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Keeping Multiple Moving Targets in the Field
of View of a Mobile Camera

Nicholas R. Gans, Guoqiang Hu, Kaushik Nagarajan,
and Warren E. Dixon

Abstract—This study introduces a novel visual servo controller that is
designed to control the pose of the camera to keep multiple objects in the
field of view (FOV) of a mobile camera. In contrast with other visual servo
methods, the control objective is not formulated in terms of a goal pose or a
goal image. Rather, a set of underdetermined task functions are developed
to regulate the mean and variance of a set of image features. Regulating
these task functions inhibits feature points from leaving the camera FOV.
An additional task function is used to maintain a high level of motion
perceptibility, which ensures that desired feature point velocities can be
achieved. These task functions are mapped to camera velocity, which serves
as the system input. A proof of stability is presented for tracking three or
fewer targets. Experiments of tracking eight or more targets have verified
the performance of the proposed method.

Index Terms—Robust control, visual servoing, video surveillance.

I. INTRODUCTION

Many vision-related control tasks cannot be formulated in terms of
a specific goal pose or trajectory. Therefore, classical visual servoing
methods (e.g., [1] and [2]) are not well suited to these problems. One
task that is not well characterized by a goal pose or image is keeping
multiple, moving objects in the camera field of view (FOV). Consider
the scenario of crowd surveillance. A camera views the crowd and uti-
lizes target segmentation and tracking methods to localize individuals
of interest visible in the image. As the crowd moves and disperses,
a controller must move and/or aim the camera in an attempt to keep
all individuals in the FOV. Another scenario involves tracking several
unmanned vehicles amid landmarks. Commands can be sent to the un-
manned vehicles to track desired trajectories and avoid obstacles, but
the vehicles must also be kept in the camera FOV to ascertain their
pose in the workspace.

This paper presents a method to achieve the aforementioned tasks,
extending our previous work in [3] and [4]. The method is rooted in
classic image-based visual servoing [1], [2], [5], [6]; however, no goal
image or goal feature trajectory is required. Rather than regulate error
signals that are based on current and goal images, the proposed method
regulates functions of the current image features. These task functions
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are suitable for task-priority kinematic control [7], [8]. The resulting
controller allows feature points to move within the image, and the
camera will move to deter feature points from leaving the FOV.

This study is partially inspired by the work of Bishop and Stilwell
[9], [10], and Antonelli and Chiaverini [11]. These works applied task-
priority kinematic control methods for redundant manipulators [7], [8],
[12] to the field of mobile robot control. One approach in [11] controlled
mean and variance of the vehicle coordinates. Similarly, it is possible
to move the camera to control the distribution of targets in the image.
If the mean of the target distribution is maintained near the image
center, and the variance of feature coordinates is regulated to a suitably
small value, objects will be inhibited from leaving the FOV. This paper
also proves that mean regulation and variance regulation tasks do not
interfere with each other; thus, the task-priority methods do not need
to be considered for these two tasks. The control of our system also
differs from previous task-priority controllers in that it includes robust
control terms that ensure stability despite unknown disturbances.

We impose an additional task to maximize motion perceptibility (or
simply, perceptibility) [13]. To the authors’ knowledge, our works are
the first to use perceptibility in the control feedback. The control of
perceptibility for target tracking was also recently investigated in [14].

In [15]–[17], six moments of image segments are identified in goal
and current images to build a full rank image Jacobian for position
control. The concept of task functions and nullspace projection of mul-
tiple tasks has been used in visual servo control [6], [18]. In [18],
Mansard and Chaumette extended the use of task functions to include a
time-varying set of priorities that could be either deactivated or reprior-
itized. Our development uses task functions that have underdetermined
Jacobians featuring nullspaces with large spans. The application of this
study is also different, focusing on target tracking rather than position-
ing of a robot at a specific configuration. The problem of tracking three
or fewer targets with a pair of pan/tilt/zoom cameras was presented
in [19]. The approach in [19] exploits the geometry of cameras view-
ing points to define a desired relationship between the points in the two
images.

