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Approximate Dynamic Programming: Combining
Regional and Local State Following Approximations

Patryk Deptula , Joel A. Rosenfeld , Rushikesh Kamalapurkar, and Warren E. Dixon, Fellow, IEEE

Abstract— An infinite-horizon optimal regulation problem for
a control-affine deterministic system is solved online using a
local state following (StaF) kernel and a regional model-based
reinforcement learning (R-MBRL) method to approximate the
value function. Unlike traditional methods such as R-MBRL that
aim to approximate the value function over a large compact
set, the StaF kernel approach aims to approximate the value
function in a local neighborhood of the state that travels within
a compact set. In this paper, the value function is approximated
using a state-dependent convex combination of the StaF-based
and the R-MBRL-based approximations. As the state enters a
neighborhood containing the origin, the value function transitions
from being approximated by the StaF approach to the R-MBRL
approach. Semiglobal uniformly ultimately bounded (SGUUB)
convergence of the system states to the origin is established using
a Lyapunov-based analysis. Simulation results are provided for
two, three, six, and ten-state dynamical systems to demonstrate
the scalability and performance of the developed method.

Index Terms— Data-driven control, local estimation, nonlinear
control, optimal control, reinforcement learning.

I. INTRODUCTION

SOLVING the Hamilton Jacobi Bellman (HJB) equation
yields the value function, which is used to determine an

optimal controller. Because the HJB is a nonlinear partial
differential equation that is generally infeasible to solve ana-
lytically or in real time, an approximate solution is often used.
For example, by using parametric approximation methods,
such as neural-networks (NNs), the optimal value function
can be estimated and used to compute an approximate optimal
policy. To establish closed-loop stability, the error between the
optimal and estimated value function needs to decay to a small
bound sufficiently fast [1].
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The rate at which the value function approximation error
decays is determined by the richness of the data utilized for
learning. In traditional adaptive dynamic programming (ADP)
methods such as [2] and [3] richness of the data correlates to
the amount of excitation in the system. Typically excitation
is introduced by adding an exploration signal to the control
input (see [4]–[9]). Because the addition of the exploration
signal causes undesirable oscillations and noise, hardware
implementation of traditional ADP techniques such as [2],
[10]–[14], and [15] is challenging. In data-driven experience
replay-based techniques such as [16]–[20], data richness is
quantified by the eigenvalues of the recorded history stack.
However, the required amount of data storage grows exponen-
tially as the demand for richer data increases, making hardware
implementation challenging.

Approximating the value function over a large region typi-
cally requires a large number of basis functions. For general
nonlinear systems, generic basis functions, such as Gaussian
radial basis functions, sigmoid functions, polynomials, or uni-
versal kernel functions are used to approximate the value
function (see [1], [14], [19], [21]–[29]). One limitation of
these generic approximation methods is that they only ensure
approximation over a compact neighborhood of the origin.
Once outside the compact set, the approximation tends to
either grow or decay depending on the selected functions.
Consequently, in the absence of domain knowledge, a large
number of basis functions, and hence, a large number of
unknown parameters, is required for value function approx-
imation. Reduction in the number of unknown parameters
motivates the use of StaF basis functions such as [21] which
travel with the state to maintain an accurate local approxima-
tion. However, the StaF approximation method trades global
optimality for computational efficiency since it lacks memory.
Since accurate estimation of the value function results in a
better closed-loop response and lower operating costs, it is
desirable to accurately estimate the value function near the
origin in optimal regulation problems.

In this paper, a novel framework is developed to merge
local and regional value function approximation methods to
yield an online optimal control method that is computationally
efficient and simultaneously accurate over a specified critical
region of the state space. Ability to R-MBRL such as [19] to
approximate the value function over a predefined region and
the computational efficiency of the StaF method [1] in approx-
imating the value function locally along the state trajectory
motivates the following development. Instead of generating an
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approximation of the value function over the entire operating
region, which would be computationally expensive, the oper-
ating domain is separated into two regions: a closed set A,
containing the origin, where a regional approximation method
is used to approximate the value function, and the complement
of A, where the StaF method is used to approximate the
value function. Using a switching-based approach to combine
regional and local approximations would inject discontinuities
to the system and result in a nonsmooth value function which
would introduce discontinuities in the control signal. To over-
come this challenge, a state varying convex combination of
the two approximation methods is used to ensure a smooth
transition from the StaF to the R-MBRL approximation as the
state enters the closed convex set containing the origin. Once
the state enters the this region, R-MBRL regulates the state
to the origin. The developed result is generalized to allow for
the use of any R-MBRL method.

While the StaF method is computationally efficient, it lacks
memory, i.e., the information about the value function in
a region is lost once the system state leaves that region.
To maintain an accurate approximation of the value function
near the goal state (i.e., the origin), the developed method
uses R-MBRL in A; the weights are learned based on
selected points in that set and the value function does not
have to be relearned once the state leaves this neighbor-
hood. The developed architecture is motivated by the obser-
vation that in many applications such as station keeping of
marine craft, like in [30], accurate approximation of the value
function in a neighborhood of the goal state can improve
the performance of the closed-loop system near the goal
state.

Since the StaF method uses state-dependent centers,
the unknown optimal weight are themselves also state depen-
dent, which makes analyzing stability difficult. To add to the
technical challenge, using a convex combination of R-MBRL
and StaF results in a complex representation of the value
function and resulting Bellman error (BE). To provide insights
into how to combine StaF and R-MBRL while also preserving
stability, the estimates are designed using a Lyapunov-based
stability analysis. The analysis of the closed-loop systems with
the smoothly switching approximation guarantees semi-global
uniformly ultimately bounded (SGUUB) convergence. The
performance of the developed method is illustrated through
numerical simulations. Simulations are provided for a two-
state system with a known value function as well as three,
six, and ten-state systems with unknown value functions to
illustrate the scalability of the method in terms of compu-
tational time, cost, and final root-mean-square (RMS) error.
Comparisons with [1] and [19] illustrate the advantage of the
developed method.

This paper is organized as follows. Section II introduces
the optimal control problem. The motivation for using a
combination of the StaF and R-MBRL methods is discussed
in Section III. The proposed value function approximation
scheme along with the derived BE are presented in Section IV,
and BE extrapolation for online learning along with the actor
and critic weight update laws is discussed in Section V.
Section VI presents a Lyapunov stability analysis. Simulations

are discussed in Section VII, while conclusions are drawn in
Section VIII.

Notation: In the following development, R denotes the
set of real numbers, R

n and R
n×m denote the sets of real

n-vectors and n × m matrices, and R≥a and R>a denote the
sets of real numbers greater than or equal to a and strictly
greater than a, respectively, where a ∈ R. The n × n identity
matrix and column vector of ones of dimension j are denoted
by In and 1 j , respectively. The partial derivative of h with
respect to the state x is denoted by ∇h(x, y, . . .). The notation
(·)o denotes an arbitrary variable of the set which the variable
belongs to, and (·)T denotes the transpose of a matrix or vector.
The notation G∇F , G∇F∇K , GF , GF K , and G∇F K is defined
as G∇F � ∇Fg R−1gT ∇FT , G∇F∇K � ∇Fg R−1gT ∇K T ,
GF � Fg R−1gT FT , GF K � Fg R−1gT K T , and G∇F K �
∇Fg R−1gT K T , respectively, where F and K denote arbitrary
functions.

