag-Leffler RKHS is a universal RKHS (see the discussion in section 3)
with the kernel function given by Kq(λ, t) := Eq(λ

qtq), where q > 0 and Eq(t) :=∑∞
n=0 Γ(nq + 1)−1tn is the Mittag-Leffler function [8, 12]. The Mittag-Leffler kernel

function satisfies an eigenvalue equation for the Caputo fractional derivative,
Dq
∗Eq(λ

qtq) = λqEq(λ
qtq), where λ ∈ R+ [12]. While the Mittag-Leffler function

was introduced by Gosta Mittag-Leffler in a series of papers that appeared in the
beginning of the 20th century, it has been an often neglected special function until
the past couple of decades [12]. The recent interest in this function is due to the grow-
ing number of applications for which fractional calculus can be applied to yield new
insights [15, 17, 19]. Moreover, several investigations have been performed toward the
computation of the Mittag-Leffler function itself [13, 20, 24, 26]. For this reason, the
introduction of a kernel function based on the Mittag-Leffler function is timely.

Through the method of scattered data interpolation, a universal RKHS can be
used to approximate a given continuous function uniformly over a compact subset
of the input space. Once strict definiteness is established for the Gram matrix in
(2), any finite set of points can be interpolated by a linear combination of functions
of the form K(x, xi). In addition, if the function to be approximated is contained
in the Hilbert space itself, the method of scattered data interpolation will converge
to the sampled function uniformly as more samples are interpolated. Theorem 2 in
section 3 demonstrates that approximation of a function in the norm of the Mittag-
Leffler RKHS leads to uniform approximation of its Caputo fractional derivative over
a compact set.

Section 2 demonstrates the approximation properties of the Mittag-Leffler RKHS
by approximating the Caputo fractional derivative of two generic functions. This is
justified by the universality of the Mittag-Leffler RKHS. A universal RKHS is dense
in the space of real valued continuous functions over a compact set. Thus, it is
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often assumed that a sampled continuous function is in fact contained within the
Hilbert space. The assumption that a sampled function is contained in an RKHS is
reasonable, since up to sample noise a function in the RKHS is contained within the
envelope of the sampled function determined by the noise threshold. Thus, universal
RKHSs are often used for function approximation, and in particular, Gaussian radial
basis functions (RBFs) correspond to a universal RKHS that is the modal choice for
function approximation in the statistical learning community [14, 28].

Related to the problem of approximating a function’s Caputo fractional derivative
is the problem of estimating the solution of a FODE governed by the Caputo fractional
derivative, Dq

∗y(t) = f(t, y(t)). Diethelm generalized the Adams–Bashforth–Moulton
(ABM) method to the fractional order case in [8, 10]. The technique uses a piecewise
linear interpolation of estimated points {(ti, f(ti, yi))}ki=1 to approximate y(tk+1).
Since accurate approximations of a function can be achieved through interpolation
via RKHSs, a natural adjustment of the ABM algorithm is to replace piecewise linear
interpolation by interpolation with reproducing kernels, a so-called kernelized ABM
method presented in section 4. The framework is presented for general kernel func-
tions, not just the Mittag-Leffler kernel, and as such, numerical experiments performed
in section 5.2 use two different kernel functions for computing numerical solutions of
FODEs. Moreover, when q ∈ N, the kernelized ABM method also applies to ordinary
differential equations.

Section 2 of this paper discusses approximations in RKHSs via scattered data
interpolation. Section 3 introduces the Mittag-Leffler RKHS and implications of ap-
proximating with linear combinations of the Mittag-Leffler kernel. Section 5.1 presents
several examples of the approximation method introduced, and in particular the ap-
proximation of the Caputo fractional derivative of several well-known functions will
be examined.

2. Approximation with RKHSs. An RKHS over a set X is a Hilbert space
of functions, f : X → C (or f : X → R), for which given each x ∈ X the evaluation
functional Exf = f(x) is bounded [1, 28]. Consequently the Riesz theorem guarantees
that for each x ∈ X there exists a function kx ∈ H for which 〈f, kx〉H = f(x) for all
f ∈ H [1].

Associated with each RKHS is an associated kernel function given by K(x, y) =
〈ky, kx〉H . For real valued kernel functions with domain Rn, it was demonstrated
in [22] that if a kernel function is of the form K(x, y) = g(xT y), where g(t) :=∑∞
m=0 amt

m converges for all t with am > 0 for all m, then the Gram matrix,

(K(xi, xj))
M
i,j=1, is strictly positive definite. Moreover, a kernel function of the form

K(x, y) = g(xT y) is universal [28], which means that given any compact subset
D ⊂ Rn, the associated Hilbert space is dense inside of the space of real valued
continuous functions over D (with respect to the supremum norm).

RKHSs are ideal for function approximation, because interpolation in an RKHS,
H, leads to uniform convergence of the estimates, whereas interpolation with poly-
nomials can result in a divergent sequence of functions [31]. Given a collection of
samples, {(xi, f(xi))}mi=1, of a function f ∈ H, computing the solution to the inter-
polation matrix equation with a real kernel function K : X ×X → R,

(2) (K(xi, xj))
m
i,j=1 w = f ,

is equivalent to computing the projection of f onto the span of {K(·, xi)}mi=1, where
w ∈ Rm and f = (f(x1), . . . , f(xm))T ∈ Rm. If the sequence {xi}∞i=1 ⊂ X is selected
appropriately, then {K(·, xi)}∞i=1 can be a basis for an RKHS. Thus the interpolation
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of a function leads to a sequence of functions that converge to f in the Hilbert space
norm. For an RKHS associated with real entire functions, such as ML2(R+; q) (in-
troduced in the next section), a sequence of distinct points {xi}∞i=1 ⊂ R that has an
accumulation point is sufficient for establishing {K(·, xi)}∞i=1 as a basis.

