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Asymptotic Tracking for Uncertain Dynamic Systems
Via a Multilayer Neural Network Feedforward and

RISE Feedback Control Structure

Parag M. Patre, William MacKunis, Kent Kaiser, and
Warren E. Dixon

Abstract—The use of a neural network (NN) as a feedforward control
element to compensate for nonlinear system uncertainties has been inves-
tigated for over a decade. Typical NN-based controllers yield uniformly
ultimately bounded (UUB) stability results due to residual functional re-
construction inaccuracies and an inability to compensate for some system
disturbances. Several researchers have proposed discontinuous feedback
controllers (e.g., variable structure or sliding mode controllers) to reject
the residual errors and yield asymptotic results. The research in this paper
describes how a recently developed continuous robust integral of the sign
of the error (RISE) feedback term can be incorporated with a NN-based
feedforward term to achieve semi-global asymptotic tracking. To achieve
this result, the typical stability analysis for the RISE method is modified to
enable the incorporation of the NN-based feedforward terms, and a projec-
tion algorithm is developed to guarantee bounded NN weight estimates.

Index Terms—Adaptive control, asymptotic stability, Lyapunov
methods, neural network, nonlinear systems, RISE feedback, robust
control.

I. INTRODUCTION

Control researchers have extensively investigated the use of neural
networks (NNs) as a feedforward control element over the last fifteen
years. The focus on NN-based control methods is spawned from the
ramifications of the fact that NNs are universal approximators [1]. That
is, NNs can be used as a black-box estimator for a general class of sys-
tems. Examples include: nonlinear systems with parametric uncertainty
that do not satisfy the linear-in-the-parameters assumption required in
most adaptive control methods; systems with deadzones or discontinu-
ities; and systems with backlash. Typically, NN-based controllers yield
global uniformly ultimately bounded (UUB) stability results (e.g., see
[2]–[4] for examples and reviews of literature) due to residual func-
tional reconstruction inaccuracies and an inability to compensate for
some system disturbances. Motivated by the desire to eliminate the
residual steady-state errors, several researchers have obtained asymp-
totic tracking results by combining the NN feedforward element with
discontinuous feedback methods such as variable structure controllers
(VSC) (e.g., [5] and [6]) or sliding mode (SM) controllers (e.g., [6]
and [7]). A clever VSC-like controller was also proposed in [8], where
the controller is not initially discontinuous, but exponentially becomes
discontinuous as an exogenous control element exponentially vanishes.
Well known limitations of VSC and SM controllers include a require-
ment for infinite control bandwidth and chattering. Unfortunately, ad
hoc fixes for these effects result in a loss of asymptotic stability (i.e.,
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UUB typically results). Motivated by issues associated with discontin-
uous controllers and the typical UUB stability result, an innovative con-
tinuous NN-based controller was recently developed in [9] to achieve
partial asymptotic stability for a particular class of systems. The con-
tribution in this paper is motivated by the question: Can a NN feed-
forward controller be modified by a continuous feedback element to
achieve an asymptotic tracking result for a general class of systems?
Despite the pervasive development of NN controllers in literature and
the widespread use of NNs in industrial applications, the answer to this
fundamental question has remained an open problem.

To provide an answer to the fundamental motivating question, the
result in this paper focuses on augmenting a multilayer NN-based
feedforward method with a recently developed [10] high gain control
strategy coined the robust integral of the sign of the error (RISE) in
[11], [12]. The RISE control structure is advantageous because it is a
differentiable control method that can compensate for additive system
disturbances and parametric uncertainties under the assumption that
the disturbances are C2 with bounded time derivatives. Due to the
advantages of the RISE control structure, a flurry of results have
recently been developed (e.g., [13]–[17]).