II. PROBLEM FORMULATION

Consider a control affine nonlinear dynamical system

ẋ(t) = f (x(t)) + g(x(t))u(t) (1)

where x : R≥t0 → R
n denotes the system state, f : R

n →
R

n denotes the drift dynamics, g : R
n → R

n×m denotes the
control effectiveness, and u : R≥t0 → R

m denotes the control
input.

Assumption 1: Both f and g are assumed to be locally
Lipschitz continuous. Furthermore, f (0) = 0, and ∇ f : R

n →
R

n×n is continuous.
In the following, the notation φu(t; t0, x0) denotes the

trajectory of the system in (1) under the controller u with
initial condition x0 ∈ R

n and initial time t0 ∈ R≥0. The
objective is to solve the infinite-horizon optimal regulation
problem, i.e., find a control policy u online to minimize the
cost functional

J (x, u) �
∫ ∞

t0
r(x(τ ), u(τ ))dτ (2)

while regulating the system states to the origin under the
dynamic constraint (1). In (2), r : R

n × R
m → R≥0 denotes

the instantaneous cost defined as

r(xo, uo) � xoT Qxo + uoT Ruo (3)

for all xo ∈ R
n and uo ∈ R

m , where R ∈ R
m×m and Q ∈

R
n×n are constant positive definite matrices and the matrix Q

can be bounded as q‖xo‖2 ≤ xoT Qxo ≤ q‖xo‖2.
The infinite-horizon scalar value function for the optimal

solution, i.e., the function which maps each state to the total
cost-to-go, denoted by V � : R

n → R≥0, can be expressed as

V �(xo) = inf
u(τ )∈U |τ∈R≥t

∫ ∞

t
r(φu(τ ; t, xo), u(τ ))dτ (4)

where U ⊂ R
m is the action space. The optimal value function

is characterized by the corresponding HJB equation

∇V �(xo)( f (xo) + g(xo)u�(xo)) + r(xo, u�(xo)) = 0 (5)
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with the boundary condition V (0) = 0, where u� : R
n →

R
m is the optimal control policy which can be determined

from (5) as

u�(xo) � −1

2
R−1gT (xo)(∇V �(xo))T . (6)

Using (6), the open-loop HJB in (5) can be expressed in a
closed-loop form as

−1

4
∇V �(xo)g(xo)R−1gT (xo)(∇V ∗(xo))T

+ ∇V �(xo) f (xo) + xoT Qxo = 0. (7)

The analytical expression in (6) requires knowledge of the
optimal value function which is the solution to the HJB in (5),
but since the analytical solution for the HJB is generally
infeasible to compute, an approximation of the solution is
sought.

III. COMBINING REGIONAL AND LOCAL STATE

FOLLOWING APPROXIMATIONS

Traditional approaches to approximating the value function
establish the approximation over the entire state-space. When
implementing the approximation online, traditional methods
spend computational resources approximating the value func-
tion in regions where the state may not enter. The StaF
method reduces the computational efforts of the approximation
problem by approximating the value function in a moving
neighborhood of the state.

A drawback of the StaF method is that it does not establish
an approximation of the value function in regions where the
state will travel in the future; the StaF method only approxi-
mates the value function at the current position of the state.
In general, it is difficult to provide a perfect prediction of the
future state of an uncertain nonlinear system. However, since
convergence to the origin is the goal of regulation problems,
approximating the function in a neighborhood around the
origin is well motivated.

The operating domain χ of the state is segregated into two
sets, the set A, which is a closed compact set containing the
the origin, and the set B = χ \ A. Two different approximation
strategies will be used over A and B . Various R-MBRL
methods can be used to approximate the value function inside
A. For the set B , the StaF method is employed since there are
large regions of B that the state does not visit for the regulation
problem. Thus, the value function is approximated by the StaF
method when the state is in B and some R-MBRL method
is used when the state is in A. A regional approximation
method is also used to approximate the value function in the
set A′ = {x ∈ χ : d(x, A) ≤ �} (also known as an inflation
of A), where d(x, A) = inf{d(x, y) : y ∈ A} and � ∈ R>0
is a constant, and approximation of the value function over
the transition region A′ \ A will be a state-dependent convex
combination of the two controllers.

Let V̂1(x) denotes the approximation of the value function
over A′ using the R-MBRL method, and denote V̂2(x) as
the StaF approximation of the value function over B . The
resulting approximation of the value function over χ will then
be V̂ (x) = λ(x)V̂1(x)+(1−λ(x))V̂2(x), where λ : χ → [0, 1]

such that λ(x) = 1 when x ∈ A and λ(x) = 0 when
x ∈ χ \ A′ ⊂ B . If ε > 0 and |V̂1(x) − V �(x)| < ε over
A′ and |V̂2(x)− V �(x)| < ε over B , then |V̂ (x)− V �(x)| < ε
for all x ∈ χ , since V̂ is a convex combination of V̂1 and V̂2
over the transition region A′ \ A ⊂ B .

The following analysis is agnostic with respect to the com-
pact set A and the transition function λ. However, the transition
function λ should be a continuously differentiable compactly
supported function such that ‖∇λ(xo)‖ ≤ ∇λ, where ∇λ ∈
R>0. An example of such a function is

λ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ∈ A
1

2

[
1 + cos

(
π

d(x, A)

�

)]
, x ∈ A′ \ A

0, x �∈ A′.

(8)

Examples of A for which λ is continuously differentiable
include [−1, 1]n as well as B1(0) = {y ∈ R

n : ‖y‖ ≤ 1}.

IV. VALUE FUNCTION APPROXIMATION

The value function V � evaluated at xo using StaF kernels
centered at yo ∈ Br (xo) can be represented using a convex
combination as1

V �(xo) = λ(xo)W T
1 σ(xo) + (1 − λ(xo))W T

2 (yo)φ(xo, c(yo))

+ ε(xo, yo). (9)

In (9), σ : χ → R
P is a bounded vector of

continuously differentiable nonlinear basis functions such
that σ(0) = 0 and ∇σ(0) = 0, φ

(
xo, c(yo)

) =[
k(xo, c1(yo), k(xo, c2(yo), . . . , k(xo, cL(yo)

]T
where k :

χ × χ L → R
L is a strictly positive definite continuously

differentiable kernel, W1 ∈ R
P is a constant ideal R-

MBRL weight vector which is upper-bounded by a known
positive constant W 1 such that ‖W1‖ ≤ W 1 (see [19],
[20], [31]–[33]). Furthermore, W2 : χ → R

L is the
continuously differentiable ideal local StaF weight function
which changes with the state-dependent centers, and ε :
χ → R is the continuously differentiable function recon-
struction error such that supxo∈χ, yo∈Br (xo) |ε(xo, yo)| ≤ ε and
supxo∈χ, yo∈Br (xo) |∇ε(xo, yo)| ≤ ∇ε.

