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While a Global Positioning System (GPS) is the most widely
used sensor modality for aircraft navigation, researchers
have been motivated to investigate other navigational sensor
modalities because of the desire to operate in GPS denied
environments. Due to advances in computer vision and control
theory, monocular camera systems have received growing interest
as an alternative/collaborative sensor to GPS systems. Cameras
can act as navigational sensors by detecting and tracking feature
points in an image. Current methods have a limited ability to
relate feature points as they enter and leave the camera field of
view (FOV).
A vision-based position and orientation estimation method

for aircraft navigation and control is described. This estimation
method accounts for a limited camera FOV by releasing tracked
features that are about to leave the FOV and tracking new
features. At each time instant that new features are selected for
tracking, the previous pose estimate is updated. The vision-based
estimation scheme can provide input directly to the vehicle
guidance system and autopilot. Simulations are performed
wherein the vision-based pose estimation is integrated with a
nonlinear flight model of an aircraft. Experimental verification
of the pose estimation is performed using the modelled aircraft.
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I. INTRODUCTION

Global Positioning System (GPS) is the primary
navigational sensor modality used for vehicle
guidance, navigation, and control. However, a
comprehensive study, referred to as the Volpe report
[1], indicates several vulnerabilities of GPS associated
with signal disruptions. The Volpe Report delineates
the sources of interference with the GPS signal
into two categories, unintentional and deliberate
disruptions. Some of the unintentional disruptions
include ionosphere interference (also known as
ionospheric scintillation) and RF interference
(broadcast television, VHF, cell phones, and two-way
pagers); whereas, some of the intentional disruptions
involve jamming, spoofing, and meaconing. Some
of the ultimate recommendations of this report
were to, “create awareness among members of
the domestic and global transportation community
of the need for GPS backup systems: : :” and to
“conduct a comprehensive analysis of GPS backup
navigation: : :” which included instrument landing
systems (ILS), long range navigation (LORAN), and
inertial navigation systems (INS) [1].
The Volpe report inspired a search for strategies

to mitigate the vulnerabilities of the current GPS
navigation protocol. Nearly all resulting strategies
followed the suggested GPS backup methods that
revert to archaic/legacy methods. Unfortunately, these
navigational modalities are limited by the range of
their land-based transmitters, which are expensive
and may not be feasible for remote, hazardous, or
adversarial environments. Based on these restrictions,
researchers have investigated local methods of
estimating position when GPS is denied.
Given the advancements in computer vision and

estimation and control theory, monocular camera
systems have received growing interest as a local
alternative/collaborative sensor to GPS systems. One
issue that has inhibited the use of a vision system as
a navigational aid is the difficulty in reconstructing
inertial measurements from the projected image.
Current approaches to estimating the aircraft state
through a camera system utilize the motion of
feature points in an image. A geometric approach
is proposed (and our preliminary results [2, 3])
that uses a series of homography relationships to
estimate position and orientation with respect to
an inertial pose. This approach creates a series of
“daisy-chained” pose estimates (see [4] and [5]), in
which the current feature points can be related to
previously viewed feature points to determine the
current coordinates between each successive image.
Through these relationships previously recorded
GPS data can be linked with the image data to
provide position measurements in navigational regions
where GPS is denied. The method also delivers an
accurate estimation of vehicle attitude, which is an
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open problem in aerial vehicle control. The position
and attitude (i.e., pose) estimation method can be
executed in real time, making it amenable for use in
closed-loop guidance control of an aircraft.
The concept of vision-based control for a flight

vehicle has been an active area of research over the
last decade. Recent literature focused on vision-based
state estimation for use in control of a flight vehicle
can be categorized by several distinctions. One
distinction is that some methods require simultaneous
sensor fusion [6, 7], while other methods rely
solely on camera feedback [8]. Research can further
be categorized into methods that require a priori
knowledge of landmarks (such as pattern or shape
[9, 10], light intensity variations [11], and runway
edges or lights [12, 13]) versus techniques that do not
require any prior knowledge of landmarks [14—16].
Another category of research includes methods

that require the image features to remain in the field
of view (FOV) [14] versus methods that are capable
of acquiring new features [17]. Finally, methods
can be categorized according to the vision-based
technique for information extraction, such as: optic
flow [18], simultaneous localization and mapping
(SLAM) [19, 20], stereo vision [21], or epipolar
geometry [14, 22—24]. This last category might
also be delineated between methods that are more
computationally intensive and therefore indicative
of the level of real-time, on-board, computational
feasibility.
Methods using homography relationships between

images to estimate the pose of an aircraft are
presented by Caballero et al. [24] and Shakernia et al.
[14] (where it is referred to as the “planar essential
matrix”). The method presented by Caballero et al.
is limited to flying above a planar environment, and
this method creates an image mosaic, which can be
costly in terms of memory. Shakernia’s approach does
not account for feature points entering and exiting the
camera FOV. The method developed here is designed
for use with a fixed wing aircraft, thus the method
explicitly acquires new feature points when the current
features risk leaving the image, and no target model
is needed, as compared to other methods [9—13]. The
requirement of flying over a constant planar surface
is also relaxed to allow flight over piecewise planar
patches, which is more characteristic of real-world
scenarios.
The efforts used here share some concepts

associated with visual SLAM (VSLAM). There is
no strict definition of VSLAM, and there are many
different approaches. Some authors (e.g., [25—27])
make a distinction between “local VSLAM” and
“global VSLAM.” In this categorization local VSLAM
is concerned with estimating the current state of
the robot and world map through matching visual
features from frame to frame, and global VSLAM is

concerned with recognizing when features have
been previously encountered and with updating
estimates of the robot and map (sometimes referred
to as “closing loops”). To address both issues
many researchers use invariant features, such as
scale-invarient feature transform (SIFT) [28], which
can be accurately matched from frame to frame or
from multiple camera viewpoints. Many VSLAM
approaches use probabilistic filters (e.g., an extended
Kalman filter or a particle filter) [26, 27, 29—31],
that typically estimate a state vector composed of the
camera/robot position, orientation and velocity, and
the 3D coordinates of visual features in the world
frame. The use of epipolar geometry [25, 32] is an
option to filter-based approaches. A final possible
category is methods that build a true 3D map (i.e.,
a map that is easily interpreted by a human being,
such as walls or topography) [25—27, 30, 31] and
those that build a more abstract map that is designed
to allow the camera/robot to accurately navigate and
recognize its location but that is not designed for
human interpretation.
The method presented can provide an estimate