A RISE feedback controller can be directly applied to yield asymp-
totic stability for the class of systems described in this paper. How-
ever, the RISE method is a high-gain feedback tool, and hence, clear
motivation exists (as with any other feedback controller) to combine
a feedforward control element with the feedback controller for poten-
tial gains such as improved transient and steady-state performance, and
reduced control effort. That is, it is well accepted that a feedforward
component can be used to cancel out some dynamic effects without re-
lying on high-gain feedback. Given this motivation, some results have
already been developed that combine the RISE feedback element with
feedforward terms. In [18], a remark is provided regarding the use of
a constant best-guess feedforward component in conjunction with the
RISE method to yield a UUB result. In [11] and [12], the RISE feed-
back controller was combined with a standard gradient feedforward
term for systems that satisfy the linear-in-the-parameters assumption.
The experimental results in [11] illustrate significant improvement in
the root-mean-squared tracking error with reduced root-mean-squared
control effort. However, for systems that do not satisfy the linear-in-the-
parameters assumption, motivation exists to combine the RISE con-
troller with a new feedforward method such as the NN.

To blend the NN and RISE methods, several technical challenges
must be addressed. One (lesser) challenge is that the NN must be con-
structed in terms of the desired trajectory instead of the actual trajectory
(i.e., a DCAL-based NN structure [8]) to remove the dependence on
acceleration. The development of a DCAL-based NN structure is chal-
lenging for a multilayer NN because the adaptation law for the weights
is required to be state-dependent. Straightforward application of the
RISE method would yield an acceleration dependent adaptation law.
One method to resolve this issue is to use a “dirty derivative” (as in
the UUB result in [19]; see also [17]). In lieu of a dirty derivative, the
result in this paper uses a Lyapunov-based stability analysis approach
for the design of an adaptation law that is only velocity dependent. In
comparison with the efforts in [11], [12], a more significant challenge
arises from the fact that since a multilayer NN includes the first layer
weight estimate inside of a nonlinear activation function, the previous
methods (e.g., [11] and [12]) cannot be applied. That is, because of
the unique manner in which the NN weight estimates appear, the sta-
bility analysis and sufficient conditions developed in previous works
are violated. Previous RISE methods have a restriction (encapsulated
by a sufficient gain condition) that terms in the stability analysis that
are upper bounded by a constant must also have time derivatives that
are upper bounded by a constant (these terms are usually denoted by
Nd (t) in RISE control literature; see [18]). The norm of the NN weight

estimates can be bounded by a constant (due to a projection algorithm)
but the time derivative is state-dependent (i.e., the norm of Nd (t) can
be bounded by a constant but the norm of _Nd (t) is state dependent). To
address this issue, modified RISE stability analysis techniques are de-
veloped that result in modified (but not more restrictive) sufficient gain
conditions. By addressing this issue through stability analysis methods,
the standard NN weight adaptation law does not need to be modified.
Through unique modifications to the stability analysis that enable the
RISE feedback controller to be combined with the NN feedforward
term, the result in this paper provides an affirmative answer for the first
time to the aforementioned motivating question.

Since the NN and the RISE control structures are model independent
(black box) methods, the resulting controller is a universal reusable
controller [8] for continuous systems. Because of the manner in which
the RISE technique is blended with the NN-based feedforward method,
the structure of the NN is not altered from textbook examples [4] and
can be considered a somewhat modular element in the control struc-
ture. Hence, the NN weights and thresholds are automatically adjusted
on-line, with no off-line learning phase required. Compared to standard
adaptive controllers, the current asymptotic result does not require lin-
earity in the parameters or the development and evaluation of a regres-
sion matrix.

For systems with linear-in-the-parameters uncertainty, an adaptive
feedforward controller has the desirable characteristics that the con-
troller is continuous, can be proven to yield global asymptotic tracking,
and includes the specific dynamics of the system in the feedforward
path. Continuous feedback NN controllers don’t include the specific
dynamics in a regression matrix and have a degraded steady-state sta-
bility result (i.e., UUB tracking); however, they can be applied when
the uncertainty in the system is unmodeled, cannot be linearly parame-
terized, or the development and implementation of a regression matrix
is impractical. Sliding mode feedback NN controllers have the advan-
tage that they can achieve global asymptotic tracking at the expense of
implementing a discontinuous feedback controller (i.e., infinite band-
width, exciting structural modes, etc.). In comparison to these con-
trollers, the development in this paper has the advantage of asymptotic
tracking with a continuous feedback controller for a general class of un-
certainty; however, these advantages are at the expense of semi-global
tracking instead of the typical global tracking results.

