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A Switched Systems Framework for Guaranteed
Convergence of Image-Based Observers With

Intermittent Measurements
Anup Parikh, Teng-Hu Cheng, Hsi-Yuan Chen, and Warren E. Dixon, Fellow, IEEE

Abstract—Switched systems theory is used to analyze the sta-
bility of image-based observers for three-dimensional localization
of objects in a scene in the presence of intermittent measurements
due to occlusions, feature tracking losses, or a limited camera field
of view, for example. Generally, observers or filters that are ex-
ponentially stable under persistent measurement availability may
have unbounded error growth under intermittent measurement
loss, even while providing seemingly accurate state estimates. By
constructing a framework that utilizes a state predictor during
periods when measurements are not available, a class of image-
based observers is shown to be exponentially convergent in the
presence of intermittent measurements if an average dwell time,
and a total unmeasurability time, condition is satisfied. The condi-
tions are developed in a general form, applicable to any observer
that is exponentially convergent assuming persistent visibility, and
utilizes object motion knowledge to reduce the amount of time mea-
surements must be available to maintain convergence guarantees.
Based on the stability results, simulations are provided to show
improved performance compared to a zero-order hold approach,
where state estimates are held constant when measurements are
not available. Experimental results are also included to verify the
theoretical results, to demonstrate applicability of the developed
observer and predictor design, and to compare against a typical
approach using an extended Kalman filter.

Index Terms—Computer vision, estimation, range sensing,
switched systems, visual tracking.

I. INTRODUCTION

ADVANCES across a spectrum of domains have led to
widespread use of imaging systems in robotics applica-

tions. Yet, several open problems remain that limit the robust-
ness or stability of imaging systems when used for navigation
and visual-servo control. Most of these challenges stem from the
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fact that full-state feedback of observed features is not available;
three-dimensional (3-D) coordinates are not available due to the
projection onto a 2-D image plane (i.e., range to the feature
is lost). One method to reconstruct the range information is to
use a single camera that acquires multiple overlapping images
that can be compared, where the motion of the camera (e.g., in
vehicular systems) provides sufficient parallax. This approach
is often called structure from motion (SfM).

Recursive techniques for solving the SfM problem have been
developed for real-time applications [1]–[7]. These methods for-
mulate a dynamic system to represent the relative motion of an
image feature with respect to the camera, and utilize state esti-
mators and observers to reconstruct the Euclidean coordinates of
a feature. Observer-based methods have also been applied to the
reverse problem of determining feature depth with a stationary
camera and known object motion [7]–[12]. In these cases, the
feature motion is expressed as an affine dynamical system with
partially unmeasurable states, expressed in coordinates relative
to the fixed camera. Observers have also been used to recover
the relative depth of a moving object from a moving camera with
known velocities [13], [14]. In each of these cases, continuous
visibility of the object, and hence continuous measurements, is
assumed.

A significant issue with using a camera for feedback is the
intermittent loss of object visibility [e.g., due to occlusions, fea-
ture tracking losses, limited camera field of view (FOV), etc.]
and the slow sampling rate (which can be modeled as a peri-
odic loss of object visibility). In this paper, switched systems
methods are used to develop an observer–predictor framework
and analyze the overall stability of the observer and predictor
in the presence of intermittent measurements. The framework is
developed in a general way, so that during periods where mea-
surements are available, any exponentially convergent observer
can be used to estimate the object position. During periods in
which measurements are not available, or in between frames
of a video stream, an object motion model is used to extrapo-
late the position of the object. However, the closed-loop error
dynamics during these periods are unstable, and although the
estimation error is exponentially stable during the periods in
which measurements are available, the estimates may still di-
verge in the limit if the object is intermittently unmeasurable.
By using switched systems theory, sufficient conditions on the
measurability time are developed to guarantee convergence at a
known rate. This approach provides a condition for trusting the
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state estimates from the observer and an updated performance
metric (via the error decay rate) based on the error growth
rate during the periods when measurements are unavailable.
These conditions could also be used to ease trajectory gener-
ation constraints. For example, traditional visual servoing re-
quires that the features remain in the camera FOV, which may
be difficult for a camera mounted on a nonholonomic vehicle.
By relaxing the requirement that the target remain in the FOV,
more efficient guidance laws may be designed.