of the position and attitude of unmanned air vehicle
(UAV), and the method can be extended to map the
location of static landmarks in the world frame. Hence
this approach can be used in VSLAM of the UAV,
with applications toward path planning, real time
trajectory generation, obstacle avoidance, multi-vehicle
coordination control and task assignment, etc. By
using the daisy-chaining strategy, the coordinates of
static features that have moved out of the FOV can
also be estimated. The estimates of static features
can be maintained as a map, or they can be used as
measurements in existing VSLAM methods. The
daisy-chaining method in this paper is best suited
to a local VSLAM approach, where the global
problem of closing loops can be addressed though
existing methods. Unlike typical VSLAM approaches
camera/vehicle odometry is not required as an input
for the approach in this paper.
To investigate the performance of the developed

method, a numerical simulation is provided for a
nonlinear, six degrees-of-freedom model of an Osprey
UAV. The simulation illustrates the ability of the
estimation method to reconstruct the UAV pose in
the presence of disturbances, such as errors in the
initial altitude measure, image quantization, and
noise. To illustrate the potential use of the estimates
in a feedback loop, an autopilot was also included
in the simulation, with inputs complimentary with
the outputs from the estimation method. A specific
maneuver is created to perform a simultaneous rolling,
pitching, and yawing motion of the aircraft, combined
with a fixed-mounted camera. The aircraft/autopilot
modeling effort and maneuver are intended to test
the robustness of the homography-based estimation
method as well as to provide proof-of-concept in
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using the camera as the primary sensor for achieving
closed-loop autonomous flight.
Based on the outcomes from the simulation, the

performance of the developed estimation method is
also experimentally tested through two flight tests
with an Osprey UAV. One experiment compares
the estimated inertial coordinates of the UAV to
the GPS position reported by two on-board GPS
units. The GPS units provide different outputs,
but the homography-based estimation is shown to
provide approximately equivalent performance. A
second experiment is also performed, where precision
laser-measured ground markers were viewed by the
flight camera. In this experiment, the images of the
known maker locations are used to generate a precise
ground truth. The estimation method (which did not
use any information about marker locations) matches
the reconstructed ground truth data.
Section II provides details on pose reconstruction

using the homography-based daisy-chaining
method. Simulations are presented in Section III
to demonstrate the performance of the method,
and Section IV includes the experimental results.
Section V describes potential future efforts to improve
the developed method for broader application.

II. POSE RECONSTRUCTION FROM TWO VIEWS

A. Euclidean Relationships

Consider a body-fixed coordinate frame Fc that
defines the position and attitude of a camera, with
respect to a constant world frame Fw. The world
frame could represent a departure point, destination,
or some other point of interest. The rotation and
translation of Fc, with respect to Fw, is defined as
R(t) 2 R3£3 and x(t) 2R3, respectively. The camera
rotation and translation of Fc between two time
instances, t0 and t1, is denoted by R01(t1) and x01(t1).
During the camera motion a collection of I (where
I ¸ 4) coplanar and noncolinear static feature
points are assumed to be visible in a plane ¼. The
assumption of four coplanar and noncolinear feature
points is only required to simplify the subsequent
analysis and is made without loss of generality. Image
processing techniques can be used to select coplanar
and noncolinear feature points within an image
such as in [33] and [34]. However, if four coplanar
target points are not available, then the subsequent
development can also exploit a variety of linear
solutions for eight or more noncoplanar points (e.g.,
the classic eight points algorithm [35, 36] or virtual
parallax [37, 38]) or nonlinear solutions for five or
more points [39].
A feature point pi(t) has coordinates m̄i(t) =

[xi(t),yi(t),zi(t)]
T 2 R3 8i 2 f1 : : : Ig in Fc. Standard

geometric relationships can be applied to the
coordinate systems depicted in Fig. 1 to develop the

Fig. 1. Euclidean relationships between two camera poses.

following relationships:

m̄i(t1) = R01(t1)m̄i(t0)+ x01(t1)

m̄i(t1) =
μ
R01(t1)+

x01(t1)
d(t0)

n(t0)
T

¶
| {z }

H(t1)

m̄i(t0) (1)

where H(t1) is the Euclidean homography matrix at
time t1, n(t0) is the constant unit vector normal to the
plane ¼ from Fc at time t0, and d(t0) is the constant
distance between the plane ¼ and Fc along n(t0). After
normalizing the Euclidean coordinates as

mi(t) =
m̄i(t)
zi(t)

(2)

the relationship in (1) can be rewritten as

mi(t1) =
zi(t0)
zi(t1)| {z }
®i

H(t1)mi(t0) (3)

where ®i 2R 8i 2 f1 : : : Ig is a scaling factor. Further
details on the Euclidean homography can be found in
[40] and [41].

B. Projective Relationships

Using standard projective geometry the Euclidean
coordinate m̄i(t) can be expressed in image-space pixel
coordinates as pi(t) = [ui(t),vi(t),1]

T. The projected
pixel coordinates are related to the normalized
Euclidean coordinates, mi(t) by the pin-hole camera
model as [40]

pi = Ami (4)

where A is an invertible, upper triangular camera
calibration matrix defined as

A
¢
=

2664
a ¡acosÁ u0

0
b

sinÁ
v0

0 0 1

3775 : (5)

In (5), u0 and v0 2 R denote the pixel coordinates of
the principal point (the image center as defined by
the intersection of the optical axis with the image
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plane), a,b 2 R represent scaling factors of the pixel
dimensions, and Á 2R is the skew angle between
camera axes.
By using (4), the Euclidean relationship in (3) can

be expressed as

pi(t1) = ®iAH(t1)A
¡1pi(t0)

= ®iG(t1)pi(t0): (6)

Sets of linear equations can be developed from (6) to
determine the projective and Euclidean homography
matrices G(t1) and H(t1) up to a scalar multiple.
Various techniques [41, 42] can be used to decompose
the Euclidean homography to obtain ®i(t1), n(t0),
x01(t1)=d(t0), and R01(t1). The decomposition methods
in [41] and [42] generally return two physically
valid solutions. The correct solution can be chosen
by knowledge of the correct value for the normal
vector or by using an image taken at a third pose.
The distance d(t0) must be separately measured
(e.g., through an altimeter or radar range finder) or
estimated using a priori knowledge of the relative
feature point locations or as an estimator signal in a
feedback control.