II. DYNAMIC MODEL AND PROPERTIES

The class of nonlinear dynamic systems considered in this paper is
assumed to be modeled by the following Euler-Lagrange formulation
that describes the behavior of a large class of engineering systems (e.g.,
robot manipulators, satellites, vehicular systems):

M(q)�q + Vm(q; _q) _q +G(q) + F ( _q) + �d (t) = � (t): (1)

In (1),M(q) 2 n�n denotes the inertia matrix,Vm(q; _q) 2 n�n de-
notes the centripetal-Coriolis matrix, G(q) 2 n denotes the gravity
vector, F ( _q) 2 n denotes friction, �d (t) 2 n denotes a general
nonlinear disturbance (e.g., unmodeled effects), � (t) 2 n represents
the torque input control vector, and q(t), _q(t), �q(t) 2 n denote the
link position, velocity, and acceleration vectors, respectively. The sub-
sequent development is based on the assumption that q(t) and _q(t) are
measurable and that M(q), Vm(q; _q), G(q), F ( _q) and �d (t) are un-
known. Moreover, the following properties and assumptions will be
exploited in the subsequent development.

Property 1: The inertia matrixM(q) is symmetric, positive definite,
and satisfies the following inequality 8 y(t) 2 n:

m1 kyk
2 � y

T
M(q)y � �m(q)kyk2 (2)
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where m1 2 is a known positive constant, �m(q) 2 is a known
positive function, and k�k denotes the standard Euclidean norm.

Property 2: If q(t); _q(t) 2 L111, then Vm(q; _q), F ( _q) and G(q) are
bounded. Moreover, if q(t); _q(t) 2 L111, then the first and second par-
tial derivatives of the elements of M(q), Vm(q; _q), G(q) with respect
to q (t) exist and are bounded, and the first and second partial deriva-
tives of the elements of Vm(q; _q), F ( _q) with respect to _q(t) exist and
are bounded.

Property 3: The nonlinear disturbance term and its first two time
derivatives are bounded, i.e., �d (t) ; _�d (t) ; ��d (t) 2 L111.

III. CONTROL OBJECTIVE

The control objective is to ensure that the system tracks a desired
time-varying trajectory, denoted by qd(t) 2 n, despite uncertainties
in the dynamic model. To quantify this objective, a position tracking
error, denoted by e1(t) 2 n, is defined as

e1 qd � q: (3)

The subsequent development is based on the assumption that the de-
sired trajectory designed such that q(i)

d
(t) 2 n (i = 0; 1; . . . ; 4) exist

and are bounded. To facilitate the subsequent analysis, filtered tracking
errors, denoted by e2(t); r(t) 2 n, are also defined as

e2 _e1 + �1e1 (4)

r _e2 + �2e2 (5)

where�1; �2 2 denote positive constants. The filtered tracking error
r(t) is not measurable since the expression in (5) depends on �q(t).

IV. FEEDFORWARD NN ESTIMATION

NN-based estimation methods are well suited for control systems
where the dynamic model contains unstructured nonlinear disturbances
as in (1). The main feature that empowers NN-based controllers is
the universal approximation property. Let be a compact simply con-
nected set of N +1. With map f : ! n, define n ( ) as the
space where f is continuous. There exist weights and thresholds such
that some function f(x) 2 n ( ) can be represented by a three-layer
NN as [3], [4]

f (x) = W
T
� V

T
x + " (x) (6)

for some given input x(t) 2 N +1. In (6), V 2 (N +1)�N and
W 2 (N +1)�n are bounded constant ideal weight matrices for the
first-to-second and second-to-third layers respectively, whereN1 is the
number of neurons in the input layer, N2 is the number of neurons in
the hidden layer, and n is the number of neurons in the third layer. The
activation function1 in (6) is denoted by � (�) 2 N +1, and " (x) 2
n is the functional reconstruction error. Note that, augmenting the

input vector x(t) and activation function � (�) by “1” allows us to have
thresholds as the first columns of the weight matrices [3], [4]. Thus,
any tuning of W and V then includes tuning of thresholds as well.