II. CAMERA MODEL AND IMAGE JACOBIAN FOR A CAMERA MODEL

Consider a camera with coordinate frame Fc (t). The camera views
a collection of k feature points in front of the camera. The coordinates
of the feature points in the image are denoted as

mi = [xi , yi ]T , ∀i ∈ {1 . . . k}. (1)

Given the collection of k feature points, along with their coordinates
and velocity vectors, a state position vector m(t) and state velocity
vector ṁ(t) are defined as

m = [mT
1 , mT

2 , . . . , mT
k ]T , ṁ = [ṁT

1 , ṁT
2 , . . . , ṁT

k ]T .

If the feature points are static in an inertial frame, the feature point
velocity in the image plane is given as a function of the camera velocity
vc (t) ∈ R

6 by the relationship

ṁ = Lvc (2)

where L (t) ∈ R
2k×6 is the image Jacobian. The image Jacobian for

the feature points is constructed by concatenating a set of k submatrices
Li (t) ∈ R

2×6 [6], with Li (t) given as

Li =

[ 1
Z i

0 xi
Z i

−xiyi 1 + xi −yi

0 1
Z i

y i
Z i

−1 − y2
i xi yi xi

]
(3)

where Zi is the depth of point i in Fc (t).

In the case that the feature points are not static in an inertial frame,
the time derivative of the feature points is given by

ṁ = Lvc + ε (4)

where ε(t) is a (generally unknown) vector that reflects the apparent
motion of the points in the image because of the 3-D motion of the
targets.

There are several reasonable assumptions that are required for the
following development.

Assumption 1: The system is initially well conditioned, such that ∀i,
Zi (0) > cz , where cz is some positive constant, and mi are within the
camera FOV.

Assumption 2: The velocity of all targets is bounded by a known
constant cp .

Assumption 3: The 3-D coordinates of all targets points remain finite.
Assumption 4: The distance between targets is bounded from below

by a known constant (i.e., the targets cannot intersect each other).
Assumption 5: The depth of all points Zi (t) is known.1

If Zi (0) > cz > 0, ∀i, then subsequent analysis will show that
Zi (t) > 0, ∀i, t (see Theorem 2). Given Zi (t) > 0, ∀i, t, and As-
sumptions 1 and 2, it can be shown that ε(t) is bounded such that
‖ε(t)‖ < cε ∀t, where cε ∈ R

+ is a known constant. L(t) ∈ L∞ if
xi (t), yi (t) ∈ L∞ ∀i, and Zi (t) > 0 ∀ i, t. Specifically, ‖L(t)‖ < cL ,
where cL ∈ R

+ is a known constant. Therefore, under Assumption 1,
L(0) is bounded. The subsequent development ensures that L(t) is
bounded for all t, i.e., ‖L(t)‖ < cL ∀t.

III. TASK FUNCTION-BASED CAMERA CONTROL

The control objective is to keep a set of feature points, which rep-
resent multiple moving targets, within the camera FOV. Motivated by
this objective, a set of task functions are defined by using image fea-
ture coordinates. By regulating the task functions, feature points can
be inhibited from leaving the FOV. To avoid competition between task
functions, task-priority kinematic control [7], [8] is used.

Let φ(t) ∈ R
l denote a task function of the feature point coordinates

mi (t), i ∈ {1 . . . k}, as

φ = f (m1 , . . . , mk )

with derivative

φ̇ =
k∑

i=1

∂f

∂mi

ṁi = J(m)ṁ (5)

where J(m) ∈ R
l×2k is the task Jacobian matrix. The task functions

that are developed subsequently are of dimension l ≤ 2.
The task is to drive the feature points along a desired velocity

ṁφ (t) ∈ R
2k such that φ(t) follows a desired trajectory φd (t). Given

the underdetermined structure of the Jacobian matrix, there are infinite
solutions to this problem. The typical solution is to use the Moore–
Penrose pseudoinverse [8] as