C. Chained Pose Reconstruction for Aerial Vehicles

Consider an aerial vehicle equipped with a GPS
and a camera capable of viewing a landscape. A
technique is developed in this section to estimate
the position and attitude using camera data when the
GPS signal is denied. A camera has a limited FOV,
and motion of a vehicle can cause observed feature
points to leave the image. The method presented here
chains together pose estimations from sequential sets
of tracked of points. This approach allows the system
to halt tracking a set of image features if the set is
likely to leave the image and allows the system to
begin tracking a new set of features while maintaining
the pose estimate. Thus the estimation can continue
indefinitely and is not limited by the camera’s FOV.
The subsequent development assumes that the

aerial vehicle begins operating at time t0, where
the translation and rotation (i.e., x0(t0) and R0(t0)
in Fig. 2) between Fc and Fw at time t0 are known.
The rotation between Fc and Fw at time t0 can be
determined through the bearing information of the
GPS, along with other sensors such as a gyroscope
and/or compass. Without loss of generality the GPS
unit is assumed to be fixed to the origin of the aerial
vehicle’s coordinate frame, and the constant position
and attitude of the camera frame are known with
respect to the position and attitude of the aerial
vehicle coordinate frame. The subsequent development
further assumes that the GPS is capable of delivering
altitude, perhaps in conjunction with an altimeter, so
that the altitude a(t0) is known.

Fig. 2. Illustration of pose estimation chaining.

Fig. 3. Depth estimation from altitude.

As illustrated in Fig. 2, when the camera is
initially at a pose fx0(t0),R0(t0)g, the initial set of
tracked coplanar and noncolinear feature points
are contained in the plane ¼a. The plane ¼a is
perpendicular to the unit vector na(t0) in the camera
frame, and the plane lies at a distance da(t0) from the
camera frame origin. The feature points lying in ¼a
have Euclidean coordinates m̄ai(t0) 2 R3 8i 2 f1 : : : Ig
in Fc. An image is captured at this time, resulting in
image points with pixel coordinates pa(t0). At time t1
the vehicle has undergone some rotation R01(t1) and
translation x01(t1): At this time the points in ¼a have
Euclidean coordinates m̄ai(t1) 2R3 8i 2 f1 : : : Ig in Fc.
Another image is captured, resulting in image points
with pixel coordinates pa(t1).
As described in Section IIB, R01(t1) and

x01(t1)=da(t0) can be solved from two corresponding
images of the feature points pa(t0) and pa(t1). A
measurement or estimate for da(t0) is required to
recover x01(t1). This estimation is possible with
distance sensors or with a priori knowledge of
the geometric distances between the points in
¼a. However, with an additional assumption, it is
possible to estimate da(t0) geometrically using altitude
information from the last GPS reading and/or an
altimeter. From the illustration in Fig. 3, if a(t0) is
the height above ¼a (e.g. the slope of the ground is
constant between the feature points and projection of
the plane’s location to the ground), then the distance
da(t0) can be determined by the projection:

da(t0) = na(t0)
Ta(t0) (7)

where na(t0) is known from the homography
decomposition.
Once R01(t1), da(t0), and x01(t1) have been

determined, the rotation R1(t1) and translation x1(t1)
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can be determined with respect to Fw as
R1 = R0R01

x1 = R01x01 + x0:

As illustrated in Fig. 2, at time t1, a new collection
of feature points mbi(t1) is visible in the planar patch
denoted by ¼b. Capturing an image of these points
gives a set of image points with pixel coordinates
pb(t1) that can be tracked over time. At time t2 the sets
of points pb(t1) and pb(t2) can be used to determine
R12(t2) and x12(t2)=db(t1), which provides the rotation
and scaled translation of Fc with respect to Fw. If
¼b and ¼a are the same plane, then db(t1) can be
determined as

db(t1) = da(t1) = da(t0)+ x01(t1) ¢ n(t0): (8)

When ¼b and ¼a are the same plane, x12(t2) can
be correctly scaled, and R2(t2) and x2(t2) can be
computed in a similar manner as described for R1(t1)
and x1(t1). These estimates can be propagated by
chaining them together at each time instance without
further use of the GPS.
In the general case pb and pa may not be coplanar,

and (8) cannot be used to determine db(t1). If pb and
pa are both visible for two or more frames, it is still
possible to calculate db(t) through geometric means.
Let t1¡ denote some time before the daisy-chain
operation is performed, when both pb and pa are
visible in the image. At time t1¡ an additional set of
homography equations can be solved for the points pb
and pa at times t1 and t1¡

mai(t1) = ®a

μ
R̄1(t1)+

x̄1(t1)na(t1¡)
T

da(t1¡)

¶
mai(t1¡) (9)

mbi(t1) = ®b

μ
R̄1(t1)+

x̄1(t1)nb(t1¡)
T

db(t1¡)

¶
mbi(t1¡)

(10)

where R̄1(t1) and x̄1(t1) are the rotation and translation,
respectively, that the camera undergoes from time t1¡
to t1, and

®a =
zai(t1¡)
zai(t1)

and ®b =
zai(t1¡)
zai(t1)

:

Note that R̄1(t1) and x̄1(t1) have the same values
in equations (9) and (10), but the distance and normal
to the plane are different for the two sets of points.
The distance da(t1¡) is known from (8), and the scaled
translations

xa(t1) =
x̄1(t1)
da(t1¡)

and xb(t1) =
x̄1(t1)
db(t1¡)

can be recovered from the homography decomposition
in (9) and (10). Given da(t1¡), xa(t1), and xb(t1), the
translation x̄1(t1) can be determined as

x̄1(t1) = da(t1¡)xa(t1)

Fig. 4. Air and Sea Inc. Osprey UAV used in experiments and
modeled for simulations.

and db(t1¡) can then be determined as

db(t1¡) =
xTb (t1)x̄1(t1)
kxb(t1)k

:

The distance db(t1) can then be found by using
(8), with db(t1¡) in place of da(t0). Alternatively,
additional sensors, such as an altimeter, can provide
an additional estimate in the change in altitude.
These estimates can be used in conjunction with
(8) to update depth estimates. Note that an error in
estimating the distance signals d does not affect the
orientation estimate, but it does cause a scaling error
in the translation estimate. The effects of an error in
estimate of d(0) is investigated in Section III.

III. SIMULATION RESULTS

To facilitate the subsequent flight tests, a
high fidelity vehicle simulation was developed to
investigate the feasibility of the proposed vision-based
state estimation and guidance method. Prior to the
simulation the Osprey fixed-wing UAV by Air and
Sea Composites, Inc. (See Fig. 4) was selected as the
experimental testbed because of cost and payload
capacity factors and because of the fact that the
pusher prop configuration is amenable to forward
looking camera placement. Given that the Osprey
UAV was going to be used as the experimental
testbed, a full, nonlinear model of the equations of
motion and aerodynamics of the Osprey UAV were
developed (see [43] for details regarding the model
development) along with an autopilot design. The
autopilot design allowed for the vehicle to perform
simple commanded maneuvers that an autonomous
aircraft would typically be expected to receive from
an on-board guidance system. The autopilot was
constructed to use state estimates that came from the
homography-based algorithm. Preliminary modal
analysis of the Osprey vehicle flying at a 60 m
altitude at 25 m/s indicated a short-period frequency
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!sp = 10:1 rad/s and damping ³sp = 0:85; a
phugoid mode frequency !ph = 0:34 rad/s and
damping ³ph = 0:24; a dutch-roll frequency !dr =
4:39 rad/s and damping ³dr = 0:19; a roll subsidence
time constant of ¿r = 0:08 s; and a spiral mode
time-to-double ttd = 39:8 s. These rigid-body
frequencies are crucial for the autopilot design
as well for determining what, if any, of the state
estimation values coming from the camera and
proposed technique are favorable to be used in
a closed-loop sense, due to the imminent phase
lag associated with associated camera frame rate
(sampling frequency) and phase lag resulting from
the signal filtering.
In the simulations five patches of 4 feature points

are programmed to lie along a 500 m ground track.
For simplicity all planar patches lie in the same
plane. The task is to perform the state estimation
during a maneuver. The commanded maneuver
is to simultaneously perform a 10 m lateral shift
to the right and a 10 m longitudinal increase
in altitude. This particular maneuver results in
the vehicle simultaneously pitching, rolling, and
yawing, while translating. For simulation purposes
the camera is mounted underneath the fuselage
looking downwards. The camera model is intended
to be representative of a typical 640£ 480 lines
of resolution charge-coupled device equipped
with a 10 mm lens. To more accurately capture
true system performance, pixel coordinates are
rounded to the nearest integer to model errors
due to camera pixilation effects (i.e., quantization
noise), and furthermore a 5% error is added to
the estimated vehicle altitude to test robustness.
While some modeling errors are present in this
analysis in order to address some practical issues,
a full error analysis is intentionally avoided since
statistical error analysis for camera-based systems
is still somewhat ambiguous. Some of the error
sources which are present in real-world systems
include, but are not limited to: feature point
selection/extraction/tracking algorithms, spatial
separation of feature points in image plane, lens
aberrations, camera calibration error, coplanarity
of 4 feature points, distance to feature point plane,
exposure time (effectively “shutter speed”), rolling
shutter effects (if not a global shutter camera),
interlacing effects (if not a progressive scan
camera), and numerical errors associated with the
construction and decomposition of the homography
relationships.
The first simulation is designed to test the accuracy

of the vision-based estimation. Vision is not used in
the feedback for this maneuver, and the estimated
pose is compared to the true pose. The results of this
preliminary analysis are given in Figs. 5 and 6. The
effects of noise are visible, but the estimated pose is
accurate.

The second simulation is intended to examine
the effects of using the vision-based estimate as
a sensor in closed-loop control. This simulation
involves replacing the perfect position and attitude
measurements, used in the guidance system and
autopilot, with position and attitude estimations
determined from the vision-based method. The
resulting control architecture and sensor suite for
this UAV is given in Fig. 7. The noise content of
the estimated position and attitude requires filtering
prior to being used by the autopilot to prevent the
high-frequency noise from being passed to the aircraft
actuators. As expected the noise occurs at 30 Hz
and corresponds to the frame rate of the camera.
First-order, low pass-filters (cutoff frequency as low
as 4 rad/s) are used to filter the noise. The noise also
prevents effective differentiation of the position and
attitude and necessitates the use of rate gyros for yaw
and roll damping, as depicted in Fig. 7. The air data
system is also included, as shown in Fig. 7, for the
initial altitude measurement since it is more accurate
for altitude than current GPS solutions. The results of
the camera-in-the-loop system performing the same
guidance-commanded autonomous maneuver are given
in Figs. 8 and 9.
The simulation results indicate that a camera

supplemented with minimal sensors, such as rate
gyros and barometric altitude, can be used for
completely autonomous flight of a fixed wing vehicle,
however some residual oscillation effects due to
noise are present in the vehicle attitude response. A
majority of the noise source can directly be attributed
to camera pixilation effects and the corresponding
phase lag introduced by the first order filtering.
To test the performance of the system over long