Removing the continuous observation requirement has been
studied for problems where the objective is to track the 2-D
image coordinates of features that undergo temporary occlu-
sions. For example, Sznaier et al. [15], [16] describe methods
for learning a model of the feature motion, and using the model
to predict feature motion when it is occluded. In contrast to us-
ing dynamic models, the results in [17]–[19] use visual context
to increase the robustness of feature trackers to occlusions. All
of these methods aid in tracking the feature location on the im-
age plane (i.e., only the feature pixel coordinates are estimated),
and must be used in conjunction with SfM techniques to pro-
vide a continuous estimate of the 3-D object coordinates in the
presence of intermittent measurements, although there is still no
guarantee that the SfM algorithms will be stable when provided
intermittent measurements. In [20], an SfM technique that is
robust to occlusions or feature tracking losses is developed, but
only the shape of the object is recovered due to the orthogonal
projection model, and not the 3-D position of the object relative
to the camera. In contrast to such results, the object Euclidean
coordinates are directly estimated in this paper, and sufficient
conditions are provided to guarantee stability.

Many of the probabilistic approaches for SfM, or the broader
visual simultaneous localization and mapping problem that
solves the SfM problem during mapping, utilize a predictor
similar to that developed in this paper or circumvent the inter-
mittent sensing issue by only updating state estimates when new
measurements are available (see [21] and [22] for an overview).
However, these approaches are based on either linearizations
of the nonlinear dynamics (e.g., [23]–[28]), and therefore only
show local convergence, or are sample based (e.g., [29] and
[30]), and therefore can only show optimal estimation in the
limit as the number of samples approach infinity. Much of the
recent literature on target tracking has focused on using subop-
timal algorithms for tracking using simplified motion models
(e.g., constant velocity, constant turn rate, etc.), with a focus
on reduced complexity and improving practical performance,
and do not analyze estimation error growth due to model uncer-
tainty or show estimation error convergence [31], [32]. Some
methods explicitly handle occlusions, though they either as-
sume availability of range measurements that render the system
linear, e.g., [33]–[35], or only estimate relative depth ordering
and do not consider the range estimation problem, e.g., [36].
Conversely, the full nonlinear dynamics are analyzed in this pa-
per, resulting in an arbitrarily large region of attraction around
the zero estimation error trajectory, and the proposed observer–
predictor structure has computing requirements that can be met
by typical or low-end modern computers (e.g., see Section VII).
Convergence and consistency proofs of probabilistic estima-
tors typically require knowledge of the probability distribution

of the uncertainty in the system, and result in convergence in
mean or in mean square. In comparison, analysis of deter-
ministic observers typically assumes boundedness and some
level of smoothness of disturbances, and yields asymptotic or
exponential convergence. The primary contribution of this pa-
per is in the development and analysis of a framework to show
robustness to intermittent measurements when utilizing deter-
ministic, image-based observers.

Filters that are robust to missing measurements have been de-
veloped for control and fault detection (cf. [37]–[53]). In results,
such as [37], [40]–[44], [47]–[51], [53]–[64], measurement loss
is modeled as a random Bernoulli process with known probabil-
ity. As a result, filter stability can only be shown in the stochastic
sense, i.e., the expected value of the estimation error is shown
to asymptotically converge. In some cases (cf. [37], [43], [48],
[50], [54]–[59], [64]), measurement loss is imperceptible, and
measurements consisting of only noise are incorporated into the
state estimates. In this paper, no assumption is made on the na-
ture of switching; any switching sequence that meets an average
dwell time condition and a total unstable activation time condi-
tion is shown to yield a stable estimate. For many machine vision
applications, loss of feature tracking can be detected, and there-
fore we do not consider the case where erroneous measurements
are incorporated into the state estimates.