Interpolating a function via arbitrary samples is called scattered data interpo-
lation, and the determination of a unique solution to (2) relies upon the ability to
establish the invertibility of the matrix (K(xi, xj))

m
i,j=1. The matrix is guaranteed to

be positive definite for any kernel; however, for some kernels, it may have a nontrivial
nullspace. For a kernel function that is strictly positive definite the matrix in (2)
is guaranteed to be invertible. The following theorem gives a sufficient condition to
demonstrate that a kernel function is strictly positive definite.

Theorem 2.1 (see [22]). Let g : R → R given by g(t) =
∑∞
m=1 amt

m be a real
entire function for which am ≥ 0 for all m, and define a real valued kernel function
K : Rn × Rn → R as K(x, y) = g(xT y). Consider the set A = {m : am > 0}; then
K is strictly positive definite iff A contains zero as well as an infinite number of even
integers and an infinite number of odd integers.

If a kernel function K is known to be strictly positive definite, then the following
proposition can be established.

Proposition 2.2. If K : R × R → R is strictly positive definite, then so is K̃ :
X ×X → R given by K̃(x, y) := K(φ(x), φ(y)) for any injective function φ : X → R.

Proof. Since φ is injective, for any sequence of distinct points x1, . . . , xM ∈ X,
φ(x1), . . . , φ(xM ) ∈ R are also distinct. Relabeling yi = φ(xi) for i = 1, . . . ,M it can
be seen that (K(yi, yj))

M
i,j=1 is strictly positive definite by the hypothesis. Thus the

kernel function K̃(x, y) = K(φ(x), φ(y)) is strictly positive definite.

As a consequence of approximating a function in an RKHS, the Hilbert space
norm dominates the supremum norm over compact sets. Specifically, the following
proposition holds.

Proposition 2.3 (see [28]). Let X be a metric space and Y ⊂ X a compact
subset. Further, suppose that H is an RKHS over X with a continuous kernel function,
K : X × X → R, and f ∈ H; then there exists a C > 0 such that supx∈Y |f(x)| ≤
C‖f‖H .

A similar bound as in Proposition 2.3 can be established for a function’s derivative,
if it is in the RKHS.

Theorem 2.4 (see [28]). Let X ⊂ R be an open subset, m ≥ 0, and K : X×X →
C be an m-times continuously differentiable kernel on X with RKHS H. Then every
f ∈ H is m-times continuously differentiable, and for α ∈ N with α ≤ m and x ∈ X
we have ∣∣∣∣ dαdxα f(x)

∣∣∣∣ ≤ ‖f‖H
(

d2α

dzαdyα
K(z, y)

∣∣∣∣
(z,y)=(x,x)

)1/2

.

Theorem 2.5 generalizes Theorem 2.4 to Caputo fractional derivatives. The ap-
proximation of a function in a RKHS thus leads to the uniform approximation of its
Caputo fractional derivative over compact sets. This allows the use of generic RKHSs
for the purposes of estimating Caputo fractional order derivatives.

Theorem 2.5. Let K : R× R→ R be a kernel function that is m-times contin-
uously differentiable in each variable, q ∈ (m− 1,m), and H be the RKHS associated
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with K. Norm convergence in the RKHS implies uniform convergence of the Caputo
fractional derivative of order q over compact subsets of R.

Proof. Let f, g ∈ H, and set I as a compact subset of R. Since K is m-times con-
tinuously differentiable, f and g are m-times continuously differentiable by Theorem
2.4. Now consider for s ∈ I,

|Dq
∗f(s)−Dq

∗g(s)| =
∣∣∣∣ 1

Γ(m− q)

(∫ s

0

f (m)(τ)

(s− τ)m−1−q dτ −
∫ s

0

g(m)(τ)

(s− τ)m−1−q dτ

)∣∣∣∣
≤ 1

Γ(m− q)
sup

0≤τ≤s
|f (m)(τ)− g(m)(τ)|

∣∣∣∣∫ s

0

1

(s− τ)m−1−q dτ

∣∣∣∣
≤ Cs · sm−q

Γ(m− q)
‖f − g‖H .

The second inequality follows when Theorem 2.4 is applied to sup0≤τ≤s |f (m)(τ)−
g(m)(τ)|. Specifically,

Cs := sup
τ∈[0,s]

(
d2α

dzαdyα
K(z, y)

∣∣∣∣
(z,y)=(τ,τ)

)1/2

,

and the finiteness of Cs follows from the continuous differentiability assumption on
K(z, y). Moreover, Cs increases with respect to s, and it follows that a uniform
bound over [0, s] can be achieved when Cs is replaced by a suitable upper bound for
the compact set I.

Note that the kernel functions in Theorem 2.5 are assumed to be continuously
differentiable. In section 3, the Mittag-Leffler function is used to generate a kernel
function that is continuously differentiable everywhere but the origin; therefore a
different method is used to demonstrate the result of Theorem 2.5 for the Mittag-
Leffler RKHS.