ṁφ = J † [φ̇d − γ(φ − φd )
]

= JT
(
JJT

)−1 [
φ̇d − γ(φ − φd )

]
(6)

1Sensitivity of visual servoing to depth estimation errors is a well-known
issue, but it is not the focus of this paper. See [20] and references therein
for discussion of estimating point depths in visual servoing. Stability proofs
will assume the ideal case that the image Jacobian is known, and experimental
results demonstrate the system performance when point depths are roughly
approximated based on target size in the image.
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where γ is a positive scalar gain constant, and J †(m) ∈ R
2k×l denotes

the right pseudoinverse of J(m). Based on (6), the camera velocity
vc (t) is designed as

vc = L+ ṁφ =
(
LT L

)−1
LT ṁφ (7)

where L+ (t) ∈ R
6×2k denotes the left pseudoinverse of L (t).2 In the

case of three feature points, L is square, and the general inverse L+ is
replaced with the inverse L−1 . The potential singularity of a square L
is a well-known problem, and a damped general inverse can be used to
maintain a smooth trajectory near a singularity [8], [21].

Task functions can be combined in numerous ways [8]. Consider two
tasks φa (t) and φb (t) with associated task Jacobian matrices Ja (ma )
and Jb (mb ) and resulting desired feature velocities ṁa (t) and ṁb (t)
. One method is to choose one task as primary, and project other tasks
into the nullspace of the primary task derivative [7], [8] as

vc = L+
(
J †

a φ̇a + (I − J †
a Ja )J †

b φ̇b

)
. (8)

The approach in (8) will prevent the velocity vectors from com-
peting and negating each other, as the primary task will always be
accomplished. Lower priority control tasks will be achieved if they do
not oppose higher priority tasks. Tertiary, quaternary, etc., tasks can be
prioritized by repeating this process and projecting each subsequent
task into the nullspace of the preceding task Jacobians.

IV. CONTROL DEVELOPMENT

Three task functions are used in this controller. Two task functions
are designed to regulate the mean and variance of the feature point
coordinates. Regulating the mean at the camera center inhibits the
feature points from leaving center of the FOV. Regulating the variance
will restrict the distance between the feature points and the mean and
work to keep feature points away from the edge of the FOV. A third
task function maximizes motion perceptibility.

If variance is successfully regulated to a suitably small goal value, a
subset of feature points can be guaranteed to stay in view. Given a scalar
p and a random variable x with mean x̄ and variance σ2

x , Chebyshev’s
inequality states [22]

P (|x − x̄| ≥ pσx ) ≤ 1
p2 .

This provides a bound on the number of elements in a sample that are
farther than a specified distance of the mean. Specifically, Chebyshev’s
inequality proves that at least 75% of all values are within two standard
deviations of the mean, and at least 89% of values are within three
standard deviations. Consider a camera with a 512 × 512 pixel FOV
and uniformly distributed feature points in the image. For arbitrary
distribution of feature points, regulating the variance to 862 will ensure
that at least 89% of all points are in the FOV.

A. Task Function for the Mean of the Image Points

Let φm (t) ∈ R
2 denote a task function that is defined as the sample

mean

φm =
1
k

k∑
i=1

mi = m̄.

2Note that J (m) is underdetermined (i.e., more columns than rows), and
L(m) is overdetermined (i.e., more rows than columns). Therefore, the Moore–
Penrose pseudoinverse is constructed differently for each matrix and care is
taken to denote them differently. Specifically, † denotes the right inverse used
for J (t), and + denotes the left inverse used for L (t) . During implementation,
the psuedoinverse for both overdetermined and underdetermined matrices can
be calculated numerically using singular value decomposition. This offers some
numerical benefits during operation.

The time derivative of φm (t) is given by

φ̇m =
1
k

k∑
i=1

∂φm

∂mi

ṁi = Jm ṁ

= Jm (Lvc + ε) (9)

where Jm (t) ∈ R2×2k is a task function Jacobian that is defined as

Jm =
1
k

[I2 , . . . , I2 ] (10)

where I2 is the 2 × 2 identity matrix and is repeated k times. It can be
determined that ‖Jm ‖2 = 1/

√
k.