time periods, a Monte Carlo analysis is performed.
This analysis includes a sequence of constant altitude
“s-curves” for 1, 5, 10, 15, 30, 45, and 60 sec. Each
s-curve takes 1 min to perform, and the UAV’s
forward velocity is constant at 10 m/s. Quantization
noise is included. Each simulation is performed 1000
times, and mean and standard deviation of the pose
and rotation error are plotted verses time and total
distance traveled and total rotation performed. Total
distance refers to the length of the curve followed, not
the straight distance from start to finish. Similarly, as
the rotation evaluates to sinusoidal values to achieve
the s-curve, the total rotation refers to the rms of the
angular values over time.
The results are seen in Figs. 10 and 11. The

expected error for both simulations is roughly linear
with the time/distance travelled. The expected pose
error after an hour of flight and a travelled distance
of 30 km is 0.66 km. The expected rotation error over
this same time period is 0.21 rad. This amounts to an
error of 2.2% of distance travelled and 0.39% of total
rotation performed.
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Fig. 5. Actual aircraft position versus estimated position. State estimation only.

Fig. 6. Actual aircraft attitude versus estimated attitude. State estimation only.

Fig. 7. Autonomous control architecture.

IV. EXPERIMENTAL RESULTS

Based on the results of the simulation, two sets
of experimental results are conducted to establish
the feasibility of the proposed vision-based state
estimation method. To give broad results each
experiment features different equipment and different
methods to generate a ground truth comparison. In
both flight tests artificial, red markers (i.e., fiducial
features) are placed along a stretch of the runway.

The runway is fairly flat, thus each patch of points
are roughly coplanar, although this was not assumed
to be true in the experiment. Due to the orientation
changes of the aircraft during the flight, the normal
vector n is estimated at each handoff. A camera
mounted on the radio controlled UAV (Fig. 4) records
the view of the runway; video data is captured using
a digital, video tape recorder and analyzed offline.
Sample video frames from the flights are provided
in Figs. 14 and 16. The features are extracted and
tracked using a color-based thresholding method.
Fig. 12 represents a 3D surface constructed from a
nonlinear combination of the red, green, and blue
color space values of a particular image frame. Note
that the large spikes correspond to the location of
the red landmarks. An example of the output of
the tracking algorithm is also given in Fig. 13. The
four trajectories in this particular case represent
the path of the landmarks from the first patch as
it enters and exits the FOV (from top to bottom).
As a point of interest, note that the center of the
image plane does not correspond to the location
of the optical axis. This apparent oddity is in
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Fig. 8. Actual aircraft position versus estimated position in closed-loop control.

Fig. 9. Actual aircraft attitude versus estimated attitude in closed-loop control.

keeping with the camera calibration results, and it
is most likely congruous with a low end imager and
lens.

A. Daisy Chained Homography versus GPS

The first flight experiment compares position
estimates from the daisy-chained pose estimation to
position, which is estimated using a Garmin GPS
35 receiver. A copy of the video is overlaid with
GPS, as seen in Fig. 14, which shows the effects of
video interlacing. A second GPS unit (manufactured
by Eagle Tree Systems, LLC) is also onboard to
test inter-GPS accuracy. The use of two GPS units
provides a comparison for the vision-based method,
which is intended to compute GPS-like information.
Poor image quality, including focus, motion blur,
and interlacing of the digital video, necessitates a
downsampling of the feature extraction, by a factor
of five, to reduce noise. The downsampling results in
a 5 Hz input signal.
Results of the experiment are given in Fig. 15. In

the legend for Fig. 15, GPS2 represents the overlaid
GPS data, and GPS1 represents the onboard data

Fig. 10. Error plots of Monte Carlo analysis, showing mean
position error and standard deviation of position error over long
time period and long distance. Position error refers to norm of
difference between known 3D position vector and estimated 3D

position vector.

logger GPS values. A “*” on the time axis indicates
a time when a daisy-chaining hand-off is performed,
and pose reconstruction is performed using a new set
of feature points. The results from this test appear to
be very promising. Significant disagreement exists
between the two GPS measurements (low cost GPS
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Fig. 11. Error plots of Monte Carlo analysis, showing mean
orientation error and standard deviation of orientation error over
long time period and long distance. Orientation error refers to
norm of difference between known 3D orientation and estimated
3D orientation, where orientation is represented as an angle/axis

vector.

Fig. 12. Example of 3D contour plot generated from matrix
designed as nonlinear combination of red and green color space

matrices.

receivers are notorious for having a poor altitude
measurement [44]), and the vision-based estimation
remains proportionate to the two GPS measurements.

Fig. 15. Results from first experimental flight test. Estimated position is compared with two GPS signals.

Fig. 13. Image plane trajectories made by landmarks from
patch1entering and exiting FOV.

Fig. 14. Single video frame with GPS overlay illustrating
landmarks placed along inside edge of runway.

Furthermore, the estimates agree closely with GPS2,
for downrange and crossrange translation, and with
GPS1, for altitude translation. There is no discernible
discontinuity or increased error at the daisy-chain
hand-off times. Note that the resolution of the
vision-based estimation (5 Hz) is also higher than
that of both GPS units (1 Hz). The image processing
and pose estimation code can be executed in real time
(> 30 Hz) on a Pentium M laptop (single core) with
1 Gb RAM. The disagreement between the two GPS
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units raises concerns about their accuracy. This, in
part, inspired the experiment in Section IVB.