3. The Mittag-Leffler RKHS. In this section, the Mittag-Leffler kernel func-
tion and its corresponding RKHS is introduced. Given q > 0, the Mittag-Leffler kernel
function of order q (or simply the Mittag-Leffler kernel function when q is understood)
is the function, Kq : R+ × R+ → R, given by

(3) Kq(t, λ) = Eq(λ
qtq).

For convenience R+ will be taken as [0,∞) throughout this paper. By Theorem 2.1
and Proposition 2.2, the Mittag-Leffler kernel function is a strictly positive definite
kernel function. Each positive definite kernel function corresponds uniquely with a
RKHS. Moreover, by the Aronszajn–Moore theorem (cf. [4]), the RKHS is given by

ML2(R+; q) :=

{
f(t) =

∞∑
n=0

ant
qn

∣∣∣∣∣
∞∑
n=0

Γ(qn+ 1)|an|2 <∞

}
,

with the Hilbert space norm given by

(4) ‖f‖ML2(R+;q) =

( ∞∑
n=0

Γ(qn+ 1)|an|2
)1/2

.
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The RKHS ML2(R+; q) will be called the Mittag-Leffler RKHS of order q and is
a space of functions infinitely differentiable on (0,∞). In particular, ML2(R+; q)
contains the functions tqn for n = 0, 1, 2, . . ., which form an orthogonal system for
which ‖tqn‖ML2(R+;q) =

√
Γ(qn+ 1) (i.e., tqn corresponds to aj = 0 unless j = n

for which an = 1). Since ML2(R+; q) contains all linear combinations of tqn (for
n = 0, 1, 2, . . .), an application of the Muntz–Szasz theorem (cf. Theorem 15.26 in
[25]) demonstrates that ML2(R+; q) is universal over R+. Specific RKHS properties
of ML2(R+; q) are provided in the following proposition for convenience.

Proposition 3.1. The ML2(R+; q) is a real valued RKHS. In particular, letting
λ ≥ 0, f(t) =

∑∞
n=0 ant

qn, and g(t) =
∑∞
n=0 bnt

qn be functions in ML2(R+; q),
then 〈f, g〉ML2(R+;q) =

∑∞
n=0 Γ(qn + 1)anbn, 〈f(·),Kq(·, λ)〉ML2(R+;q) = f(λ), and

Kq(·, λ) ∈ML2(R+; q). Moreover, {tqn}∞n=0 is a complete system of orthogonal func-
tions contained in ML2(R+; q).

Proof. The quantity 〈f, g〉ML2(R+;q) =
∑∞
n=0 Γ(qn + 1)anbn can be shown to be

finite via the Cauchy–Schwarz inequality,

|〈f, g〉ML2(R+;q)| =

∣∣∣∣∣
∞∑
n=0

Γ(qn+ 1)anbn

∣∣∣∣∣
≤

( ∞∑
n=0

Γ(qn+ 1)|an|2
)1/2

·

( ∞∑
n=0

Γ(qn+ 1)|bn|2
)1/2

= ‖f‖ML2(R+;q)‖g‖ML2(R+;q).

Thus, 〈·, ·〉ML2(R+;q) is a valid inner product for ML2(R+; q) and corresponds with
(4) through 〈f, f〉ML2(R+;q) = ‖f‖2ML2(R+;q) making ML2(R+; q) a Hilbert space.

For λ ≥ 0, the function Kq(t, λ) =
∑∞
n=0

tqnλqn

Γ(qn+1) has the ML2(R+; q) norm

‖Kq(·, λ)‖2ML2(R+;q) =

∞∑
n=0

|λ|2qn

Γ(qn+ 1)
,

which converges, since asymptotically Γ(qn + 1) ∼
√

2π(qn+ 1)
(
qn+1
e

)qn+1
by Stir-

ling’s formula. Hence, Kq(·, λ) ∈ML2(R+; q) for all λ ≥ 0. To verify the reproducing
property consider

〈f,Kq(·, λ)〉ML2(R+;q) =

∞∑
n=0

Γ(qn+ 1)an
λqn

Γ(qn+ 1)
=

∞∑
n=0

anλ
qn = f(λ).

Therefore it is established that ML2(R+; q) is an RKHS over R+.
For the system {tqn}∞n=0, note that 〈f, tqn〉ML2(Rn;q) = Γ(qn+ 1)an. Therefore,

〈tqm, tqn〉ML2(Rn;q) =

{
0 if m 6= n,

Γ(qn+ 1) if m=n.

The system can be seen to be complete, since f ⊥ {tqn}∞n=0 iff an = 0 for all n, which
means f ≡ 0.

Using the methods presented in section 2, a continuous function can be ap-
proximated through the interpolation of its samples by solving (2). Moreover, by
Corollary 4.36 in [28], given a compact set, I ⊂ (0,∞), the derivative of a function
f ∈ML2(R+; q) can be uniformly approximated over I. More generally, the following
theorem can be established.
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Theorem 3.2. If f ∈ML2(R+; q), I ⊂ R+ is compact, q > 0, and {ti}∞i=1 ⊂ R+

is a sequence of distinct points that contains an accumulation point, then the se-
quence of functions fm obtained by interpolating {(ti, f(ti))}mi=1 via (2), with the
Mittag-Leffler kernel function of order q, converges uniformly to f over I, and Dq

∗fm
converges uniformly to Dq

∗f over I. Moreover, for each h ∈ ML2(R+; q) its
Caputo fractional derivative, Dq

∗h, is in an RKHS, denoted Dq
∗ML2(R+; q), and

‖Dq
∗h‖Dq

∗ML2(R+;q) ≤ ‖h‖ML2(R+;q).