Let φm d (t) denote a desired task function trajectory with a known
derivative φ̇m d (t). A robust feedback control can be used to generate a
feature point velocity that will track the desired value of φm d (t). This
feature point velocity is denoted as ṁm (t) ∈ R

2k , and is given by

ṁm = −J †
m

(
γm φ̃m − φ̇m d +

c2
ε

kκm

φ̃m

)
(11)

where φ̃m (t) = φm (t) − φm d (t), and γm , κm ∈ R
+ are constant

gains. The final term in (11) is a robust disturbance–rejection term,
which is designed based on the stability analysis in Section IV-E.

B. Task Function for the Variance of the Image Points

A task function φv (t) ∈ R
2 is given by the sample variance of the

feature points in the current image

φv =
1
k

k∑
i=1

[
(xi − x̄)2

(yi − ȳ)2

]

where x̄ (t) and ȳ (t) are the sample mean (in the current image) of the
x and y components of mi (t) , i ∈ {1 . . . k}.

The time derivative of φv (t) is given by

φ̇v = Jv ṁ = Jv (Lvc + ε) (12)

where L(t), vc (t), and ε(t) were given in (4), and Jv (t) ∈ R
2×2k is a

task function Jacobian that is given by

Jv =
2
k

[
x1 − x̄ 0

0 y1 − ȳ
,

x2 − x̄ 0
0 y2 − ȳ

, . . . ,

xk − x̄ 0

0 yk − ȳ

]
. (13)

The derivation of Jv can be seen in [3] and [4], and Jv is the same
as the Jacobian in [11] up to a constant scale factor. Jv is singular if
all image points are collinear. The developments of this paper assume
that Jv remains full rank. The subsequent stable controller will prevent
some collinear configurations of points, and the damped least-squares
general inverse can be used to avoid singularities as well [8], [21].

By the definition of sample mean, xi (t), yi (t) ∈ L∞ ∀i implies
x̄, ȳ ∈ L∞. From (13), Jv (t) ∈ L∞ iff xi (t), yi (t), x̄, ȳ ∈ L∞ ∀i.
The subsequent development ensures that if xi , and yi are in the im-
age at initial time 0, all terms xi , and yi are bounded (see Theorem
2). Therefore, ‖Jv ‖ ≤ cv , where cv is a known, constant bound that is
determined from the maximum image coordinates.

To regulate the variance to a desired trajectory φv d (t) with a known,
smooth derivative φ̇v d (t), the feature point velocity ṁv (t) ∈ R

2k can
be designed as

ṁv = −J †
v

(
γv φ̃v − φ̇v d +

c2
v c2

ε

κv

φ̃v

)
. (14)
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where φ̃v (t) = φv (t) − φv d (t), γv ∈ R
+ is a constant gain, and κv ∈

R
+ is a constant, robust, disturbance–rejection gain.
We show that the tasks of regulating mean and variance will not

interfere with each other, and ṁm + ṁv can be used in place of the
nullspace projection of (8). This result has potential impact on other
control routines that use mean and variance [11], [23].

Theorem 1: Given the Jacobian matrices Jm and Jv

Jm J †
v = Jv J †

m = 0.

Proof: The pseudoinverse J †
v (t) ∈ R

2k×2 is given in closed form as

J †
v =

k

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x 1 −x̄∑k

i=1 (xi −x̄ )2
0

0 y 1 −ȳ∑k

i=1 (y i −ȳ )2

...
...

xk −x̄∑k

i=1 (xi −x̄ )2
0

0 y k −ȳ∑k

i=1 (y i −ȳ )2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (15)

Using (10) and (15)

Jm J †
v =

1
2

⎡
⎢⎣

k x̄−k x̄∑k

i=1 (xi −x̄ )2
0

0 k ȳ−k ȳ∑k

i=1 (y i −ȳ )2

⎤
⎥⎦ =

[
0 0

0 0

]
.