B. Daisy Chained Homography versus Precise
Geometric Reconstruction

The accuracy of the recorded GPS data proved
to be questionable, as the two GPS records had
significant disagreement. A second flight test
was designed that was intended to enable the
vehicle position to be determined with greater
accuracy than what could be achieved with the
inexpensive GPS units used in the first round of
testing. An additional drawback with the first flight
test was that, due to cost constraints, an inertial
measurement unit (IMU) was not employed to
capture attitude information. In addition to the
issues with the GPS output being considered as
truth data, it was also of interest to investigate
whether using a wider angle FOV lens on a
more forward pointing camera could improve
the results. The fundamental assumption of this
additional testing was that if the locations of the
ground targets were known precisely, then vehicle
position and attitude could be determined through
geometric reconstruction. With the trajectories of
the four landmarks of each patch recorded, vehicle
localization and orientation could then be performed
offline for analysis purposes. While this geometric
reconstruction was also based on image data, the
precise knowledge of the fiducial position in 3D
world coordinates allowed for a very accurate
estimate. If the geolocation of the points were
known (e.g. through previous physical mapping
or template matching with an accurate satellite
images), this would represent an accurate means
to geolocate the UAV. In essence this experiment
compared the best vision-based estimate, given
all available knowledge of the precise Euclidean
position of the fiducial markers with the daisy-chained
homography estimate, which required no knowledge
other than initial position and attitude. Details on
the geometric reconstruction of attitude and position
information for the ground truth in this experiment
is described in [43]. A similar procedure using three
points that remained in the FOV is described in
[15].
By using a wider FOV lens, the resulting video

image exhibited severe lens distortion effects that
required correcting in order for the homography
to operate correctly. The distortion can be seen in
Fig. 16, where the four landmarks in the lower portion
of the frame appear to be located on a spherical
surface as opposed to a plane. This same image, with
the radial distortion removed, is given in Fig. 17.
The interlacing effect, prevalent in Fig. 14, has also

Fig. 16. Single video frame from second flight test experiment
illustrating effect of forward-looking, wider FOV camera.

Fig. 17. Single video frame from second flight test experiment
with lens distortion removed.

been removed using freeware video editing software
VirtualDub.1

Results of this flight experiment are given in
Figs. 18—21. The initial value of d(0) is estimated
from the detailed knowledge of the first four points,
but subsequent estimates of d(t) are generated using
the methods in Section IIC. A “*” in the plot indicates
a time when a daisy-chaining hand-off was performed
and when pose reconstruction is performed using
a new set of feature points. The position estimate
of the daisy-chained homography estimate agrees
closely with the position estimate of the geometric
reconstruction. The attitude estimate of both methods
shows much more variation than the translation
estimates, and there is less agreement between the
two estimates. Attitude is expressed in roll/pitch/yaw
angles. Despite the disagreement, the relative shape
of both signals is similar, and the homography tracks
the geometric reconstruction well, with the exception
of the first 3 s of the roll angle and a possible drift
in the heading angle towards the end of the flight.
Since the developed estimation is based on chaining
successive approximations, some error propagation
is inevitable. (See Figs. 11 and 10.) The focus of this

1VirtualDub–Copyright (c) by Avery Lee
http://www.virtualdub.org/index.html.
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Fig. 18. Results from second experimental flight test. Estimated
position is compared to construction using complete geometric

knowledge of ground targets.

Fig. 19. Results from second experimental flight test. Estimated
attitude and bearing is compared to construction using complete

geometric knowledge of ground targets.

study was to investigate the feasibility of using the
camera feedback for pose estimation. Future efforts
will focus on quantifying the error propagation, and
these efforts will investigate methods that may be used
to mitigate the error propagation, such as collaborative
sensing between multiple UAVs, sensor integration
with other sensors, error correction by sporadic GPS
feedback, etc.

V. CONCLUSIONS

The efforts in this paper integrated new
vision-based, pose estimation methods for guidance,
navigation, and control of an aerial vehicle. This
method is based on Epipolar geometry, with a novel
“daisy-chaining” approach that allows image features
to enter and leave the FOV while maintaining pose
estimation. Furthermore, no known target is required.
A nonlinear aircraft flight model for an Osprey UAV
was developed to investigate the performance of
the developed method in simulations. Simulations
also include testing the pose estimation method in
closed-loop control of the aircraft. Based on the

Fig. 20. Results from second experimental flight test shows
disagreement between daisy-chained position estimate and position
estimation using complete geometric knowledge of ground targets.

Fig. 21. Results from second experimental flight test shows
disagreement between daisy-chained orientation estimate and
orientation estimation using complete geometric knowledge of

ground targets.

successful simulation results, two flight tests were also
performed using a radio controlled Osprey UAV. The
first flight test indicated that the estimation method
provided approximately equal pose estimates as the
two GPS units. However, conclusive results were
difficult to obtain due to discrepancies in the GPS
units and due to lack of attitude information. The
second flight test used precise information about the
Euclidean position of fiducial markers as a ground
truth for the estimation method. The daisy-chaining
estimation method was successfully demonstrated to
reconstruct both position and attitude measurements
in comparison to the reconstructed ground truth using
detailed geometric knowledge.
In addition to providing pose estimates for control,

the daisy-chaining method in this paper is suitable
for use as a localization algorithm in local VSLAM
applications. It is feasible to keep track of the location
of previously tracked feature points, resulting in a
map useful for global VSLAM applications. Future
efforts will work to further develop such VSLAM
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applications. Future research will also investigate
methods to improve inevitable error propagation
through the inclusion of additional sensors, such as
IMUs and intermittent GPS. Additional future work
will focus on determining what, if any, bounds can be
placed on estimate errors over time and under various
common error sources. Future research will investigate
methods to improve inevitable error propagation
through the inclusion of additional sensors, such as
IMUs and intermittent GPS.

REFERENCES

[1] J. A. V. N. T. S. Center
Vulnerability assessment of the transport infrastructure
relying on the global positioning system.
Office of the Assistant Secretary for Transportation
Policy, U.S. Department of Transportation, Report, Aug.
2001.

[2] Kaiser, K., Gans, N., and Dixon, W.
Position and orientation an aerial vehicle through chained,
vision-based pose reconstruction.
In Proceedings of the AIAA Conference on Guidance,
Navigation and Control, 2005.

[3] Kaiser, K., Gans, N., and Dixon, W.
Localization and control an aerial vehicle through
chained, vision-based pose reconstruction.
In Proceedings of the American Control Conference, 2007,
5934—5939.

[4] Hu, G., Mehta, S., Gans, N., and Dixon, W. E.
Daisy chaining based visual servo control. Part I:
Adaptive quaternion-based tracking control.
In Proceedings of the IEEE Multi-conference on Systems
and Control, 2007, 1474—1479.