Proof. Since each h ∈ML2(R+; q) can be represented by h(t) = g(tq), where g is
a real entire function, the functions in ML2(R+; q) are uniquely determined by their
values on a sequence with an accumulation point. In particular, the Hilbert space
norm ‖fm − f‖ML2(R+;q) converges to zero by the discussion in section 2. Thus, by
Proposition 2.3, the sequence of functions converge uniformly to f over the compact
set I.

Through the application of the operator Dq
∗ term by term to tqn for each n =

0, 1, 2, . . ., each function h(t) =
∑∞
n=0 ant

qn ∈ML2(R+; q) is sent to

Dq
∗h(t) =

∞∑
n=0

an+1
Γ((n+ 1)q + 1)

Γ(nq + 1)
tqn,

by Theorem 3.10 in [8], which lies in the Hilbert space Dq
∗ML2(R+; q) containing the

orthonormal basis {
en(t) =

√
Γ((n+ 1)q + 1)

Γ(qn+ 1)
tqn

}∞
n=0

.

Again by the Aronszajn–Moore theorem the kernel function for Dq
∗ML2(R+; q) is

given by

K̃q(λ, t) =

∞∑
n=0

en(λ)en(t) =

∞∑
n=0

Γ(q(n+ 1) + 1)

Γ(qn+ 1)2
λqntqn.

When viewed as an operator from ML2(R+; q) to Dq
∗ML2(R+; q), the operator Dq

∗ is
norm decreasing. Specifically,

‖Dq
∗h‖Dq

∗ML2(R+;q) = ‖h(·)− a0‖ML2(R+;q) ≤ ‖h‖ML2(R+;q)

for all h ∈ML2(R+; q). It should be noted that K̃q is continuous in both arguments.
Thus, by Proposition 2.3,

|Dq
∗(fn − f)(s)| ≤ C‖Dq

∗(fn − f)‖Dq
∗ML2(R+;q) ≤ C‖fn − f‖ML2(R+;q),

where C only depends on I. Thus, the convergence of Dq
∗fn → Dq

∗f is uniform
over I.

In Theorem 3.2 the functions fm(t) are of the form fm(t) =
∑m
i=1 wiKq(t, ti).

The advantage of approximating f with functions of this form is that the Caputo
fractional derivative can be computed for fm as

(5) Dq
∗fm(s) =

m∑
i=1

wit
q
iKq(t, ti).

The approximation of functions by scattered data interpolation with the Mittag-Leffler
kernel function is explored in the next section with numerical results.
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1208 JOEL A. ROSENFELD AND WARREN E. DIXON

Theorem 3.2 guarantees uniform convergence of the Caputo fractional derivative
over a compact set of R+. However, since the function F (t) = Kq(λ, t) has a vertical
slope at the origin, the approximation has a high sensitivity to error at t = 0. This
sensitivity is observed in the numerical experiments of section 5.1.

4. A kernelized fractional Adams–Bashforth–Moulton method. As an
example application of the approximation of functions by linear combinations of kernel
functions for the purposes of fractional calculus, the present section examines a ker-
nelized ABM method for approximating solutions to FODEs governed by the Caputo
fractional derivative. In [10, 8], the classical ABM method was modified for applica-
tions to FODEs, and the methods were used to examine viscoplastic materials in [10].
Given q ∈ (m− 1,m), m ∈ N, and a fractional order initial value problem,

Dq
∗y(s) = f(s, y(s)) with

dk

dsk
y(0) = y

(k)
0

for k = 0, 1, . . . ,m−1, the solution y(s) can be written as a Volterra integral equation:

(6) y(s) =

m−1∑
k=0

sk

k!
y

(k)
0 +

1

Γ(q)

∫ s

0

(s− τ)q−1f(τ, y(τ)) dτ.

The objective of the ABM method is to compute an approximation of y(s) by lever-
aging the Volterra integral equation in (6).

Let t1 = 0 < t2 < · · · < tN = T be regularly spaced points in the interval
[0, T ]. Loosely speaking, the ABM method presented in [8] interpolates the points
{(ti, f(ti, y(ti))}Ni=1 by a piecewise linear function, and then uses the interpolating
function to predict yk+1. As a result, under certain smoothness assumptions on f , an
error bound for |y(ti) − yi| was obtained when ti are equally spaced. In particular,
the convergence rate O(h2) was obtained in Theorem C.4 of [8] for q ≥ 1.

The modification of the ABM method presented here exchanges piecewise linear
interpolation for scattered data interpolation by RKHSs. Since convergence rates
based on the spacing of the data points are difficult to obtain explicitly for functions
approximated through scattered data interpolation, a convergence rate depending on
norms from RKHSs are obtained instead.

The first term y1 is given by the initial condition

y1 =

m−1∑
j=0

tj1
j!
y

(j)
0 .

For k > 1, the determination of the approximation, yk+1, of y(tk+1) is computed
through two calculations. First, a predictor yPk+1 is computed via

(7) yPk+1 =

m−1∑
j=0

tjk+1

j!
y

(j)
0 +

1

Γ(q)

k∑
j=0

bj,k+1f(tj , yj),

where bj,k+1 = hq

q ((k+1−j)q−(k−j)q) arises from a piecewise constant approximation

of the function f(t, y(t)) under the integral in (6) with equally spaced nodes ti =
t1 + (i− 1)h and h > 0. The predictor given here is unchanged from (C.19) in [8].