This paper contrasts with our previous results given in [65],
where it was shown that the simple approach of performing a
zero-order hold (ZOH) on the state estimate when measurements
are unavailable results in a stable estimator if dwell time condi-
tions are satisfied. In [65], no motion model is used during the
periods when measurements are not available, and therefore no
estimate of the object position is produced during those periods.
Moreover, only upper bounds on the object velocities are used to
bound the growth of the error during the periods when measure-
ments are unavailable, and therefore the position of the object is
bounded by a sphere that grows with time at a rate proportional
to the maximum object velocity. Consequently, the Lyapunov-
like function grows with a bound based on the trigonometric
tangent function, resulting in a stability condition on the maxi-
mum contiguous duration in which the object can remain hidden
from the camera. In contrast, the stability conditions presented
in this paper allow the object to remain hidden for arbitrarily
large amounts of time, and object position estimates can be
updated even when it is occluded, outside the camera FOV or
between video frames. However, object velocities, or a motion
model in the form of a feedback law, is required to achieve
these results. Simulation results provide a comparison between
the results in this paper and our result in [65]. The comparison
demonstrates the tradeoff between the amount of information
that is known about the target and the allowable flexibility in
observation of the target for successful tracking. This work also
adds value over our preliminary developments in [66]. Com-
pared to [66], the performance of the developed method is also
examined through simulations and experimental results. More-
over, this paper illustrates how a common observer design that
only estimates partial states can be extended to full-state esti-
mation and therefore can be used in the observer portion of the
observer–predictor framework. Furthermore, comparison of the
experimental results with the theoretically developed bounds as
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Fig. 1. Reference frames and coordinate systems of a moving camera observ-
ing a point on a moving target.

well as an implementation of the extended Kalman filter (EKF)
are provided.

II. KINEMATIC MOTION MODEL

In the following development, Fig. 1 is used to develop the
image kinematics, where FG denotes a fixed inertial refer-
ence frame with an arbitrarily selected origin and Euclidean
coordinate system, and FC denotes a reference frame fixed
to the camera. The right-handed coordinate system attached
to FC has its origin at the principle point of the camera,
e3 ∈ R3 axis pointing out and collinear with the optical axis
of the camera, e1 ∈ R3 axis aligned with the horizontal axis
of the camera, and e2 � e3 × e1 ∈ R3 . The vectors rq ∈ R3

and rc ∈ R3 represent the vectors from the origin of FG to a
point on the object of interest and the camera principle point,
respectively. The kinematics of the coordinates of the rela-
tive position vector expressed in the camera coordinate system,
rq/c � [X Y Z ]T ∈ R3 , are

ṙq/c = vq − vc − ω × rq/c (1)

where vq � [ vq1 vq2 vq3 ]T ∈ R3 is the inertial linear ve-
locity of the point on the object1 (henceforth denoted as the
object velocity), vc � [ vc1 vc2 vc3 ]T ∈ R3 is the inertial
linear velocity of the camera, and ω � [ω1 ω2 ω3 ]T ∈ R3

is the inertial angular velocity of the camera, all expressed in
the camera coordinate system.

To facilitate the subsequent analysis, the states of the sys-

tem are defined asx = [x1 , x2 , x3 ]
T =

[
X
Z , Y

Z , 1
Z

]T ∈ R3 . Tak-
ing the time derivative of the states, substituting in (1), and
simplifying yields the perspective state dynamics of the form
ẋ = g (t,x), where g (t,x) : [0,∞) × R3 → R3 is a function
that nonlinearly depends on the partially measurable states,
which can be expressed as

ẋ1 = Ω1 + ξ1 + vq1x3 − x1vq3x3 ,

ẋ2 = Ω2 + ξ2 + vq2x3 − x2vq3x3 ,

ẋ3 = vc3x
2
3 − (ω2x1 − ω1x2) x3 − vq3x

2
3 (2)