Remark 1: If " = 0, then f (x) is in the functional range of the
NN. In general for any positive constant real number "N > 0, f (x)
is within "N of the NN range if there exist finite hidden neurons N2,
and constant weights so that for all inputs in the compact set, the ap-
proximation holds with k"k < "N . For various activation functions,
results such as the Stone-Weierstrass theorem indicate that any suffi-

1A variety of activation functions (e.g., sigmoid, hyperbolic tangent or radial
basis) could be used for the control development in this paper.

ciently smooth function can be approximated by a suitable large net-
work. Therefore, the fact that the approximation error " is bounded
follows from the Universal Approximation Property of the NNs [1].

Based on (6), the typical three-layer NN approximation for f(x) is
given as [3], [4]

f̂ (x) Ŵ
T
�(V̂ T

x) (7)

where V̂ (t) 2 (N +1)�N and Ŵ (t) 2 (N +1)�n are subsequently
designed estimates of the ideal weight matrices. The estimate mismatch
for the ideal weight matrices, denoted by ~V (t) 2 (N +1)�N and
~W (t) 2 (N +1)�n, are defined as

~V V � V̂ ; ~W W � Ŵ

and the mismatch for the hidden-layer output error for a given x(t),
denoted by ~�(x) 2 N +1, is defined as

~� � � �̂ = �(V T
x)� �(V̂ T

x): (8)

Property 4: (Boundedness of the Ideal Weights) The ideal weights
are assumed to exist and be bounded by known positive values so that

kV k2
F

= tr(V T
V ) � �VB (9)

kWk2
F

= tr(WT
W ) � �WB (10)

where k�k
F

is the Frobenius norm of a matrix, and tr (�) is the trace of
a matrix.

V. RISE FEEDBACK CONTROL DEVELOPMENT

The contribution of this paper is the control development and sta-
bility analysis that illustrates how the aforementioned textbook (e.g.,
[4]) NN feedforward estimation strategy can be fused with a RISE feed-
back control method as a means to achieve an asymptotic stability result
for general Euler-Lagrange systems described by (1). In this section,
the open-loop and closed-loop tracking error is developed for the com-
bined control system.

A. Open-Loop Error System

The open-loop tracking error system can be developed by premulti-
plying (5) by M(q) and utilizing the expressions in (1), (3), and (4) to
obtain the following expression:

M(q)r = fd + S + �d � � (11)

where the auxiliary function fd (qd; _qd; �qd) 2 n is defined as

fd M(qd)�qd + Vm(qd; _qd) _qd +G(qd) + F ( _qd) (12)

and the auxiliary function S (q; _q; qd; _qd; �qd) 2
n is defined as

S M (q) (�1 _e1 + �2e2) +M (q) �qd �M(qd)�qd

+ Vm(q; _q) _q � Vm(qd; _qd) _qd

+G(q)�G(qd) + F ( _q)� F ( _qd) : (13)

The expression in (12) can be represented by a three-layer NN as

fd = W
T
�(V T

xd) + " (xd) : (14)

In (14), the input xd(t) 2 3n+1 is defined as xd(t)
[ 1 qTd (t) _qTd (t) �qTd (t) ]

T so that N1 = 3n where N1 was
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introduced in (6). Based on the assumption that the desired trajectory
is bounded, the following inequalities hold:

k" (xd)k � "b ; k _" (xd; _xd)k � "b

k�" (xd; _xd; �xd)k � "b

(15)

where "b ; "b ; "b 2 are known positive constants.