The final estimation of y(tk+1), also known as the corrector, for the kernelized
ABM method is given by

(8) yk+1 =

m−1∑
j=0

tjk+1

j!
y

(j)
0 +

1

Γ(q)

∫ tk+1

0

(s− τ)q−1
k+1∑
j=1

wj,k+1K(τ, tj) dτ,
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where

(9)

k+1∑
j=0

wj,k+1K(ti, tj) =

{
f(ti, yi), i = 1, . . . , k,

f(tk+1, y
P
k+1), i = k + 1,

and K is some appropriately selected kernel function over R+. When K(λ, t) =
Kq(λ, t) the integral can be evaluated explicitly in (8) and

(10) yk+1 =

m−1∑
j=0

tjk+1

j!
y

(j)
0 +

w1,k+1

Γ(q + 1)
tqk+1 +

k+1∑
j=2

wi,k+1

tqj
(Kq(tk+1, tj)− 1) .

The corrector in (8) replaces (C.15) in [8], where instead of a piecewise linear inter-
polation of {f(ti, yi)}i, scattered data interpolation is used with a kernel function.

As discussed in section 2, wk+1 = (w1,k+1, . . . , wk+1,k+1)T ∈ Rk+1 is the solution
of

(11)


K(t1, t1) · · · K(tk+1, t1)

...
. . .

...
K(t1, tk) · · · K(tk+1, tk)
K(t1, tk+1) · · · K(tk+1, tk+1)




w1,k+1

...
wk,k+1

wk+1,k+1

 =


f(t1, y1)

...
f(tk, yk)

f(tk+1, y
P
k+1)

 .

In other words wk+1 := M−1
k+1fk+1, where Mk+1 is the matrix in (11) and

fk+1 := (f(t1, y1), . . . , f(tk, yk), f(tk+1, y
P
k+1))T .

Theorem 4.1. Let K be a continuous strictly positive definite kernel function
over R+ with corresponding RKHS H, and let q > 0. Suppose that f(t, y(t)) ∈ H
where Dq

∗y(t) = f(t, y(t)). For k ∈ N, the error |y(tk+1)− yk+1| is bounded by

C
∥∥f(t, y(t))− PSk+1

f(t, y(t))
∥∥

[0,tk]
+D

∥∥∥∥∥PSk+1
f(t, y(t))−

k+1∑
i=1

wi,k+1K(t, ti)

∥∥∥∥∥
[0,tk]

,

(12)

where C,D > 0 can be selected independent of k over a compact interval, PSk+1
is

the projection onto span{K(t, ti)}k+1
i=1 , (w1,k+1, . . . , wk+1,k+1)T is the solution to (11),

and ‖ · ‖[0,tk] is the norm arising from the restriction of the RKHS H to the set [0, tk].

Proof. Let
∑k+1
i=1 wi,k+1K(t, ti) be as in (9), and let PSk+1

f(·, y(·)) be the projec-

tion of f(·, y(·)) onto the subspace Sk+1 = span{K(t, ti)}k+1
i=1 of the RKHS H.

Consider the quantity |y(tk+1) − yk+1| and replace y(tk+1) with the fractional
integral of its differential equation, and replace yk+1 by its definition:

|y(tk+1)− yk+1|

=

∣∣∣∣∣ 1

Γ(q)

∫ tk+1

0

(tk+1 − τ)q−1

(
f(τ, y(τ))−

k+1∑
i=1

wi,k+1K(τ, ti)

)
dτ

∣∣∣∣∣
≤
∣∣∣∣ 1

Γ(q)

∫ tk+1

0

(tk+1 − τ)q−1
(
f(τ, y(τ))− PSk+1

f(t, y(t))
)
dτ

∣∣∣∣
+

∣∣∣∣∣ 1

Γ(q)

∫ tk+1

0

(tk+1 − τ)q−1

(
PSk+1

f(t, y(t))−
k+1∑
i=1

wi,k+1K(τ, ti)

)
dτ

∣∣∣∣∣
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≤
tqk+1

Γ(q + 1)
sup

τ∈[0,tk+1]

|f(τ, y(τ))− PSk+1
f(τ, y(τ))|

+
tqk+1

Γ(q + 1)
sup

τ∈[0,tk+1]

∣∣∣∣∣PSk+1
f(τ, y(τ))−

k+1∑
i=1

wi,k+1K(τ, ti)

∣∣∣∣∣
≤ C‖f(τ, y(τ))− PSk+1

f(τ, y(τ))‖[0,tk+1]

+D

∥∥∥∥∥PSk+1
f(τ, y(τ))−

k+1∑
i=1

wi,k+1K(τ, ti)

∥∥∥∥∥
[0,tk+1]

.

The last inequality follows, since over a compact set I, supy∈I |f | ≤ C‖f‖ for some
C > 0 when f ∈ H and the kernel is continuous.

It is necessary to require that f(·, y(·)) ∈ H to establish the bound in (12). In
the context of the Mittag-Leffler RKHS and the RKHS arising from the exponential
kernel, this requirement may seem restrictive, since both spaces consist of infinitely
differentiable functions. However, this bound holds no matter what RKHS is used.
The usual requirement for other numerical methods is that f(·, y(·)) is twice continu-
ously differentiable (cf. Theorem C.4 and the following discussion in [8]). The bound
in (12) can be satisfied for functions in broader classes than C2, for example, the na-
tive RKHSs for the Wendland RBFs correspond to Sobolev spaces, and the degree of
smoothness of functions in those spaces corresponds to the smoothness of the chosen
Wendland RBF [32]. Therefore, the assumption f(·, y(·)) ∈ H is constrained only by
the smoothness of the kernel function.