It can similarly be shown that Jv J †
m = 0. �

Combining (8), (11), (14), and the result of Theorem 1, the resulting
feature point velocity for prioritizing the tasks is

ṁ = ṁm + (I − J †
m Jm )ṁv

= J †
m φ̇m + (I − J †

m Jm )J †
v φ̇v

= J †
m φ̇m + J †

v φv = ṁm + ṁv .

C. Task Function for Perceptibility of Image Points

Sharma and Hutchinson presented the concept of motion perceptibil-
ity in [13]. Related to the concept of manipulability [24], perceptibility
gives a measure of how well a camera can perceive the motion of
objects in the FOV. Roughly speaking, if perceptibility is high, small
object or camera velocities will result in notable feature velocities in
the image plane (e.g., high optical flow). This is especially important if
there are more than three feature points, as the available feature point
velocities are constrained because of an overdetermined image Jaco-
bian. Maintaining a high perceptibility helps to ensure a larger span of
available feature point velocity vectors.

Perceptibility is a scalar function of the image Jacobian L (t) that is
defined as

wv =
√

det(LT L) =
6∏

i=1

si

where si (t) ∈ R
+ are the nonzero singular values of L (t). Maximiza-

tion of wv (t) is accomplished by maximization of each si (t). The
matrix LT (t)L (t) ∈ R

6×6 is symmetric and positive definite (SPD).
Hardamard’s inequality states that the determinant of an SPD matrix
is less than or equal to the product of its diagonal elements [25]. Thus,
increasing the product of diagonals will increase the upper bound on
wv , potentially improving perceptibility.

The product of singular values of LT (t)L (t) is given by

p =

(
k∑

j=1

1/Z2
j

)2 ( k∑
j=1

(x2
j + y2

j )/Z2
j

)(
k∑

j=1

(x2
j + y2

j )/Z2
j

)

×

(
k∑

j=1

x2
j y

2
j + (y2

j + 1)2

)(
k∑

j=1

x2
j y

2
j + (x2

j + 1)2

)
.

(16)

Based on (16), increasing x2
i + y2

i will increase the perceptibility. A
task function for perceptibility is selected as

φp =
1∑k

i=1 (x2
i + y2

i )
.

Since it is desired to increase p(LT L), regulating φp (t) to 0 will
increase the trace. The time derivative of φp (t) is

φ̇p = −2φ2
p

k∑
i=1

[
xi yi

][ ẋi

ẏi

]

= Jp (m)ṁ = Jp (m) (Lvc + ε)

where Jp (m) ∈ R
1×2k is the task function Jacobian for perceptibility

and is undefined only for the nongeneral case that ∀i, mi = [0, 0]T .
To regulate φp (t) to 0, the feature point velocity ṁp (t) ∈ R

2k is
designed as

ṁp = −γp J †
p φp (17)

where γp is a positive scalar gain constant. A robust feedback term is not
used for perceptibility regulation. This is because of the fact that φp (t)
will be a low-priority task and, thus, blocked by higher priority tasks and
unlikely to ever become zero. The extra control effort and complexity
that result from a robust control term is not deemed essential.

D. Cascaded Camera Control Law

As shown in Theorem 1, regulating the mean and variance will not
conflict; therefore, they are chosen as the primary tasks to keep the
feature points centered in the FOV and to restrict the distance between
the feature points and the image center. High perceptibility will allow
these tasks to work more efficiently by ensuring that larger available
feature velocities are available. For this reason, increasing perceptibility
is chosen as the lower priority task, and it cannot interfere with the
regulation of mean or variance. The designed image feature velocities
that are given in (11), (14), and (17) are used in the nullspace projection
camera velocity (8) to yield the overall controller

vc = L+
(
ṁm + ṁv +

(
I − J †

m Jm

) (
I − J †

v Jv

)
ṁp

)

= L+
(
ṁm + ṁv +

(
I − J †

m Jm − J †
v Jv

)
ṁp

)
(18)

where the independence of ṁm and ṁv that is proved in Theorem 1
has been exploited.