B. Closed-Loop Error System

Based on the open-loop error system in (11), the control torque input
is composed of a three-layer NN feedforward term plus the RISE feed-
back terms as

� f̂d + �: (16)

Specifically, the RISE feedback control term �(t) 2 n is defined as
[13]

�(t) (ks + 1)e2(t)� (ks + 1)e2(0)

+
t

0

[(ks + 1)�2e2(�) + �1sgn(e2(�))]d� (17)

where ks; �1 2 are positive constant control gains. The feedforward
NN component in (16), denoted by f̂d(t) 2 n, is generated as

f̂d Ŵ T�(V̂ Txd): (18)

The estimates for the NN weights in (18) are generated on-line (there
is no off-line learning phase) as

_̂
W proj �1�̂

0V̂ T _xde
T

2 (19)

_̂
V proj �2 _xd �̂0T Ŵe2

T

(20)

where �1 2
(N +1)�(N +1), �2 2 (N +1)�(N +1) are constant,

positive definite, symmetric control gain matrices.2

The closed-loop tracking error system can be developed by substi-
tuting (16) into (11) as

M(q)r = fd � f̂d + S + �d � �: (21)

To facilitate the subsequent stability analysis, the time derivative of (21)
is determined as

M(q) _r = � _M(q)r+ _fd �
_̂
f
d
+ _S + _�d � _�: (22)

Remark 2: Taking the time derivative of the closed-loop error
system is typical of the RISE stability analysis. In our case, the time
differentiation also facilitates the design of NN weight adaptation
laws instead of using the typical (as in [3] and [4]) Taylor series
approximation method to obtain a linear form for the estimation error
~V .

Using (14) and (18), the closed-loop error system in (22) can be
expressed as

M(q) _r =� _M(q)r+W T�0 V T xd V T _xd

�
_̂

W T�(V̂ Txd)� Ŵ T�0(V̂ Txd)
_̂

V T xd

� Ŵ T�0(V̂ Txd)V̂
T _xd + _"+ _S + _�d � _� (23)

2The use of the smooth projection algorithm in (19) and (20) is to ensure that
Ŵ (t) and V̂ (t) remain bounded. This fact will be exploited in the subsequent
stability analysis.

where �0(V̂ Tx) � d� V Tx =d V Tx j
V x=V̂ x

. After adding
and subtracting the terms W T �̂0V̂ T _xd + Ŵ T �̂0 ~V T _xd to (23), the
following expression can be obtained:

M(q) _r =� _M(q)r+ Ŵ T �̂0 ~V T _xd + ~W T �̂0V̂ T _xd

+W T�0V T _xd �W T �̂0V̂ T _xd � Ŵ T �̂0 ~V T _xd

+ _S �
_̂

W T �̂ � Ŵ T �̂0
_̂

V Txd + _�d + _"� _� (24)

where the notation �̂ is introduced in (8). Using the NN weight tuning
laws in (19) and (20); the expression in (24) can be rewritten as

M(q) _r = �
1

2
_M(q)r+ ~N +N � e2� (ks+1)r��1sgn(e2) (25)

where the fact that the time derivative of (17) is given as

_�(t) = (ks + 1)r+ �1sgn(e2) (26)

was utilized, and where the unmeasurable auxiliary terms
~N(e1; e2; r; t); N(Ŵ ; V̂ ; xd; _xd; t) 2

n are defined as

~N(t) �
1

2
_M(q)r� proj(�1�̂

0V̂ T _xde
T

2 )
T �̂

�Ŵ T �̂0proj(�2 _xd(�̂
0T Ŵe2)

T )Txd + _S + e2 (27)

and

N Nd +NB : (28)

In (28), Nd (xd; _xd; t) 2
n is defined as

Nd W T�0V T _xd + _"+ _�d (29)

while NB(Ŵ ; V̂ ; xd; _xd; t) 2
n is further segregated as

NB NB +NB (30)

where NB (Ŵ ; V̂ ; xd; _xd; t) 2
n is defined as

NB �WT �̂0V̂ T _xd � Ŵ T �̂0 ~V T _xd (31)

and the term NB (Ŵ ; V̂ ; xd; _xd; t) 2
n is defined as

NB Ŵ T �̂0 ~V T _xd + ~W T �̂0V̂ T _xd: (32)