The subsequent analysis is based on an approximation of
the value function and optimal policy, evaluated at xo using
StaF kernels centered at yo ∈ Br (xo), expressed as

V̂ (xo, yo, Ŵ1c, Ŵ2c) = λ(xo)Ŵ T
1cσ(xo)

+ (1 − λ(xo))Ŵ T
2cφ(xo, c(yo)) (10)

1The value function can be expressed as a single NN by stacking the StaF
and R-MBRL basis functions. However, the single NN representation would
function exactly like the two separate NNs because the StaF and R-MBRL
weights are trained using different update laws, and the StaF weights are not
connected to the R-MBRL basis functions and vice-versa. Hence, to make the
structure of the NN apparent, the value function is expressed via two different
NNs.



DEPTULA et al.: APPROXIMATE DYNAMIC PROGRAMMING: COMBINING REGIONAL AND LOCAL STATE FOLLOWING APPROXIMATIONS 2157

and

û(xo, yo, Ŵ1a, Ŵ2a)

= −1

2
R−1gT (xo)

×(λ(xo)∇σ T (xo)Ŵ1a + (1 − λ(xo))

× ∇φT (xo, c(yo))Ŵ2a + ∇λT (xo)

× (σ T (xo)Ŵ1a − φT (xo, c(yo))Ŵ2a)). (11)

In (10) and (11), Ŵ1a, Ŵ1c ∈ R
P and Ŵ2a, Ŵ2c ∈ R

L are
weight estimates for the ideal weight vectors W1 and W2(yo),
respectively, and λ denotes the transition function introduced
in Section III. In an approximate actor-critic-based solution,
the optimal value function V � and control policy u� in (5) are
replaced by their respective estimates V̂ : χ × R

L × R
P → R

and û : χ × R
L × R

P → R
m . This results in a residual error

δ : R
n × R

L × R
L × R

P × R
P → R called the BE which is

defined as

δ(xo, yo, Ŵ1c, Ŵ2c, Ŵ1a, Ŵ2a)

� ∇ V̂ (xo, yo, Ŵ1c, Ŵ2c)

× ( f (xo) + g(xo)û(xo, yo, Ŵ1a, Ŵ2a))

+ r(xo, û(xo, yo, Ŵ1a, Ŵ2a)). (12)

Motivated by classical ADP solutions which aim to find a set
of weights so that the BE is zero ∀xo ∈ R

n , to solve the
optimal control problem, the critics and actors aim to find a
set of weights that minimize the BE ∀xo ∈ R

n .

V. ONLINE LEARNING

At a given time instant t , the BE δt : R≥0 → R is
evaluated as

δt (t) � δ(x(t), x(t), Ŵ1c(t), Ŵ2c(t), Ŵ1a(t), Ŵ2a(t)) (13)

where Ŵ1c, Ŵ1a , and Ŵ2c, Ŵ2a , denote estimates of the critic
and actor weights for the R-MBRL approximation method and
StaF approximation method, respectively, at time t . Further-
more, x(t) denotes the state of the system in (1) when starting
from initial time t0 and initial state x0 under the influence of
the state feedback controller

u(t) = û(x(t), x(t), Ŵ1a(t), Ŵ2a(t)). (14)

The BE is extrapolated to unexplored areas of the state
space to learn via simulation of experience (see [1], [19]).
The critic Ŵ1c selects sample points {xi ∈ A′|i = 1, . . . , N}
based on prior information about the desired behavior of the
system, i.e., selected about the origin, and evaluates a form
of the BE, δ1t,i : R≥t0 → R. Similarly, sample trajectories
{x j (x(t), t) ∈ Br (x(t))

∣∣ j = 1, 2, . . . , M} that follow the
current state x(t) are selected so that the StaF critic Ŵ2c

evaluates another extrapolated form of the BE δ2t, j : R≥t0 →
R. The extrapolated BEs are expressed as

δ1t,i(t) = Ŵ T
1c(t)ω∇σ i (t) + r(xi , ûi (t)) (15)

δ2t, j (t) = Ŵ T
2c(t)ω∇φ j (t) + r(x j (x(t), t), û j (t)) (16)

where

ω∇σ i (t) � ∇σ(xi )( f (xi) + g(xi)ûi (t))

ω∇φ j (t) � ∇φ(x j (x(t), t), c(x(t)))( f (x j (x(t), t))

+ g(x j (x(t), t))û j (t))

and

ûi (t) = −1

2
R−1gT (xi )∇σ(xi )

T Ŵ1a(t)

û j (t) = −1

2
R−1gT (x j (x(t), t))

× ∇φ(x j (x(t), t), c(x(t)))T Ŵ2a(t).

A. Regional Update Laws

The BE and extrapolated BE in (13) and (15), respectively,
contain R-MBRL actor and critic estimates, Ŵ1a and Ŵ1c.
Various approximation methods could be used to evaluate
the BE in A. See [1], [19], [31], [34], [35] for examples of
R-MBRL actor and critic update laws.

B. Local Update Laws

While the state is not in the local domain of A′, the StaF
critic uses the BEs in (13) and (16) to improve the estimate
of Ŵ2c. Specifically, the StaF critic can be designed using the
recursive least-squares update law

˙̂W2c(t) = −kc12(t)
ω∇φ(t)

ρ2(t)
δt (t)

− kc2

M
2(t)

M∑
j=1

ω∇φ j (t)

ρ2 j (t)
δ2t, j (t) (17)

̇2(t) = β22(t) − kc12(t)
ω∇φ(t)ωT∇φ(t)

ρ2
2 (t)

2(t)

− kc2

M
2(t)

M∑
j=1

ω∇φ j (t)ωT∇φ j (t)

ρ2
2 j (t)

2(t) (18)

where 2(t0) = 2o and 2(t) is the least-squares learning
gain matrix, kc1, kc2,∈ R≥0 are constant adaptation gains,
β2 ∈ R≥0 is a constant forgetting factor, ρ2(t) � 1 +
γ2ω

T∇φ(t)ω∇φ(t), ρ2 j (t) � 1 + γ2ω
T∇φ j (t)ω∇φ j (t), and γ2 ∈

R≥0 is a constant positive gain. In (18)

ω∇φ(t) � ((1 − λ(x(t)))∇φ(x(t), c(x(t)))

− φ(x(t), c(x(t)))∇λ(x(t)))

×( f (x(t)) + g(x(t))û(x(t), x(t), Ŵ1a(t), Ŵ2a(t)))

(19)

is an instantaneous regressor matrix. The StaF actor update
law is given by

˙̂W2a(t) = −ka1(Ŵ2a(t) − Ŵ2c(t)) − ka2Ŵ2a(t)

+ kc1GT∇φ(t)Ŵ2a(t)ωT∇φ(t)

4ρ2(t)
Ŵ2c(t)

+ kc2

4M

M∑
j=1

GT∇φ j (t)Ŵ2a(t)ωT∇φ j (t)

ρ2 j (t)
Ŵ2c(t) (20)
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where ka1, ka2 ∈ R are positive constant adaptation
gains and G∇φ(t) � ∇φ(x(t), c(x(t)))g(x(t))R−1gT (x(t))
∇φT (x(t), c(x(t))).