The norm contained in (12) is the norm obtained from the restriction of functions
in H to [0, tk]. The norm of the restricted RKHS is itself an RKHS norm, and as such
the projection, PSk+1

, can be realized through interpolation using the kernel functions

as
∑k+1
i=1 w̃i,k+1K(t, ti) = PSk+1

f(t, y(t)). Thus, PSk+1
f(ti, y(ti)) = f(ti, y(ti)) for

each i = 1, . . . , k + 1. By increasing the number of samples, the distance between
f(·, y(·)) and PSk+1

f(·, y(·)) can be made small in the Hilbert space norm, and in
turn, the supremum norm of their difference will be correspondingly small. Since
perfect information of f(·, y(·)) is not generally available to the numerical method,∑k+1
i=1 wi,k+1K(·, ti) estimates f(·, y(·)) by interpolating f(ti, yi) instead, as is done

in other numerical methods [8]. Heuristically, if the time steps remain small enough,

f(ti, yi) is close to f(ti, y(ti)). Thus, PSk+1
f(·, y(·))) is close to

∑k+1
i=1 wi,k+1K(·, ti)

in the Hilbert space norm contained in (12).

5. Numerical results.

5.1. Numerical results for the approximation of the Caputo fractional
derivative. Implementation of the approximations detailed in sections 2 and 3 re-
quires a selection of the number of sample points and the estimation of the Mittag-
Leffler kernels. To evaluate of Kq(t, ti) in (5), the MATLAB routine from [24] was used
to approximate the two-parameter Mittag-Leffler function. The collocation points
were chosen to be uniformly spaced in the interval [0, 1].

Similar to [29], the functions h1(t) = (t − 1/2)4 + 1 and h2(t) = sin(2πt) were
used to examine the performance of the developed approximation of the 1/2 and
1/8th order Caputo fractional derivative over the interval [0, 1]. Since Theorem 3.2
provides convergence guarantees for functions in ML2(R+; q), the 1/2 and 1/8th
Caputo fractional derivative of h3(t) = sin(2πtq) over [0, 1] was also used to examine
the developed approximation method.
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Table 1
Error bounds for Caputo estimation.

Function q N E1 E2 E3

h1 1/2 5 2.75E − 3 1.37E − 2 3.03E − 3
7 3.14E − 4 1.86E − 3 4.41E − 4
10 6.09E − 5 3.26E − 4 3.98E − 5
50 2.65E − 5 2.93E − 5 2.57E − 5
100 1.34E − 5 9.98E − 6 8.56E − 6

h1 1/8 5 4.06E − 2 6.61E − 2 2.26E − 2
7 2.68E − 2 4.74E − 2 1.55E − 3
10 3.70E − 3 6.02E − 3 4.40E − 4
50 2.08E − 4 1.70E − 4 1.61E − 4
100 1.19E − 5 1.31E − 5 1.76E − 6

h2 1/2 5 2.39E − 1 8.93E − 1 5.81E − 1
7 6.22E − 2 3.44E − 1 9.66E − 2
10 3.06E − 3 1.90E − 2 6.12E − 3
50 1.06E − 3 1.36E − 2 2.22E − 3
100 7.72E − 4 1.31E − 2 2.73E − 3

h2 1/8 5 4.21E − 1 5.83E − 1 4.52E − 1
7 9.90E − 1 1.73E + 0 4.65E − 2
10 7.71E − 1 1.31E + 0 3.90E − 2
50 7.46E − 2 7.64E − 2 2.49E − 3
100 1.05E − 2 7.96E − 3 7.60E − 4

h3 1/2 5 7.90E − 2 2.03E + 0 2.40E − 1
7 1.65E − 1 2.91E + 0 1.58E − 1
10 1.45E − 2 4.25E − 1 7.96E − 3
50 1.16E − 4 1.15E − 2 6.86E − 5
100 9.90E − 5 8.18E − 3 6.39E − 5

h3 1/8 5 5.22E − 1 7.18E + 0 2.49E − 2
7 4.80E − 1 6.90E + 0 2.27E − 2
10 9.41E − 2 1.77E + 0 5.76E − 3
50 4.22E − 4 3.84E + 0 1.51E − 4
100 1.20E − 5 3.39E + 0 6.94E − 5

Since h1 and h2 are continuously differentiable at the origin, D∗qh1(0) = 0 and
D∗qh2(0) = 0. Therefore, a modified Mittag-Leffler kernel function was used for the
approximation of h1 and h2. In particular, the kernel given by

Kq,1(λ, t) := Kq(λ, t)−
λqtq

Γ(q + 1)
= 1 +

∞∑
n=2

tqnλqn

Γ(qn+ 1)

was used for scattered data interpolation. The kernel Kq,1 is the kernel function
for the subspace {tq}⊥ ⊂ ML2(R+; q). For each λ ∈ R+, Dq

∗Kq,1(λ, 0) = 0, which
enables accurate approximation of Dq

∗f(0) when the function to be approximated is
continuously differentiable near the origin. Note that this kernel is universal by the
Muntz–Szasz theorem [25] and is strictly positive definite by Theorem 2.1.