Motivation for segregating the terms in (28) is derived from the fact that
the different components in (28) have different bounds. Segregating the
terms as in (28)–(32) facilitates the development of the NN weight up-
date laws and the subsequent stability analysis. For example, the terms
in (29) are grouped together because the terms and their time deriva-
tives can be upper bounded by a constant and rejected by the RISE
feedback, whereas the terms grouped in (30) can be upper bounded by a
constant but their derivatives are state dependent. The state dependency
of the time derivatives of the terms in (30) violates the assumptions
given in previous RISE-based controllers (e.g., [11]–[17]), and requires
additional consideration in the adaptation law design and stability anal-
ysis. The terms in (30) are further segregated because NB (Ŵ ; V̂ ; xd)
will be rejected by the RISE feedback, whereas NB (Ŵ ; V̂ ; xd) will
be partially rejected by the RISE feedback and partially canceled by
the adaptive update law for the NN weight estimates.

In a similar manner as in [13], the Mean Value Theorem can be used
to develop the following upper bound:

~N(t) � � (kzk)kzk (33)
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where z(t) 2 3n is defined as

z(t) [ eT1 eT2 rT ]T (34)

and the bounding function �(kzk) 2 is a positive globally invertible
nondecreasing function. The following inequalities can be developed
based on Property 3, (9), (10), (15), (30)–(32):

kNdk � �1; kNBk � �2; _Nd � �3: (35)

By using (19) and (20), the time derivative of NB(Ŵ ; V̂ ; xd) can be
bounded as

_NB � �4 + �5 ke2k : (36)

In (35) and (36), �i 2 , (i = 1; 2; . . . ; 5) are known positive con-
stants.

VI. STABILITY ANALYSIS

Theorem: The composite NN and RISE controller given in
(16)–(20) ensures that all system signals are bounded under closed-loop
operation and that the position tracking error is regulated in the sense
that

ke1(t)k ! 0 as t!1

provided the control gain ks introduced in (17) is selected sufficiently
large (see the subsequent proof), and �1 and �2 are selected according
to the following sufficient conditions:

�1 > �1 + �2 +
1

�2
�3 +

1

�2
�4; �2 > �5 (37)

where �i 2 , i = 1; 2; . . . ; 5 are introduced in (35)–(36) and �2 is
introduced in (40).

Proof: Let D � 3n+2 be a domain containing y(t) = 0, where
y(t) 2 3n+2 is defined as

y(t) z
T (t) P (t) Q(t)

T

: (38)

In (38), the auxiliary function P (t) 2 is defined as

P (t) �1

n

i=1

je2i(0)j � e2(0)
T
N(0)�

t

0

L(� )d� (39)

where the subscript i = 1; 2; . . . ; n denotes the ith element of the
vector, and the auxiliary function L(t) 2 is defined as

L(t) r
T (NB (t)+Nd (t)��1sgn(e2))+_e2(t)

T
NB (t)��2 ke2(t)k

2

(40)

where �2 2 is a positive constant chosen according to the second
sufficient condition in (37). The derivative _P (t) 2 can be expressed
as

_P (t) = �L(t) = �rT (NB (t) +Nd (t)

��1sgn(e2))� _e2(t)
T
NB (t) + �2 ke2(t)k

2
: (41)

Provided the sufficient conditions introduced in (37) are satisfied, the
following inequality can be obtained

t

0

L(�)d� � �1 je2i(0)j � e2(0)
T
N(0): (42)

Hence, (42) can be used to conclude that P (t) � 0. The auxiliary
function Q(t) 2 in (38) is defined as

Q(t)
�2

2
tr ~W T��11 ~W +

�2

2
tr ~V T��12 ~V : (43)

Since �1 and �2 are constant, symmetric, and positive definite matrices
and �2 > 0, it is straightforward that Q(t) � 0.