Remark 1: In typical BE extrapolation approaches,
the extrapolated BEs δ1t,i , δ2t, j and controls ûi (t), û j (t)
take similar forms to the actual BE δt and control u(t),
respectively, with the exception of using extrapolated states.
However, the extrapolated BEs and extrapolated inputs in
this paper take a different form compared to the true BE
and control. The goal is to approximate the ideal weight W1
irrespective of the system state and W2 in a region around the
state, therefore the extrapolated BEs do not rely on a convex
combination in the transition region A′ \ A. Furthermore, when
the state is in B = χ \ A, only BE extrapolation is used in A′
to approximate the weight W1. Hence, the developed method
is fundamentally different from the approach in [1] and [19].

VI. STABILITY ANALYSIS

For notational brevity, time dependence of all signals is sup-
pressed hereafter. The approach in this paper was generalized
to allow the use of any model-based approximation method
in A. However, to facilitate the following analysis a certain
structure is given to the R-MBRL update laws. Without a loss
of generality, let the R-MBRL update laws take a similar form
to the StaF update laws in (17), (18), and (20). The R-MBRL
update laws contain the extrapolated regressor ω∇σ i defined
in Section V, where the regressor ω∇σ is defined as

ω∇σ � (λ(x)∇σ(x) + σ(x)∇λ(x))( f (x) + g(x)u) (21)

where the BE δt is defined in (22), and the extrapolated
BE δ1t,i is defined in (23). The constant gains for the
R-MBRL update laws are ηc1, ηc2 ∈ R≥0. The R-MBRL
least-squares learning gain matrix is 1(t) with a forgetting
factor β1 ∈ R≥0, and with normalizing factors ρ1(t) �
1 + γ1ω

T∇σ (t)ω∇σ (t), ρ1i (t) � 1 + γ1ω
T∇σ i (t)ω∇σ i (t) where

γ1 ∈ R≥0 is a constant positive gain.
To facilitate the analysis, let W̃1a � W1 − Ŵ1a , W̃1c �

W1 − Ŵ1c, W̃2a � W2 − Ŵ2a , and W̃2c � W2 − Ŵ2c denote
the weight estimation errors. Unmeasurable forms of the BEs
in (13), (15), and (16) can be written as

δt = δt1 + δt2 + δt3 (22)

where

δt1 = −ωT∇σ W̃1c + 1

4
λ2W̃ T

1a G∇σ W̃1a + �1

δt2 = −ωT∇φ W̃2c + 1

4
(1 − λ)2W̃ T

2a G∇φ W̃2a + �2

δt3 = 1

2
(1 − λ)

(
λW̃ T

2a G∇φ∇σ W̃1a + W̃ T
1aσ G∇λ∇φ W̃2a

− 1

2
W̃ T

2aφG∇λ∇φ W̃2a
)

+ 1

4

(
W̃ T

1aσ G∇λσ
T W̃1a

− 2W̃ T
2aφG∇λσ

T W̃1a + W̃ T
2aφG∇λφT W̃2a

)

+ 1

2
λ
(
W̃ T

1aσ G∇λ∇σ W̃1a − W̃ T
2aφG∇λ∇σ W̃1a

)+ �3

and

δ1t,i = −ωT∇σ i W̃1c + 1

4
W̃ T

1aG∇σ i W̃1a + �1i

δ2t, j = −ωT∇φ j W̃2c + 1

4
W̃ T

2a G∇φ j W̃2a + �2 j (23)

where the functions �1,�2,�3,�1i ,�2 j : R
n → R are

uniformly bounded over χ such that the bounds {‖�k‖|k =
1, 2, 3}, ‖�1i‖, and ‖�2 j‖ decrease with decreasing ‖∇ε‖ and
‖∇W‖.

Using the R-MBRL and StaF update laws, the system states
x and selected states xi and x j are assumed to satisfy the
following inequalities.

Assumption 2: There exists a positive constant T ∈ R≥0
such that

c1 IP ≤
∫ t+T

t

(
ω∇σ (τ )ωT∇σ (τ )

ρ2
1 (τ )

)
dτ ∀t ∈ R≥t0

c2 IP ≤ inf
t∈R≥t0

(
1

N

N∑
i=1

ω∇σ i (t)ωT∇σ i (t)

ρ2
1i (t)

)

c3 IP ≤ 1

N

∫ t+T

t

(
N∑

i=1

ω∇σ i (τ )ωT∇σ i (τ )

ρ2
1i (τ )

)
dτ ∀t ∈ R≥t0

b1 IL ≤
∫ t+T

t

(
ω∇φ(τ )ωT∇φ(τ )

ρ2
1 (τ )

)
dτ ∀t ∈ R≥t0

b2 IL ≤ inf
t∈R≥t0

⎛
⎝ 1

M

M∑
j=1

ω∇φ j (t)ωT∇φ j (t)

ρ2
2 j (t)

⎞
⎠

b3 IL ≤ 1

M

∫ t+T

t

⎛
⎝ M∑

j=1

ω∇φ j (τ )ωT∇φ j (τ )

ρ2
2 j (τ )

⎞
⎠ dτ ∀t ∈ R≥t0

where {ck |k = 1, 2, 3}, {bk |k = 1, 2, 3} ∈ R≥0 are nonnega-
tive constants, and at least one of the constants from each set
is strictly positive.

Remark 2: Assumption 2 requires the regressors
ω∇σ , ω∇φ or ω∇σ i , ω∇φ j to be persistently exciting.
The regressors ω∇σ and ω∇φ are completely determined by
the state x and weights Ŵ1a and Ŵ2a . Typically, to ensure that
c1, b1 > 0, meaning ω∇σ and ω∇φ are persistently excited,
a probing signal is added to the control input. However, this
introduces undesired oscillations in the system and produces
noisy signals in the response. In addition, as the system and
state converge to the origin, excitation will usually vanish.
Hence, it is difficult to ensure that c1, b1 > 0. On the other
hand, ω∇σ i and ω∇φ j are dependent on xi and x j , which are
designed independent of the system state x . In fact, ω∇σ i

is designed based on the desired behavior of the system,
i.e., regulate the states to the origin. Therefore, without the
need of a probing signal, c2 and b2 can be made strictly
positive by selecting a sufficient number of extrapolated
sample states in both regions of the state space, or if
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xi and x j contain enough frequencies then c3, b3 become
strictly positive.2

Let a candidate Lyapunov function VL : R
n+2L+2P ×

R≥0 → R be defined as

VL(Z , t) = V �(x) + 1

2
W̃ T

1c
−1
1 (t)W̃1c + 1

2
W̃ T

2c
−1
2 (t)W̃2c

+ 1

2
W̃ T

1aW̃1a + 1

2
W̃ T

2a W̃2a

where V � is the unknown, positive, continuously differentiable
optimal value function, and

Z = [
xT , W̃ T

1a, W̃ T
1c, W̃ T

2a, W̃ T
2c

]T
.