1This development can be extended to the case of multiple points on a single
object to determine the six degree-of-freedom (DOF) position and orientation
of the object rather than only the 3DOF position. In this case, the velocity of
any point on the object can be determined from the linear and angular velocities
of the object.

where Ω1 , Ω2 , ξ1 , ξ2 : [0,∞) × R3 → R are defined as

Ω1 (t,x) = ω3x2 − ω2 − ω2x
2
1 + ω1x1x2 ,

Ω2 (t,x) = ω1 − ω3x1 − ω2x1x2 + ω1x
2
2 ,

ξ1 (t,x) = (vc3x1 − vc1) x3 ,

ξ2 (t,x) = (vc3x2 − vc2) x3 . (3)

See [67] for the explicit development of (2).
Assumption 1: The state x is bounded, i.e., x ∈ X , where

X ⊂ R3 is a convex, compact set.
Remark 1: For the state estimates to converge to the states

while remaining bounded, the states themselves must remain
bounded. During periods in which the object is visible, bounds
on the states are a result of the physical constraints on the imag-
ing system. For image formation, the object must remain in front
of the camera principle point by an arbitrarily small amount,
ε ∈ R. This provides an arbitrarily small lower bound on Z and
therefore an arbitrarily large upper bound on x3 . Also, bounded-
ness of the pixel coordinates of the object and boundedness of the
camera intrinsic parameter matrix (see the imaging model in the
next section) result in boundedness of x1 and x2 . During the peri-
ods in which measurements are unavailable, these physical con-
straints no longer apply. However, Assumption 1 requires that
the object does not exhibit finite escape, even during the periods
when the object is not visible to the camera. This restricts the rel-
ative motion of the object with respect to the camera; the object
cannot move behind the camera, even during the periods when
the object is not visible, else the state x3 will pass through ∞.

Assumption 2: The motion of the camera is measurable and
bounded, in the sense that vc1 , vc2 , vc3 , ω1 , ω2 , and ω3 are
measurable and bounded.

Assumption 3: A motion model of the moving object is
known and bounded, in the sense that either the object ve-
locity, vq � [vq1 vq2 vq3 ]T ∈ R3 , is known and bounded or
the object velocities are given by vq = φ (x), where the known,
continuous function φ : R3 → R3 is locally Lipschitz on X .

An analytical expression for object velocities as a function of
time is not required to generate the necessary signals vq1 , vq2 ,
and vq3 . For example, a feedback law in the form of

ṙq = φG (rq ) (4)

is sufficient to generate vq , where φG : R3 → R3 is Lipschitz
and rq is expressed in the coordinate system attached to the
inertial frame FG . However, in this case, the position and ori-
entation of the camera is required to transform state estimates
in the camera frame to position estimates in the ground frame.
From (4), the signal vq is given by

vq = [φ1 (x) , φ2 (x) , φ3 (x)]T � RT φG

(
Rrq/c + rc

)
(5)

where φ1 , φ2 , φ3 : R3 → R, rc is expressed in the coordinate
system attached to the inertial frame FG , R ∈ SO (3) denotes
the orientation of the camera in the sense that premultiplying by
R rotates a vector expressed in the camera coordinate system to
a vector expressed in the ground coordinate system, and rq/c is
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related to the states by

rq/c =
[ x1

x3

x2
x3

1
x3

]T
.

Substituting (5) into (2) yields a new expression for g (t,x)
given by

ẋ1 = Ω1 + ξ1 + φ1 (x) x3 − x1φ3 (x) x3 ,

ẋ2 = Ω2 + ξ2 + φ2 (x) x3 − x2φ3 (x) x3 ,

ẋ3 = vc3x
2
3 − (x1ω2 − x2ω1) x3 − φ3 (x)x2

3 . (6)

Although the object motion model, φ � [φ1 (x) ,
φ2 (x) , φ3 (x)]T , is assumed to be known, the states are
unknown and therefore the estimated object velocity, v̂q ∈ R3

is given by

v̂q = φ (x̂) .