Let VL(y; t) : D � [0;1) ! be a continuously differentiable
positive definite function defined as

VL(y; t) e
T

1 e1 +
1

2
e
T

2 e2 +
1

2
r
T
M(q)r + P +Q (44)

which satisfies the following inequalities:

U1(y) � VL(y; t) � U2(y) (45)

provided the sufficient conditions introduced in (37) are satisfied. In
(45), the continuous positive definite functions U1(y); U2(y) 2 are
defined as

U1(y) �1 kyk
2
; U2(y) �2(q) kyk

2 (46)

where �1; �2(q) 2 are defined as

�1
1

2
min f1;m1g ; �2(q) max

1

2
�m(q);1

wherem1, �m(q) are introduced in (2). After utilizing (4), (5), (25), and
(26), the time derivative of (44) can be expressed as

_VL(y; t) =�2�1 ke1k
2 + 2eT2 e1 + r

T ~N(t)

� (ks + 1)krk2 � �2 ke2k
2 + �2 ke2k

2

+ �2e
T

2 Ŵ
T
�̂
0 ~V T _xd + ~W T

�̂
0

V̂
T _xd

+ tr �2 ~W T��11
_~W + tr �2 ~V

T��12
_~V :

(47)

Based on the fact that

e
T

2 e1 �
1

2
ke1k

2 +
1

2
ke2k

2

and using (19) and (20), the expression in (47) can be simplified as

_VL(y; t) � r
T ~N(t)� (ks + 1)krk2

� (2�1 � 1)ke1k
2 � (�2 � �2 � 1)ke2k

2
: (48)

By using (33), the expression in (48) can be further bounded as

_VL(y; t) � ��3 kzk
2 � ks krk

2 � �(kzk)krk kzk (49)

where �3 minf2�1 � 1; �2 � �2 � 1; 1g; hence, �3 is positive if
�1, �2 are chosen according to the following sufficient conditions:

�1 >
1

2
; �2 > �2 + 1:

After completing the squares for the second and third term in (49), the
following expression can be obtained:

_VL(y; t) � ��3 kzk
2 +

�2(z) kzk2

4ks
� �U(y) (50)
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where U(y) = c kzk2, for some positive constant c 2 , is a con-
tinuous positive semi-definite function that is defined on the following
domain:

D y 2 3n+2 j kyk � �
�1 2

p
�3ks :

The inequalities in (45) and (50) can be used to show that VL(y; t) 2
L1 in D; hence, e1(t), e2(t), r(t), P (t), and Q(t) 2 L1 in D.
Given that e1(t), e2(t), and r(t) 2 L1 in D, standard linear anal-
ysis methods can be used to prove that _e1(t); _e2(t) 2 L1 in D from
(4) and (5). Since e1(t); e2(t); r(t) 2 L1 in D, the assumption that
qd(t), _qd(t), �qd(t) exist and are bounded can be used along with (3)–(5)
to conclude that q(t); _q(t); �q(t) 2 L1 inD. Since q(t); _q(t) 2 L1 in
D, Property 2 can be used to conclude that M(q), Vm(q; _q),G(q), and
F ( _q) 2 L1 in D. Therefore, from (1) and Property 3, we can show
that � (t) 2 L1 in D. Given that r(t) 2 L1 in D, (26) can be used
to show that _�(t) 2 L1 in D. Since _q(t); �q(t) 2 L1 in D, Property
2 can be used to show that _Vm(q; _q), _G(q), _F (q) and _M(q) 2 L1
in D; hence, (22) can be used to show that _r(t) 2 L1 in D. Since
_e1(t); _e2(t); _r(t) 2 L1 inD, the definitions for U(y) and z(t) can be
used to prove that U(y) is uniformly continuous in D.

Let S � D denote a set defined as follows:3

S y(t)� D j U2(y(t)) < �1 �
�1 2

p
�3ks

2

: (51)

[20, Theor. 8.4] can now be invoked to state that

c kz(t)k2 ! 0 as t!1 8 y(0) 2 S: (52)

Based on the definition of z(t), (52) can be used to show that

ke1(t)k ! 0 as t!1 8 y(0) 2 S: (53)
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