The least-squares update laws which take the form
of (18) ensure that the least-squares gain matrices satisfy
[37, Corollary 4.3.2]

1 IP ≤ 1(t) ≤ 1 IP (24)

2 IL ≤ 2(t) ≤ 2 IL (25)

provided the minimum eigenvalues λmin
{
−1

1o

}
,

λmin
{
−1

2o

}
> 0 and Assumption 2 holds (see [1]).

Since the optimal value function V � is positive definite,
using [38, Lemma 4.3], the candidate Lyapunov function VL

can be bounded as

νl(‖Zo‖) ≤ VL(Zo, t) ≤ νl(‖Zo‖) (26)

for all t ∈ R≥t0 and for all Zo ∈ R
n+2L+2P , where νl , νl :

R≥0 → R≥0 in (26) are class K functions. To facilitate the
analysis, let c, b ∈ R>0 be constants defined as

c � β1

21ηc2
+ c2

2
, b � β2

22kc2
+ b2

2
. (27)

Let νl : R≥0 be a class K function such that

νl(||Z ||) ≤ q

2
‖x‖2 + (ka1 + ka2)

8
‖W̃2a‖2 + kc2b

8
‖W̃2c‖2

+ (ηa1 + ηa2)

8
‖W̃1a‖2 + ηc2c

8
‖W̃1c‖2. (28)

Theorem 1: Provided assumption 2 is satisfied and the
control gains are selected sufficiently large (see the Appendix),
then the controller in (11) along with the R-MBRL and StaF
update laws taking the form of (17)-(20) ensure that the state
x and weight estimation errors W̃1a, W̃1c, W̃2a , and W̃2c are
semiglobally uniformly ultimately bounded.3

Proof: The time-derivative of the Lyapunov function is

V̇L = V̇ � − W̃ T
1c

−1
1

˙̂W1c + W̃ T
2c

−1
2 (Ẇ2 − ˙̂W2c)

− W̃ T
1a

˙̂W1a + W̃2a(Ẇ2 − ˙̂W2a)

+ 1

2
W̃ T

1ċ
−1
1 W̃1c + 1

2
W̃ T

2ċ
−1
2 W̃2c. (29)

2Typical results in ADP require excitation along the system trajectory
(see [3], [7]–[9], [11], [31], [36]), which may potentially cause the system to
go unstable. However, in this result, virtual excitation can be used without
injecting destabilizing dither signals into the system. The sample trajectories
xi and x j can be designed to contain enough frequencies if they are selected
to follow a highly oscillatory trajectory or they are chosen from a sampling
distribution such as a normal or uniform distribution.

3Results such as [39] could potentially be used to achieve an asymptotic
convergence to the origin, but the additional feedback to eliminate the residual
error would deviate from the optimal policy.

Using the chain rule, the time derivative of the ideal weights
Ẇ2 can be expressed as

Ẇ2 = ∇W2( f (x) + g(x)u). (30)

Provided the sufficient conditions in the Appendix are met,
substituting for (13), (15)-(20), and (30), using the bounds
in (24), (25), and (28), completing the squares, and using
Young’s inequality, the time derivative in (29) can be upper
bounded as

V̇L ≤ −νl(‖Z‖) ∀‖Z‖ > ν−1
l (ι). (31)

After using (26), (31), and (38), [38, Th. 4.18] can be invoked
to conclude that Z is uniformly ultimately bounded such
that lim supt→∞ ‖Z(t)‖ ≤ vl

−1(vl(v
−1
l (ι))). Since Z ∈ L∞,

it follows that x, W̃1a, W̃1c, W̃2a, W̃2c ∈ L∞. The function
W2 is a continuous function of x and x ∈ L∞ which
implies W2(x) ∈ L∞. Hence, Ŵ1a, Ŵ1c, Ŵ2a, Ŵ2c ∈ L∞, and
u ∈ L∞.

VII. SIMULATION

A. Two-State Dynamical System

To demonstrate the performance of the developed ADP
method for a nonlinear system with a known value func-
tion, simulation results for a two-state dynamical system are
provided. The simulation is performed for the control affine
system given in (1) where xo = [xo

1 , xo
2 ]T

f (xo) =
[ −xo

1 + xo
2

−1

2
xo

1 − 1

2
xo

2

(
1 − (

cos
(
2xo

1

)+ 2
)2)
]

and

g(xo) =
[

0
cos

(
2xo

1

)+ 2

]
. (32)

The control objective is to minimize the cost functional in (2)
with the instantaneous cost in (3) and the weighting matrices
being Q = I2 and R = 1. The optimal value function,
V �(xo), and optimal control policy, u�(xo), for these particular
dynamics and cost function are known to be V �(xo) =
(1/2)xo2

1 + xo2
2 and u�(xo) = −(cos(2xo

1 )+ 2)xo
2 , respectively

(see [3]). The regions A and A′ are selected as circles around
the origin such that A = B1.5(0) � {xo : ‖xo‖ ≤ 1.5} and
A′ = B2.5(0) � {xo : ‖xo‖ ≤ 2.5}, respectively. The transition
function λ(xo) is selected to be (8) with � = 1.0 as discussed
in Section III.

To simulate the developed technique, the MBRL approach
from [19] is used to learn the value function in A. The
MBRL basis function vector for value function approximation
in the set A? is selected as σ(xo) = [xo2

1 , xo
1 xo

2 , xo2
2 ]T , with

thirteen uniformly distributed points selected in A′ for BE
extrapolation. To approximate the value function in B = χ \ A,
the StaF basis function vector is selected as φ(xo, c(xo)) =
[xoT c1(xo), xoT c2(xo), xoT c3(xo)]T where ci (xo) = xo + di

for i = 1, 2, 3. The centers of the StaF kernels are selected
as d1 = 0.25 × [0, 1]T , d2 = 0.25 × [−0.886,−0.5]T , and
d2 = 0.25 × [−0.886, 0.5]T . To ensure sufficient excitation
in B , a single trajectory xo

j : Rt≥t0 → R
n is selected
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Fig. 1. Optimal control policy and estimate for the two-state system in (32).

for BE extrapolation such that at each time instant t , xo
j (t)

is selected at random from a uniform distribution over a
ν(xo(t)) × ν(xo(t)) square centered at the current state xo(t)
where ν(xo(t)) = ((xoT xo + 0.01)/(1 + xoT xo)). The initial
conditions for the system at t0 = 0 are

x(0) = [−10, 10]T

Ŵ1c(0) = Ŵ1a(0) = 2 × 13

Ŵ2c(0) = Ŵ2a(0) = 0.3 × 13

1(0) = 350 × I3, 2(0) = 50 × I3.