A wide variety of object motions can be described by a feed-
back law in the form of (5). For example, consider the scenario
of a vehicle moving with a known constant nominal speed. In
this case, the velocity of the vehicle v̂q is determined based on
the location of the vehicle (e.g., based on whether the vehicle is
traveling on an East/West road or North/South road, and which
side of the road the vehicle is on). The state estimates can also be
used to determine if the vehicle is at an intersection, and v̂q can
be adjusted based on that information. A model of the form in
(4) can also be generated in cases where the object is undergoing
projectile or orbital motion. In these cases, the object velocity
is a function of the object position. Similarly, in eye-to-hand
image-based visual servoing, a control law of the form in (4) is
designed, and therefore known.

In applications where the object and camera are cooperative,
the object can directly communicate its velocities to the camera.
This is a common scenario in GPS-denied environments, where
the object of interest might be a ground vehicle, which is being
observed by a high altitude aerial vehicle with an active GPS
signal [68], [69], or when multiple cooperative agents are each
observing each other to reduce the overall position uncertainty
growth rate [70]–[73]. Once the relative position vector is es-
timated, the geographic coordinates of the ground vehicle can
be determined and continuously estimated even if the camera
intermittently loses line of sight.

III. IMAGING MODEL

Using projective geometry, the image coordinates of the fea-
ture point, p = [u v 1 ]T ∈ R3 , where u, v ∈ R, are related
to the normalized Euclidean coordinates, m � [ X

Z
Y
Z 1 ]T ∈

R3 , by

p = Am

where A∈ R3×3 is the invertible camera intrinsic parameter
matrix [74]. Since A is invertible, the states x1 and x2 are
measurable when the object is visible to the camera.

Remark 2: As explained in the remark proceeding Assump-
tion 1, this planar projection model requires the object to remain
in front of the camera. One method for circumventing this lim-
itation is to recast the system in terms of spherical coordinates

(see [74, Chapter 3] or [75, Chapter 11]), which only has a sin-
gularity at the origin rather than the entire Z = 0 plane. This
model would result in different dynamics than the system pre-
sented in (2). In an effort to broaden the applicability of the
results presented in this paper, a planar projection model is con-
sidered to match the dynamics utilized in much of the observer
literature (see Assumption 6).

Assumption 4: The camera intrinsic parameter matrix A is
known.

Remark 3: The intrinsic parameters can be determined
through a calibration procedure [74].

Assumption 5: The object is uniquely identifiable from im-
age projections.

Remark 4: Algorithms such as the Kanade–Lucas–Tomasi
[76] feature tracker have been developed to track image fea-
tures in consecutive frames of a video stream, however these
may not be sufficient for object tracking if the object temporar-
ily leaves the FOV or becomes occluded; these feature trackers
typically do not differentiate between new features and features
that have been tracked previously and therefore cannot track an
object continuously through intermittent measurements, where
continuity or small deviation assumptions may not hold. Other
feature descriptors, such as SIFT [77] and SURF [78], have been
used to match objects across affine transformations, and there-
fore may be more robust to temporary loss of sight. Recently,
machine learning techniques have been used to recognize and
localize objects in images [79], [80]. A combination of these
techniques can be used to track a feature through multiple pe-
riods of intermittent visibility. See [81] and [82] for a survey
on feature trackers and [79] for examples and performance of
modern object localization algorithms.