In the subsequent stability analysis, if L(t), Jv (t) ∈ L∞ ∀t, the
controller will stabilize the mean and variance. This implies that
φm (t), φv (t) ∈ L∞, which implies xi (t), yi (t) ∈ L∞ ∀i. In practice,
xi (t), yi (t) ∈ L∞ ∀i does not imply that each feature remains in the
FOV. The tracking controller will inhibit features from leaving the
FOV, but a feature may escape. In these cases, there are several alter-
natives that preserve all boundedness properties. The lost feature can
be dropped from consideration, and all matrices and vectors are refor-
mulated from this time with one fewer feature point. Alternatively, the
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lost point can be kept constant at its last known value, which will cause
the tracker to attempt to bring it back in view. These two methods can
be merged by keeping the lost point at its last known value for a finite
time and then scaling the lost point with a time-varying, decreasing
gain, similar to the approach in [26].

E. Stability Analysis for Three or Fewer Points

If there are three or fewer feature points in view of the camera,
the camera velocities that are given in (11), (14), (17), and (18) will
regulate the mean and variance to within an arbitrarily small distance
from the desired values.

Theorem 2: Given k ≤ 3 feature points, if the matrix bounds ‖L‖ <
cL and ‖Jv ‖ < cv exist for known, positive scalars cL and cv , then
the feedback control law that is given by (11), (14), (17), and (18)
will ensure that the mean and variance tracking errors are uniformly
ultimately bounded such that

|φ̃m |, |φ̃v | ≤
√

β0e−γ t +
K

γ
(19)

where β0 is some positive, scalar constant, γ = min {γm , γv }, and K
is a scalar constant that can be made arbitrarily small.

Proof: For k = 3 points, L is the square and LL−1 = I . For k ≤ 2,
L is underdetermined; therefore, the left pseudoinverse is used, and
LL† = I . For all k, Jm J †

m = I . For k = 1, there is no variance, and
all variance terms can be dropped from the control. For k ≥ 2, Jv J †

v =
I . Combining (9), (11), (14), (17), and (18), and using the fact that
Jm J †

v = Jv J †
m = 0, the closed-loop time derivative of φm (t) is

φ̇m = Jm ṁ = Jm (Lvc + ε)

= −γm φ̃m + φ̇m d − c2
ε

kκm

φ̃m + Jm ε. (20)

Similarly, combining (11), (12), (14), (17), and (18), the closed-loop
time derivative of φv (t) can be found as

φ̇v = −γv φ̃v + φ̇v d − c2
v c2

ε

κv

φ̃v + Jv ε. (21)

Define a candidate Lyapunov function

V =
1
2

∥∥φ̃m

∥∥2
+

1
2

∥∥φ̃v

∥∥2
(22)

with time derivative

V̇ = φ̃T
m

˙̃
φm + φ̃T

v
˙̃
φv

= φ̃T
m

(
φ̇m − φ̇m d

)
+ φ̃T

v

(
φ̇v − φ̇v d

)
. (23)

The substitution of (20) and (21) gives

V̇ = φ̃T
m

(
−γm φ̃m − c2

ε

kκm

φ̃m + Jm ε

)

+ φ̃T
v

(
−γv φ̃v − c2

v c2
ε

κv

φ̃v + Jv ε

)

≤ −γm

∥∥φ̃m

∥∥2
+
∥∥φ̃m

∥∥ ‖Jm ‖ ‖ε‖ − c2
ε

kκm

∥∥φ̃m

∥∥2

− γv

∥∥φ̃v

∥∥2
+
∥∥φ̃v

∥∥ ‖Jv ‖ ‖ε‖ −
c2

v c2
ε

κm

∥∥φ̃v

∥∥2
. (24)