The gains for the MBRL update laws are selected as

ηc1 = 0.001, ηc2 = 2, ηa1 = 25

ηa2 = 0.1, β1 = 0.5, γ1 = 2

and the gains for the StaF update laws (17), (18), and (20) are
selected as

kc1 = 0.001, kc2 = 0.09, cka1 = 1.5

ka2 = 0.01, β1 = 0.003, and γ2 = 0.05.

Results: Fig. 1 indicates that the control policy estimate
converges to the optimal controller, while regulating the states
to the origin, as seen from Fig. 2. Fig. 3 shows the value
function approximation error, from which it is clear that the
value function estimate V̂ converges to the optimal value
function. Fig. 4 shows that the estimated value function and
policy weights for both the StaF [Fig. 4(b) and (d)] and
MBRL [Fig. 4(a) and (c)] methods converge to steady-state
values and remain bounded. The MBRL weights converge
close to their optimal weights W1 = [0.5, 0, 1]T ; however,
the approximate StaF weights cannot be compared to their
ideal weights because the optimal StaF weight are unknown.

B. Ten-State Dynamical System

To demonstrate the performance of the developed ADP
method on a higher dimensional system, consider a centralized
controller computing the control policies for a network of ten

Fig. 2. State regulation and state-space portrait for the two-state dynamical
system. In (b) the region A′ is represented by the larger dashed circle while
A is represented via the smaller circle. (a) State trajectory for the two-state
system in (32). (b) Phase-space portrait for the two-state system in (32).

Fig. 3. Value function estimation error for the two-state system in (32).

one-state dynamical systems, where each system is in control
affine form with dynamics represented as

fi
(
xo

i

) = (
θa,i x

o
i + θb,i

(
xo

i

)2)
gi
(
xo

i

) = (cos(2xi) + 2) ∀i = 1, . . . , 10

where θa,i = 2, 5, 0.1, 0.5, 2.5, 0.3, 0.5, 0.15, 3.5, 2 and
θb,i = 1, 0.5, , 1, 1, 1, 0.3, 1.1, 0.7, 0.9, 0.8 for i = 1, . . . , 10,
respectively. The agent dynamics are combined to form one
large dynamical system given by

f (x) =

⎡
⎢⎢⎣

θa,1xo
1 + θb,1

(
xo

1

)2
...

θa,10xo
6 + θb,10

(
xo

6

)2

⎤
⎥⎥⎦

g(x) = diag[(cos(2x1) + 2), . . . , (cos(2x10) + 2)]. (33)

The transition function is selected to be the same as in (8)
with A = B1(0) � {xo : ‖xo‖ ≤ 1} and A′ = B2(0) � {xo :
‖xo‖ ≤ 2} and � = 1.0. The control objective is to minimize
the cost functional in (2) with the instantaneous cost in (3)
using the weighting matrices Q = I10 and R = I10.

The MBRL basis is selected to be a vector of twenty
polynomials, and for BE extrapolation, twenty-one equally
distributed points are selected in A′. The StaF basis is selected
to be φ(xo, c(xo)) = [xoT c1(xo), . . . , xoT c11(xo)], where
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Fig. 4. Value function and policy weight approximations for the two-state
system in (32). The StaF actor and critic weights are updated using (17), (18),
and (20). The R-MBRL actor and critic weights are updated using adaptation
schemes which take a similar form to the StaF update laws, as discussed in
Section VI. (a) R-MBRL critic approximations. (b) StaF critic approximations.
(c) R-MBRL actor approximations. (d) StaF actor approximations.

ci (xo) = xo +di for i = 1, . . . , 11. The centers di are selected
to be the vertices of a 10-simplex. For BE extrapolation in B ,
a single point is selected at random from a uniform distribution
over a [2ν(xo(t))]10 hypercube centered at the current state,
where ν(xo(t)) = (0.0003xoT xo/(1 + 0.5xoT xo)). When the
states converge to A, the StaF update laws are turned OFF

to reduce computational burden. The initial conditions for the
system at t0 = 0 are selected as

x(0) = [1.2,−0.3, 3,−2.4,−2.1,−2.7,−1.2, 1.2,

0.3,−1.8]T

Ŵ1c(0) = Ŵ1a(0) = 5 × 120

Ŵ2c(0) = Ŵ2a(0) = 0.25 × 111

1(0) = 350 × I20, 2(0) = 100 × I11.

The gains for the MBRL update laws are selected as

ηc1 = 0.0005, ηc2 = 30, ηa1 = 25

ηa2 = 0.01, β1 = 0.06, γ1 = 3

and for the StaF update laws in (17), (18), and (20) the gains
are selected as

kc1 = 0.001, kc2 = 0.8, ka1 = 0.4

ka2 = 0.001, β1 = 0.0001, and γ2 = 0.9.

Results: Figs. 5 and 6 show that the control policy and the
system states converge to the origin. The oscillation-like effect
between 0 and 1 s in Fig. 5 comes from StaF approximation
in B . Fig. 7 indicates that the BE converges to zero. The
transition of the BE between 0 and 1 second in Fig. 7 is
attributed to the transition of the value function approximation

Fig. 5. Optimal control policy estimate for the ten-state dynamical system.

Fig. 6. States for the ten-state dynamical system converge to the origin.

weight approximation as the state enters A′. Fig. 8 shows
that the approximate MBRL weights converge to steady-state
values, and the StaF weights remain bounded.

C. Comparison

The developed technique is compared to the R-MBRL
approximation technique in [19] and the StaF approximation
technique in [1] via MATLAB Simulink running at 1000 Hz
on an Intel Core i5-2500K CPU at 3.30 GHz. All systems are
simulated for 100 s and the total cost, steady-state RMS error,
and running time are compared, with the results displayed in
Tables I–IV. The approximation method from [1] is imple-
mented using polynomial StaF basis functions with centers
at the vertices of an n-simplex for each n-dimensional prob-
lem.4 The approximation method from [19] is implemented
using polynomial basis functions selected via trial-and-error.

4At a minimum n+1 kernels need to be used with an n-dimensional system.
The choice of kernel is only governed a few rules imposed by the StaF method,
which can be found in [1], [21], [35]. Dot product kernels work well for
the StaF application; examples include polynomial kernels and exponential
kernels.
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Fig. 7. BE using the developed method for a ten-state dynamical system.

Fig. 8. Value function and policy weight approximations using the R-MBRL
and StaF critic and actor update laws for the ten-state dynamical system
in (33). (a) R-MBRL critic approximations. (b) StaF critic approximations.
(c) R-MBRL actor approximations. (d) StaF actor approximations.