[5] Hu, G., Gans, N., Mehta, S., and Dixon, W. E.
Daisy chaining based visual servo control. Part II:
Extensions, applications and open problems.
In Proceedings of the IEEE Multi-conference on Systems
and Control, 2007, 729—734.

[6] Chatterji, G., Menon, P., and Sridhar, B.
GPS/machine vision navigation system for aircraft.
IEEE Transactions on Aerospace and Electronic Systems,
33, 3 (July 1997), 1012—1025.

[7] Roberts, J. M., Corke, P. I., and Buskey, G.
Low-cost flight control system for a small autonomous
helicopter.
In Proceedings of the Australasian Conference on Robotics
and Automation, 2002.

[8] Zhang, H. and Ostrowski, J.
Visual servoing with dynamics: Control of an unmanned
blimp.
In Proceedings of the IEEE International Conference on
Robotics and Automation, vol. 1, May 1999, 618—623.

[9] Sharp, C. S., Shakernia, O., and Sastry, S. S.
A vision system for landing an unmanned aerial vehicle.
In Proceedings of the IEEE International Conference on
Robotics and Automation, 2001, 1720—1727.

[10] Jones, C. G., Heyder-Bruckner, J. F., Richardson, T. S., and
Jones, D. C.
Vision-based control for unmanned rotorcraft.
In Proceedings of the AIAA Guidance, Navigation, and
Control Conference, 2006.

[11] Saripalli, S., Montogomery, J. F., and Sukhatme, G. S.
Visually guided landing of an unmanned aerial vehicle.
IEEE Transactions on Robotics and Automation, 19, 3
(2003), 371—380.

[12] Chatterji, G. B., Menon, P. K., and Sridhar, B.
Vision-based position and attitude determination for
aircraft night landing.
Journal of Guidance, Control, and Dynamics, 21, 1 (1998),
84—92.

[13] Liu, T. and Fleming, G.
Videogrammetric determination of aircraft position and
attitude for vision-based autonomous landing.
Presented at the AIAA Aerospace Sciences Meeting and
Exhibit, 2006.

[14] Shakernia, O., Ma, Y., Koo, T. J., and Sastry, S.
Landing an unmanned air vehicle: Vision based motion
estimation and non-linear control.
Asian Journal of Control, 1 (1999), 128—145.

[15] Yakimenko, O., Kaminer, I., Lentz, W., and Ghyzel, P.
Unmanned aircraft navigation for shipboard landing using
infrared vision.
IEEE Transactions on Aerospace and Electronic Systems,
38, 4 (Oct. 2002) 1181—1200.

[16] Koch, A., Wittich, H., and Thielecke, F.
A vision-based navigation algorithm for a VTOL-UAV.
Presented at the AIAA Guidance, Navigation, and Control
Conference, 2006.

[17] Jianchao, Y.
A new scheme of vision based navigation for flying
vehicles–concept study and experiment evaluation.
In Proceedings of the IEEE International Conference on
Control, Automation, Robotics And Vision, 2002, 643—648.

[18] Barber, D. B., Griffiths, S. R., McLain, T. W., and
Beard, R. W.
Autonomous landing of miniature aerial vehicles.
Journal of Aerospace Computing, Information, and
Communication, 4 (2007), 770.

[19] Bryson, M. and Sukkarieh, S.
Observability analysis and active control for airborne
SLAM.
IEEE Transactions on Aerospace and Electronic Systems,
44, 1 (Jan. 2008), 261—280.

[20] Kim, J. and Sukkarieh, S.
Autonomous airborne navigation in unknown terrain
environments.
IEEE Transactions on Aerospace and Electronic Systems,
40, 3 (July 2004), 1031—1045.

[21] Trisiripisal, P., Parks, M. R., Abbot, A. L., Liu, T., and
Fleming, G. A.
Stereo analysis for vision-based guidance and control of
aircraft landing.
Presented at the AIAA Aerospace Sciences Meeting and
Exhibit, 2006.

[22] Wu, A. D., Johnson, E. N., and Proctor, A. A.
Vision-aided inertial navigation for flight control.
Journal of Aerospace Computing, Information, and
Communication, 2 (2005), 348—360.

[23] Prazenica, R. J., Watkins, A., Kurdila, A. J., Ke, Q. F., and
Kanade, T.
Vision-based Kalman filtering for aircraft state estimation
and structure from motion.
Presented at the AIAA Guidance, Navigation, and Control
Conference, 2005.

[24] Caballero, F., Merino, L., Ferruz, J., and Ollero, A.
Improving vision-based planar motion estimation for
unmanned aerial vehicles through online mosaicing.
In Proceedings of the IEEE International Conference on
Robotics and Automation, 2006, 2860—2865.

[25] Se, S., Lowe, D., and Little, J.
Global localization using distinctive visual features.
In Proceedings of the IEEE/RAS International Symposium
on Robotics and Automation, 2002, 226—231.

KAISER ET AL.: VISION-BASED ESTIMATION FOR GUIDANCE, NAVIGATION, AND CONTROL 1075



[26] Eustice, R., Singh, H., Leonard, J., Walter, M., and
Ballard, R.
Visually navigating the RMS titanic with SLAM
information filters.
In Proceedings of Robotics: Science and Systems, June
2005.

[27] Jensfelt, P., Kragic, D., Folkesson, J., and Bjorkman, M.
A framework for vision based bearing only 3D SLAM.
In Proceedings of the IEEE International Conference on
Robotics and Automation, 2006, 1944—1950.

[28] Lowe, D.
Object recognition from local scale-invariant features.
In Proceedings of the IEEE International Conference on
Computer Vision, 1999, 1150—1157.

[29] Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O.
MonoSLAM: Real-time single camera SLAM.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29, 6 (2007), 1052—1067.

[30] Kim, J-H. and Sukkarieh, S.
Airborne simultaneous localisation and map building.
In Proceedings of the IEEE International Conference on
Robotics and Automation, 2003.

[31] Jung, I-K. and Lacroix, S.
High resolution terrain mapping using low attitude aerial
stereo imagery.
In Proceedings of the IEEE International Conference on
Computer Vision, 2003, 946—951.