Table 1 enumerates the results of the numerical experiments. The variable q
represents the order of the Caputo fractional derivative applied to the function, as
well as the order of the Mittag-Leffler space the approximation was performed under.
The quantity N is the number of equally spaced collocation nodes in the unit interval
[0, 1], including the time t = 0 and t = 1. E1 is the supremum norm of the error
of approximation to the original function, while E2 is the supremum norm over the
interval [0, 1] of the error in approximation of the Caputo fractional derivative of the
respective order. Since it is known that the approximation may have poor performance
near the origin, E3 is the supremum norm of the error in approximation of the Caputo
fractional derivative over the subinterval [0.1, 0.9]. Independent of the number of

D
ow

nl
oa

de
d 

05
/2

6/
17

 to
 1

28
.2

27
.2

26
.1

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1212 JOEL A. ROSENFELD AND WARREN E. DIXON
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(a) Approximation of h2(t) (circles).

0 0.2 0.4 0.6 0.8 1
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0
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(b) Approximation of D
1/2
∗ h2(t).

0 0.2 0.4 0.6 0.8 1
−0.01

−0.005

0

0.005

0.01

0.015

0.02

(c) Approximation error of D
1/2
∗ h2(t).

Fig. 1. A representative approximation of the Caputo fractional derivative of order q = 1/2 of
h2(t). This approximation was performed using N = 10. Figure 1(a) presents the approximation
(solid line) to the function h2(t) (circles) with N = 10 and q = 1/2. Figure 1(b) presents the

approximation (solid line) of D
1/2
∗ h2(t) (circles) with N = 10 and q = 1/2. Figure 1(c) demonstrates

the approximation error of the approximation of D
1/2
∗ h2(t) with N = 10 and q = 1/2 shown in

Figure 1(b).

collocation points, the errors were estimated by sampling 200 regularly spaced points
in the interval [0, 1]. The larger number of samples for the error functions guarantees
that the error is estimated at points that do not coincide with the collocation points.

Figures 1(a)–1(c) present the results from a representative numerical experiment:
the approximation of h2’s Caputo fractional derivative of order 1/2 with 10 collocation
nodes.

5.2. Numerical results for the kernelized fractional order adams–
bashforth–moulton method. The execution of the kernelized ABM method was
performed using two kernels, the exponential kernel K1(t, λ) = exp(λt) and the mod-
ified Mittag-Leffler kernel of the previous section, Kq,1(t, λ). For both cases, the
fractional integral in (6) can be explicitly evaluated in terms of the two-parameter
Mittag-Leffler function

Eα,β(z) :=

∞∑
n=0

zn

Γ(αn+ β)
.

Denoting the Riemann–Liouville fractional integral as

Jq0f(s) :=
1

Γ(q)

∫ s

0

(s− τ)q−1f(τ) dτ
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Table 2
Error bounds for kernelized ABM.

FODE Kernel or method q N E4

(13) K1 1/2 5 5.57E − 1
10 1.80E − 1
50 1.92E − 2
100 6.78E − 3

(13) K1/2,1 1/2 5 5.61E − 1
10 1.85E − 1
50 1.83E − 2
100 6.29E − 3

(13) ABM 1/2 5 2.44E + 0
10 3.08E + 0
50 2.22E + 0
100 1.66E + 0

(14) K1 1/2 5 3.10E − 2
10 8.06E − 3
50 2.25E − 3
100 1.69E − 3

(14) K1/2,1 1/2 5 2.72E − 2
10 8.16E − 3
50 1.14E − 3
100 1.95E − 3

(14) ABM 1/2 5 2.45E − 1
10 1.82E − 1
50 9.34E − 2
100 6.91E − 2

(14) K1 1/8 5 2.89E − 1
10 2.21E − 1
50 1.23E − 1
100 9.60E − 2

(14) K1/8,1 1/8 5 3.25E − 1
10 2.56E − 1
50 1.57E − 1
100 1.19E − 1

(14) ABM 1/8 5 4.19E − 1
10 3.06E − 1
50 2.03E − 1
100 1.78E − 1

the following hold:

Jq0K1(t, λ) = Jq0 exp(λt) = tqE1,q+1(λt),

Jq0Kq,1(t, λ) = Jq0

(
Eq(λ

qtq)− λqtq

Γ(q + 1)

)
= λ−q (Eq(λ

qtq)− 1)− λqt2q

Γ(2q + 1)
.

Thus, the computation of the fractional integral in the kernelized ABM method, as in
(8), can be evaluated analytically in terms of the Mittag-Leffler function by replacing
the fractional integral of the kernel functions by the above formulas.

The results detailed in Table 2 show the errors of approximation of the solution
to two FODEs,

(13) Dq
∗y(s) = y(s), y(0) = 1

as well as

(14) Dq
∗y(s) = −y(s), y(0) = 1.
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Fig. 2. The solid unmarked line represents the solution to (14) with q = 1/2. The kernelized
methods are the curves marked with circles and triangles, representing the numerical solution gen-
erated by the exponential kernel and the modified Mittag-Leffler kernel, Kq,1, respectively (these two
curves are overlapping). The curve marked with squares represents the ABM method given in [10].
Each method was executed using 10 time steps.

The solutions for these FODEs are y(s) = Eq(s
q) and y(s) = Eq(−sq), respectively.

The column labeled “FODE” indicates the FODE whose solution was estimated. The
“Kernel or method” column indicates which kernel function was used to perform the
estimation. The order of the derivative is given by q, and the number of collocation
points is given by N . Finally, E4 = maxi=1,...,N |y(ti) − yi|. For comparison, the
results of using the fractional order ABM method given in [10] is also listed. Figure 2
is a plot of the solution to (14) with q = 1/2, as well as the approximations of the
solution produced by each method with 10 time steps.