Furthermore, the sets A and A′ are selected via trial-and-error
to demonstrate the effect of selecting different regions.5 It is
seen that the developed technique converges similar to the R-
MBRL technique in [19] but at a smaller cost and running
time as the dimension of the system increases. In theory,
the R-MBRL method should be closest to optimal because it
provides an approximation over the entire operating domain.
However, the choice of basis functions and the number of
basis functions used for approximation has a major influence
on the approximation. Hence, when the exact parameterization

5The performance of the proposed method depends on the choice of A and
A′. Hence, if the initial conditions are far from the origin then larger sets may
be used, otherwise the sets A and A′ should be smaller to provide enough
time for the R-MBRL weights to be learned.

is known such as in the case of the two-state system, R-
MBRL provides the smallest cost, but this is not necessarily
true when the basis is not known a priori. The basis function
used is directly correlated to the cost through the input;
hence, basis functions with larger gradients will exhibit higher
control efforts which can increase cost. An examination of the
correlation between the type of basis function used and total
cost for the R-MBRL method is out of the scope of this paper.
The increase in running time for the R-MBRL method in [19]
for the six and ten-state systems occurs because the value
function is approximated over the entire domain of operation
instead of just a local region around the origin, requiring a
large number of basis functions. The RMS error is practically
zero since all of the methods provide a sufficiently accurate
approximation of the value function, resulting in a stabilizing
feedback.

The StaF-only approximation and the developed approxi-
mation technique results in a similar cost for the two, three,
and six-state simulation when using difference gains. But for
the ten-state simulation, the cost is smaller for the developed
approximation technique. The StaF method in [1] also results
in a slightly higher steady-state RMS error compared to the
developed method. When increasing to a higher dimensional
system such as the six and ten-state systems, the StaF method
in [1] results in a much shorter running time when compared
to the developed method because the developed method still
requires stationary basis functions around the origin, which
increases the running time.

In many applications such as station keeping of marine
craft, the local cost or the cost which starts being calculated
once the marine craft reaches a goal region is more important
than the total cost for regulating to that region and staying
there. Table III displays the local cost once the system enters
the set A for the developed and StaF-based methods. The
developed method results in a smaller local cost compared to
the StaF method in [1]. Since the R-MBRL method contains a
larger number of basis functions over A′ compared to the StaF
method, a better approximation over A is learned, resulting in
a reduced local cost.

Table IV provides a comparison of the developed method
compared to the StaF method in [1] when the same gains
are used and a large region A is selected with respect to the
initial conditions. The results show that the StaF method has
a smaller running time compared to the developed method;
however, the developed method yields a lower cost compared
to the StaF-only method. The developed method is capable of
quickly learning the value function via BE extrapolation in the
neighborhood A while the state still has not A.

Table II provides a comparison of the developed method
with StaF and R-MBRL when the sets A and A′ and the tran-
sition region A′ \ A are increased for the three-state dynamical
system using different gains. As the sets get larger, a smaller
total cost results. The lower cost is because the R-MBRL
method is approximating the value function over a larger area,
and hence, provides a more accurate approximation compared
to the local approximations of the StaF method. As the sets
A and A′ are increased, the developed method produces a
smaller total cost compared to the R-MBRL method in [19],
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TABLE I

SIMULATION RESULTS. STEADY-STATE RMS ERRORS BELOW 1 × 10−16 ARE CONSIDERED TO BE ZERO. (a) TWO AND THREE-STATE

SIMULATION RESULTS. (b) SIX AND TEN-STATE SIMULATION RESULTS

TABLE II

THREE-STATE SIMULATION RESULTS WITH DIFFERENT SETS A AND A′ . STEADY-STATE RMS ERRORS

BELOW 1 × 10−16 WERE CONSIDERED TO BE ZERO

TABLE III

LOCAL COST WHEN THE SYSTEM ENTERS THE SET A FOR THE DEVELOPED METHOD AND THE STAF-BASED METHOD IN [1]

TABLE IV

SIX-STATE SIMULATION RESULTS WITH DIFFERENT SETS A AND A′ UNDER DIFFERENT INITIAL CONDITIONS USING THE SAME GAINS FOR THE UPDATE

LAWS (17), (18), AND (20). STEADY-STATE RMS ERRORS BELOW 1 × 10−16 WERE CONSIDERED TO BE ZERO

this is partially attributed to the fact that implementation of
R-MBRL over a large region is challenging when an exact
basis for value function approximation is not available. As the
transition region A′ \ A increases, the gradient of λ decreases,
possibly contributing to the smaller cost. Also in [19], the
least-squares learning gain matrix 1(t) was updated without
using recorded data, while the developed R-MBRL update law

similar to (18) includes recorded data to improve the selection
of 1(t).

The results in Tables I–IV indicate that the optimal choice
of the approximation method depends on the circumstance,
and several advantages and disadvantages need to be taken
into consideration when selecting which method to use. The
StaF method is best suited for a high-dimensional application
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requiring real-time performance where global optimality is
not required. However, Table IV shows that there are circum-
stances in which the developed method outperforms the StaF
method in [1] in terms of total and local cost. Moreover, since
the StaF method in [1] lacks memory, the weights need to be
relearned every time the system passes through the predefined
area of interest in the operating domain, whereas the developed
uses the R-MBRL method to learn to static weights in that
region and does not need to relearn the weights when the
system leaves the neighborhood. The R-MBRL method in [19]
is the best suited for lower dimensional applications where
global optimality is a premium. However, approximating the
value function over the entire state space requires a large
number of basis functions, and hence, a large computational
burden. Since the developed method reduces the area of
interest, which reduces the number of basis functions required,
it is computationally efficient when compared to R-MBRL
in [19]. Applications with large operating domains may benefit
from the developed method since the value function can be
learned in desired areas of the state space, e.g., around the
origin, independent of where the state is, using R-MBRL,
while StaF keeps the system stable by approximating the value
function around the state trajectory. Although the developed
method shows a slight improvement over [1] in terms of
cost and RMS error, more tuning parameters and an overall
larger number of unknown parameters are introduced. Having
more tuning parameters provides freedom for the designer
to select different parameters in the tuning process and also
allows for a better approximation as shown by the RMS
error in Tables I–IV. However, having multiple update laws
also increases computational complexity. Although the overall
computational complexity depends on the total number of
basis functions used for approximation and the number of off-
policy trajectories used for BE extrapolation, the parameters
are design choices. Hence, as shown in Tables I–IV, depending
on the circumstance, such as the size of the regional approxi-
mation area or the system complexity, it is beneficial to have
both local and regional update laws to approximate the value
function.

VIII. CONCLUSION

An infinite horizon optimal control problem was solved
using a novel approximation methodology utilizing the StaF
kernel method and an R-MBRL method. The operating domain
χ of the system was segregated into two parts; a neighborhood,
A ⊂ χ , containing the origin where R-MBRL was employed,
and the set B = χ \ A where the StaF method was employed.
For a state initialized in B , the StaF method ensured stable and
computationally efficient operation while an R-MBRL method
achieved a sufficiently accurate estimate of the value function
over the set A. When the state entered A, the R-MBRL
technique was used to regulate the state to the origin.