Completing the square on (24) and using the known bounds on ‖Jm ‖,
‖Jv ‖ and ε gives

V̇ ≤ −γm

∥∥φ̃m

∥∥2 − c2
ε

kκm

[(∥∥φ̃m

∥∥−
√

kκm

2cε

)2

− kκ2
m

4c2
ε

]

− γv

∥∥φ̃v

∥∥2 − c2
v c2

ε

κv

[(∥∥φ̃v

∥∥− κv

2cv cε

)2
− c2

v κv

4c2
ε

]

≤ −γv

∥∥φ̃v

∥∥2 − γm

∥∥φ̃m

∥∥2
+

κm + κv

4
. (25)

Therefore, using (22), (25) can be rewritten as

V̇ ≤ −2γV + K (26)

where K = (κm + κv )/4 can be made arbitrarily small by the choice
of the positive robust control terms κm and κv . The solution of the
differential inequality (26) can be found as

V ≤ e−2γ t V (0) +
K

2γ

(
1 − e−2γ t

)
. (27)

Defining Φ(t) =
[
φ̃m , φ̃v

]T
, (27) can be rewritten as

‖Φ‖ ≤
√

e−2γ t ‖Φ(0)‖2 +
K

2γ
(1 − e−2γ t ).

�
Note that cε and cv need to be known for the control law, but they do
not affect the ultimate bound of the error.

V. EXPERIMENTAL RESULTS

Experiments were performed to examine the performance of control-
ling mean and variance to track multiple moving targets. Perceptibility
was not included in these experiments. The experiments used a pioneer
3-DX mobile robot. As inputs, the robot has a single linear velocity
along the z-axis of Fc and a single angular velocity about the y-axis.
This is accommodated in the proposed controller by the usage of the
third and fifth columns of the image Jacobian L that is defined in (2).
A laptop with an Intel Core Duo 2.667 GHz processor performed all
image processing and high-level control calculations. The camera is a
Matrix Vision BlueFox, with a resolution of 1024 × 768 pixels. The
targets are two circuit boards with IR LEDs mounted on the surface.
One of the targets has five LEDs, and the other has three LEDs. The
centroid of each LED gives the feature point mi . This gives eight fea-
ture points to be kept in the FOV. The frame rate of the camera when
including all image processing is approximately 24 frames/s.

The targets were continuously moved in different directions around
the robot. The distance between the targets was varied, as was the
distance of the targets to the robot. The robot successfully keeps the
two targets in its FOV. Figs. 1 and 2 show the error signals and the
velocities over time. There is no convergence in the graphed signals
because the targets were in motion throughout experiment. However, it
is clear that the error and velocity signals are bounded for the duration
of the experiment. While the results shown are for 260 s, experiments
have been conducted for several minutes without the robot losing sight
of the targets.
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Fig. 1. Error in mean and variance for two moving targets.

Fig. 2. Linear and Angular velocity for two moving targets.

VI. CONCLUSION AND FUTURE WORK

This paper has introduced a novel method to track multiple objects
and keep them in the camera FOV. A set of underdetermined task func-
tions, which include the mean and variance of feature point coordinates,
are used to solve for a feature point velocity that will keep features in
the FOV. A third task function seeks to maximize motion perceptibility.
There is no specific goal image or goal pose, rather the underdetermined
nature of the task functions allows the camera to move as necessary to

regulate the task function and keep objects in the FOV. This objective
is in contrast with other visual servo controllers that require a specific
goal. Furthermore, to the authors’ knowledge, this is the first use of per-
ceptibility in the feedback loop of a controller. Simulations of several
object tracking tasks were performed to demonstrate this method.