6. Discussion.

6.1. Discussion of the estimation of the Caputo fractional derivative.
Table 1 indicates that as N increases, E1 becomes small. Moreover, the approxima-
tion of the Caputo fractional derivative of the polynomial h1(t) = (t−1/2)4+1 tended
to be more accurate than that of the sinusoid h2(t) = sin(2πt) or of h3(t) = sin(2πtq).
Heuristically, the establishment of an accurate approximation requires more colloca-
tion nodes given the greater variability of the function to be approximated; this may
characterize the higher accuracy achieved for h1.

The approximation of h2 was not as accurate as that of h3. The functions h1

and h2 are not explicitly in ML2(R+; q), whereas h3 ∈ ML2(R+; q). However, since
ML2(R+; q) is universal over R+, as is {tq}⊥ ⊂ ML2(R+; q), there are functions in
ML2(R+; q) that are arbitrarily close (in the uniform metric) to h1 and h2, and this
justifies the approximation.

The E2 column of Table 1 indicates that the Caputo fractional derivative estimate
is poor at some points for h1, h2, and h3. The maximum error was 3.39 when 100
nodes were used to approximate h3 over the space ML2(R+; 1/8). However, when
a neighborhood of the origin is excluded, the approximation error maximum was
reduced to 6.94× 10−5 over the interval [0.1, 0.9]. The discrepancy between columns
E2 and E3 in Table 1 expresses the sensitivity of Kq(λ, t) at t = 0 and was anticipated
at the end of section 3.
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Until future research can reduce the sensitivity of Kq(λ, t) at t = 0, a composite
approach can be used for approximating the fractional derivative of a function. Since
functions having a Caputo fractional derivative for each point in the interval [0, 1]
are assumed to be differentiable over the interval, a linearization of a given function
can be used near the origin, [0, δ], where the developed approximation of the Caputo
fractional derivative is sensitive. Given enough collocation points, the approximation
of the Caputo fractional derivative of a function will achieve any desired accuracy
over [δ′, 1] where 0 < δ′ < δ by using scattered data interpolation. Thus, once the
time variable leaves [0, δ], the approximation by Mittag-Leffler kernels may be used.

6.2. Discussion of the kernelized ABM method. Table 2 indicates that the
kernels K1 and Kq,1 performed comparably in the estimation of the solution to the
FODEs given by (13) and (14). The minimum approximation error of the solution
to (14) was achieved by K1/2,1 with 50 time steps. The approximations degraded
when the order of the FODE was decreased from 1/2 to 1/8. The results of Table 2
indicate that the kernelized ABM method can be used to produce accurate numerical
solutions to FODEs.

Moreover, Table 2 indicates that the kernelized method outperforms the ABM
method given in [10] for these particular systems. A heuristic explanation for the
effectiveness of the kernelized method in this circumstance is that the kernels used
to generate the numerical approximation have growth rates similar to the solution,
which is nonlinear.

The kernelized ABM method requires more computation time than the ABM
method in [8]. The difference in computation time is explained by the computational
complexity of the ABM method described in [8] and the kernelized ABM presented in
section 4. In particular, to perform the interpolation step the system in (11) must be
solved. In [8], the algorithm for performing the piecewise linear interpolation is O(k)
in computational complexity. For algorithms that seek to solve (11) directly through
matrix inversion, the computational complexity is typically between O(k2) and O(k3),
which is the ultimate performance bottleneck. Exploiting the symmetry and positivity
of the matrix, the conjugate gradient method can be used to improve performance.
For kernels such as the Mittag-Leffler kernel, the matrix in (11) is dense; this means
that the operation of matrix multiplication in the conjugate gradient method will be
O(k2), resulting in an overall performance of O(k3) for the conjugate gradient method.
However, if the matrix is sparse, such as when a compactly supported RBF is used,
the operation of multiplication of a vector by a sparse matrix is O(m), where m is the
number of nonzero elements of the sparse matrix [27]. In particular, the Gram matrix
for a compactly supported RBF is banded and has O(k) nonzero entries. Therefore,
the computational complexity may be improved to O(k2) by utilizing a compactly
supported RBF in the kernelized ABM method. These arguments are general, and
the complexities listed can be refined for particular algorithms for matrix inversion
and multiplication.

7. Conclusion. This paper introduced a new RKHS (i.e., ML2(R+; q)) for the
purpose of approximating the Caputo fractional derivative of a function and for
producing numerical solutions of FODEs. Theorem 3.2 established that for f ∈
ML2(R+; q), the Caputo fractional derivative of order q of f can be uniformly ap-
proximated over compact subsets of the positive real numbers by linear combinations
of the Mittag-Leffler kernel functions. Numerical experiments demonstrated the ef-
fectiveness of the approximation methods over the interval [0, 1]. However, it was

D
ow

nl
oa

de
d 

05
/2

6/
17

 to
 1

28
.2

27
.2

26
.1

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1216 JOEL A. ROSENFELD AND WARREN E. DIXON

observed that the approximations of f ’s Caputo fractional derivative near the origin
exhibit sensitivity issues to be addressed in future work.

This paper also introduced the kernelized ABM method for producing numeri-
cal solutions to FODEs. The kernelized ABM method introduces a new approach to
numerical estimation of solutions to FODEs through the use of kernel functions and
scattered data interpolation. The method can achieve greater accuracy than piece-
wise linear approaches (cf. [10]) in certain cases, and this was demonstrated through
numerical experiments detailed in Table 2.
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