Under specific conditions, Theorem 1 established that the
developed control strategy results in semiglobal uniform ulti-
mate boundedness of the state trajectory. Simulation examples
for two, three, six, and ten-state dynamical systems showed
that the developed approximation method outperforms pre-
vious methods. As the dimension of the system increases,

the developed method is able to estimate the value function
sufficiently to reduce the local cost and the RMS error.

To ensure smooth transition between the two approximate
optimal controllers as the state transitioned from B to A,
a state varying convex combination of the two controllers was
used based on the distance from set A. However, the convex
combination in the approximation approach resulted in the
need for large gains. A possible subject for future research
would be a switched-systems-based modification to the devel-
oped method which employs a buffer to allow for a sufficient
dwell time in the transition region B to A.

In the developed method, the sets A and A′ were selected by
trial and error to demonstrate the difference in performance.
The rate at which the optimal value function is learned in
A depends on the size and location of A′ in the state space.
A possible subject of future research would be to investigate
designing time-varying sets A and A′. Moreover, investigations
into finding optimal sets A and A′ remain as topics for future
research.

APPENDIX A
SUFFICIENT CONDITIONS

In the following, the notation ‖(·)‖ is defined as ‖h‖ �
supξ∈Bζ

‖h(ξ)‖, for some continuous function h : R
n → R

k ,
where Bζ ⊂ R

n+2L+2P denotes a closed ball with radius ζ
centered at the origin. The sufficient conditions that facilitate
the stability analysis are given by

(ka1 + ka2)

2
≥
((

kc1√
γ2

+ ηc1√
γ1

)
ϑ5 + kc1√

γ2
ϑ6

)
νl (‖Z(t0)‖)

+ 2ϑ1 + ϑ2 + ϑ4‖W2‖√
γ2

(34)

(ηa1 + ηa2)

2
≥
(

ηc1√
γ1

ϑ6 +
(

ηc1√
γ1

+ kc1√
γ2

)
ϑ7

)
νl(‖Z(t0)‖)

+
( 1

2
+ 1

)
ϑ2 + ϑ3W1√

γ1
(35)

kc2b

4
≥ max

{
ϑ2

22
+ kc1(ϑ5 + ϑ6 + ϑ7)

4
√

γ2
+ ϑ10

2
,

(ka1 + ϑ9)
2

(ka1 + ka2)

}
(36)

ηc2c

4
≥ max

{
ηc1(ϑ5 + ϑ6 + ϑ7)

4
√

γ1
+ ϑ10

2
,

(
ηa1 + ϑ3

2
√

γ1
W1

)2

(ηa1 + ηa2)

⎫⎪⎬
⎪⎭ (37)

and

ν−1
l (ι) < νl

−1(νl(ζ )). (38)

In (34)–(38), the constants ι, {ϑi |i = 1, . . . 12} ∈ R>0 are
defined as

ϑ1 = ‖G∇W2∇φ‖
2

+ ‖G∇W2∇λφT ‖
2

ϑ2 = ‖G∇W2∇σ ‖
2

+ ‖G∇W2∇λσ T ‖
2
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ϑ3 = ηc1 + ηc2

4
‖G∇σ ‖, ϑ4 = kc1 + kc2

4
‖G∇φ‖

ϑ5 = ‖G∇φ‖
2

+ ‖φG∇λ∇φ‖
4

+ ‖φG∇λ∇λφT ‖
4

ϑ6 = ‖G∇φ∇σ ‖
2

+ ‖φG∇λ∇λσ T ‖
2

+ ‖φG∇λ∇σ ‖
2

+ ‖σ G∇λ∇φ‖
2

ϑ7 = ‖G∇σ ‖
2

+ ‖σ G∇λ∇λσ T ‖
4

+ ‖σ G∇λ∇σ ‖
2

ϑ8 = ‖∇W2 f ‖ + 1

2
‖G∇V �∇φ‖ + 1

2
‖G∇V �∇λφT ‖

+ ϑ2W1 + ϑ1‖W2‖ + ϑ4

2
√

γ2
‖W2‖2

ϑ9 = ϑ1

2
+ ϑ4

2
√

γ2
‖W2‖

ϑ10 = kc1

2
√

γ2
‖ω∇σ ‖ + ηc1

2
√

γ1
‖ω∇φ‖

ϑ11 = ϑ2

2
W1 + ϑ1

2
‖W2‖ + ‖∇W2 f ‖

2

ϑ12 = ‖G∇V �∇σ ‖
2

+ ‖G∇V �∇λσ T ‖
2

+ ηa2W1 + ϑ3

2
√

γ1
W1

2

and

ι = ‖G∇V �∇W2φ‖
2

+ ‖G∇V �∇ε‖
2

+ (ϑ12)
2

(ηa1 + ηa2)

+ (ka2 + ϑ8)
2

(ka1 + ka2)
+
(

ηc1
2
√

γ1
(2‖�1‖ + ‖�2‖ + ‖�3‖)

)2

ηc2c

+
(

kc1
2
√

γ2
(‖�1‖ + 2‖�2‖ + ‖�3‖) + ϑ11

)2

kc2b
.

The sufficient condition in (34) can be satisfied by
increasing the gain ka2. This will not affect the sufficient
conditions in (35) and (37) and it may decrease the sufficient
condition in (36). The sufficient condition in (35) can be sat-
isfied without affecting the sufficient conditions (34) and (36)
by increasing the gain ηa2. The sufficient condition in (36)
can be satisfied by selecting points for BE extrapolation in
B ⊂ χ \ A so that the minimum eigenvalue b in (27) is large
enough and by increasing the gain ka2. By selecting points for
BE extrapolation in A ⊂ χ such that the minimum eigenvalue,
c, is large enough, and a large ηa2, the sufficient condition
in (37) can be satisfied. Provided the transition function λ is
selected such that ∇λ is small, the basis functions used for
approximation are selected such that ‖ε‖, ‖∇ε‖, and ‖∇W2‖
are small, and ka2, ηa2, c, and b are selected to be sufficiently
large, then the sufficient condition in (38) can be satisfied.6

6The minimum eigenvalue of (1/N)
∑N

i=1(ω∇σ i (t)ω
T∇σ i (t)/ρ

2
1i (t)) can be

increased by collecting redundant data, i.e., selecting N � P in the area
of interest, where the extrapolated off-policy trajectories xi can be selected
a priori based on the desired behavior of the system. The bound on the gradient
of λ, i.e., ∇λ, can be decreased by selecting larger transition regions A′ \ A.
The size of the steady-state error can be decreased by increasing the number
of basis functions used for approximation (i.e., increasing L and P). However,
increasing the number of basis function to gain a better approximation comes
at a cost of an increase in computational complexity.
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