[32] Goncalves, L., di Bernardo, E., Benson, D., Svedman, M.,
Ostrowski, J., Karlsson, N., and Pirjanian, P.
A visual front-end for simultaneous localization and
mapping.
In Proceedings of the IEEE International Conference on
Robotics and Automation, 2005, 44—49.

[33] Baillard, C. and Zisserman, A.
Automatic reconstruction planar models from multiple
views.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1999, 559—565.

[34] Okada, K., Kagami, S., Inaba, M., and Inoue, H.
Plane segment finder: Algorithm, implementation and
applications.
In Proceedings of the IEEE International Conference on
Robotics and Automation, 2001, 2120—2125.

[35] Longuet-Higgins, H.
A computer algorithm for reconstructing a scene from
two projections.
Nature, 293 (Sept. 1981), 133—135.

[36] Hartley, R.
Computer Vision–Proceedings of the 1992 European
Conference on Computer Vision, Lecture Notes in
Computer Sciences.

[37] Boufama, B. and Mohr, R.
Epipole and fundamental matrix estimation using virtual
parallax.
In Proceedings of the IEEE International Conference on
Computer Vision, 1995, 1030—1036.

[38] Malis, E. and Chaumette, F.
2 1/2 D visual servoing with respect to unknown objects
through a new estimation scheme of camera displacement.
International Journal of Computer Vision, 37, 1 (2000),
79—97.

[39] Nister, D.
An efficient solution to the five-point relative pose
problem.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26 (2004), 79—97.

[40] Y. Ma, S. Soatto, J. Koseck, and S. Sastry
An Invitation to 3-D Vision.
New York: Springer, 2004.

[41] Faugeras, O. D. and Lustman, F.
Motion and structure from motion in a piecewise
planarenvironment.
International Journal of Pattern Recognition and Artificial
Intelligence, 2, 3 (1988), 485—508.

[42] Zhang, Z. and Hanson, A.
3D reconstruction based on homography mapping.
Presented at the ARPA Image Understanding Workshop,
Palm Springs, CA, 1996.

[43] Kaiser, M. K.
Vision-based estimation, localization, and control of an
unmanned aerial vehicle.
Ph.D. dissertation, Department of Mechanical and
Aerospace Engineering, University of Florida,
Gainesville, FL, May 2008.

[44] Kim, J. and Sukkarieh, S.
A baro-altimeter augmented INS/GPS navigation system
for an uninhabited aerial vehicle.
In Proceedings of the International Symposium on Satellite
Navigation Technology Including Mobile Positioning and
Location Services, Melbourne, Australia, 2003.

1076 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 46, NO. 3 JULY 2010



Michael Kent Kaiser received his B.S. degree in aerospace engineering from
Auburn University, Auburn, AL, in 1990, an M.S. degree in mechanical
engineering from the University of Houston, Houston, TX, in 1995, and a Ph.D.
in aerospace engineering from the University of Florida, Gainesville, in 2008.
He has nearly 20 years of work experience within the aerospace industry,

which includes his current employment with Mosaic, ATM, as well as previous
employment with the Air Force Research Labs (AFRL) and Lockheed Martin
Corporation in Houston, TX, Palmdale, CA, and Marietta, GA. Some of his
research interests include system identification, aerodynamic performance
based vehicle design, flight dynamics and control, and vision-based navigation,
guidance, and control.

Nicholas Gans (M’05) received his B.S. degree in electrical engineering from
Case Western Reserve University, Cleveland, OH, in 1999. He earned his M.S. in
electrical and computer engineering and his Ph.D. in systems and entrepreneurial
engineering from the University of Illinois at Urbana-Champaign in December
2005.
After completing his doctoral studies he worked as a postdoctoral researcher

with the Mechanical and Aerospace Engineering Department at the University
of Florida. He is currently a postdoctoral associate with the National Research
Council, where he conducts research for the Air Force Research Laboratory
at Eglin AFB in Florida. His research interests include nonlinear and adaptive
control, with focus on vision-based control and estimation, robotics, and
autonomous vehicles.
Dr. Gans is a member of the IEEE Robotics and Automation Society (RAS),

and the IEEE Control System Society (CSS), and he has served on the program
committees for several conferences.

Warren Dixon (M’00–SM’05) received his Ph.D. degree in 2000 from the
Department of Electrical and Computer Engineering from Clemson University,
Clemson, SC.
After completing his doctoral studies, he was selected as a Eugene P. Wigner

Fellow at Oak Ridge National Laboratory (ORNL), where he worked in the
Robotics and Energetic Systems Group. In 2004 he joined the faculty of the
University of Florida in the Mechanical and Aerospace Engineering Department.
Dr. Dixon’s main research interest has been the development and application of
Lyapunov-based control techniques for uncertain nonlinear systems.
Dr. Dixon has published 2 books, an edited collection, 4 chapters, and over

180 refereed journal and conference papers. He was awarded the 2001 ORNL
Early Career Award for Engineering Achievement for his contributions to
Lyapunov-based control methods. He was awarded the 2004 DOE Outstanding
Mentor Award for his student advising at ORNL. He was awarded an
NSF CAREER award, in 2006, for new development and application of
Lyapunov-based control methods. He was also awarded the 2006 IEEE Robotics
and Automation Society (RAS) Early Academic Career Award. He serves on the
IEEE CSS Technical Committee on Intelligent Control, is a primary member
of the ASME DSC Division Mechatronics Technical Committee, is a member
of numerous conference program committees, and serves on the conference
editorial board for the IEEE CSS and RAS and the ASME DSC. He served
as an appointed member to the IEEE CSS Board of Governors for 2008. He
is currently an associate editor for IEEE Transactions on Systems Man and
Cybernetics: Part B Cybernetics, Automatica, International Journal of Robust and
Nonlinear Control, and Journal of Robotics.

KAISER ET AL.: VISION-BASED ESTIMATION FOR GUIDANCE, NAVIGATION, AND CONTROL 1077