There are several avenues of future work. There are numerous other
task functions that could be used. For instance, it may be desirable to
maintain a certain distance or orientation with respect to the tracked
objects. The motion of the targets can be estimated using a variety of
estimation or adaptive techniques, improving the performance of the
system.
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Photometric Visual Servoing

Christophe Collewet and Eric Marchand

Abstract—This paper proposes a new way to achieve robotic tasks by
two-dimensional (2-D) visual servoing. Indeed, instead of using classical
geometric features such as points, straight lines, pose, or a homography, as
is usually done, the luminance of all pixels in the image is considered here.
The main advantage of this new approach is that it requires no tracking
or matching process. The key point of our approach relies on the analytic
computation of the interaction matrix. This computation is based either
on a temporal luminance-constancy hypothesis or on a reflection model so
that complex illumination changes can be considered. Experimental results
on positioning and tracking tasks validate the proposed approach and
show its robustness to approximated depths, low-textured objects, partial
occlusions, and specular scenes. They also showed that luminance leads
to lower positioning errors than a classical visual servoing based on 2-D
geometric visual features.

Index Terms—Cost function, optimization, photometry, visual features,
visual servoing.
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I. INTRODUCTION

Visual servoing aims to control the motions of a robot by using data
provided by a vision sensor [1]. More precisely, to achieve a visual-
servoing task, a set of visual features has to be selected from the image
to allow to control of the desired degrees of freedom (DOFs). A control
law is then designed so that these visual features s reach desired values
s∗. The control principle is thus to regulate the error vector e=s−s∗ to
zero. To build the control law, the knowledge of the interaction matrix
Ls is usually required [1].

Visual features are always designed from visual measurements
m(pk ) (where pk is the camera pose at time k) that require a ro-
bust extraction, matching (between m(p0 ) and m(p∗), where p∗ is the
desired camera pose), and real-time spatiotemporal tracking [between
m(pk−1 ) and m(pk )]. However, this process is a complex task, as
evinced by the abundant literature on the subject (see [2] for a recent
survey), and is considered as one of the bottlenecks in the expansion
of visual servoing. Thus, several works focus on alleviation of this
problem. An interesting way to avoid any tracking process is to use
nongeometric visual measurements as in [3] and [4] instead of geo-
metric measurements, as is usually done. Of course, the direct use of
nongeometric visual features also avoids any tracking process. In that
case, parameters of a 2-D motion model have been used in [5]–[8].
Nevertheless, such approaches require a complex image processing
task.

In this paper, we show that this tracking process can be totally
removed and that no other information than the image intensity (the
pure luminance signal) needs to be considered to control the robot
motion. Indeed, to achieve this goal, we use as visual measurement
and as visual feature the simplest that can be considered: the image
intensity itself. We, therefore, call this new approach photometric visual
servoing. In that case, the visual feature vector s is nothing but the
image, while s∗ is the desired image.

The image intensity as a feature has been considered previously [9],
[10]. However, those works differ from our approach in two important
points. First, they do not directly use the image intensity since an
eigenspace decomposition is performed to reduce the dimensionality
of image data. The control is then performed in the eigenspace and not
directly based on the image intensity. Second, the interaction matrix
related to the eigenspace is not computed analytically but learned during
an off-line step. This learning process has two drawbacks: It has to be
done for each new object and requires the acquisition of many images
of the scene at various camera positions. We consider an analytical
interaction matrix that avoids these issues. An interesting approach,
which also directly considers the pixels intensity, has been recently
proposed in [11]. However, only the translations and the rotation around
the optical axis have been considered (that is the four most simple
DOFs), whereas in our work, the six DOFs are controlled. However, an
image processing step is still required. Our approach does not require
this step.

In this paper, we summarize several previous works. In [12], the
analytic computation of the interaction matrix related to the luminance
for a Lambertian scene is provided, and only positioning tasks have
been considered. In [13], this matrix has been computed considering a
lighting source mounted on the camera and the use of the Blinn–Phong
illumination model (a simplified version of the Phong model detailed
in the next section), and only tracking tasks have been considered.
In [14], the Phong model has been used, and only positioning tasks
have been considered. In addition, these works refer to [15], where
details concerning analytic computations are given. Note that in [16],
although this is also a direct visual-servoing approach, the considered
features used in the control law are very different. In this paper, we
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