IV. STRUCTURE ESTIMATION OBJECTIVE

To quantify the structure estimation objective, let the state
estimation error e ∈ R3 be defined as

e = x − x̂ (7)

where x̂ ∈ R3 denotes the continuous state estimate. Consider
the family of systems

ė = fp (t,x, x̂) (8)

where fp : [0,∞) × R3 × R3 → R3 , p ∈ {s, u}, s is an index
referring to the system when measurements are available, and
u is an index referring to the system when measurements are
unavailable. When the object is in view, the states x1 and x2 are
measurable, and the error dynamics are given by

fs = g (t,x) − ˙̂x (9)

where the state estimate dynamics ˙̂x are governed by an observer
and g (t,x) was introduced prior to (2). When the object is
outside the camera FOV, the state estimates are updated using the
object motion model described in Assumption 3 and a predictor
of the form

˙̂x = proj (g (t, x̂)) (10)

resulting in the error dynamics

fu = g (t,x) − proj (g (t, x̂)) (11)
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where proj (·) is a smooth projection operator (see [83,
Appendix E], [84, Remark 3.7]) with bounds based on the state
bounds of Assumption 1 and the velocity bounds in Assump-
tions 2 and 3. Since g (t,x) is continuously differentiable with
respect to x on the compact set X , the mean value theorem can
be invoked to bound the error dynamics during the periods when
measurements are unavailable as

‖fu‖ ≤ K ‖e‖ (12)

where K ∈ R is a bounded constant.
Assumption 6: An observer for the state x is used so that

when the states x1 and x2 are measurable, the state estimation
error is globally exponentially convergent at a rate of λon ∈ R>0 ,
i.e., ‖e (t)‖ ≤ C ‖e (t0)‖ exp [−λon (t − t0)] for any initial con-
dition e (t0), with t0 ∈ R≥0 and some positive constant C ∈ R.

Remark 5: Exponentially convergent observers for image-
based structure estimation that satisfy Assumption 6 are avail-
able from results such as [6], [9], [10], [85]–[87]. Many of these
results utilize a persistence of excitation condition as well as
gain conditions to yield exponential convergence. Any condi-
tions required by the observer are also inherited here. Also, in
some cases (e.g., [6]), only the unmeasurable state, x3 (t), is
estimated. In these cases, the observer can be augmented as ex-
emplified in the Appendix to maintain continuity of the state
estimates as is required in the following stability analysis (i.e.,
to guarantee the system is a switched system as opposed to a hy-
brid system with discontinuous states). Although directly using
the states x1 and x2 when they are measurable may yield faster
estimation (in the sense that the first two elements of e would
be identically zero whenever measurements are available), the
gains in the augmentation can be made arbitrarily large to yield
an arbitrarily close approximation to direct use of the states x1
and x2 without violating continuity assumptions.

V. STABILITY ANALYSIS

To facilitate the following development, let Tu (t, τ) denote
the total time the subsystem u is active in the time interval [τ, t),
where 0 ≤ τ ≤ t. Also, let Nσ (t, τ) ∈ N denote the number
of switches of the switching signal σ : [0,∞) → {s, u} during
the time interval (τ, t). Then, using the definition from [88], the
switching signal σ is said to have an average dwell time τa if
there exists constants N0 , τa ∈ R>0 such that

Nσ (t, τ) ≤ N0 +
t − τ

τa
, ∀t ≥ τ ≥ 0.

Finally, let P be an index set with partition {Ps ,Pu} for the
family of systems

η̇ = φp (η, t) , ∀p ∈ P (13)

where η ∈ Rn , t ∈ [0,∞), and φp : Rn → Rn .
Based on Assumption 6, the state estimate errors will con-

verge to zero when measurements are available. Similarly, when
measurements are unavailable, the growth of the estimation er-
rors are bounded by an exponential based on (8) and (12). Hence,
a quadratic Lyapunov-like function is expected to evolve sim-
ilar to Fig. 2 across multiple instances of losing and regaining
measurement availability. The goal is to show that, despite inter-
mittent growth in the Lyapunov-like function, the overall trend

Fig. 2. Evolution of a Lyapunov-like function across multiple periods of losing
and regaining visibility of the object.

is convergence to zero, and therefore convergence of the estima-
tion errors. Lemma 1 shows that for a set of exponentially stable
and exponentially unstable Lyapunov-like functions, the overall
trend is convergence to zero if more time is spent in stable sys-
tems (proportional to the decay and growth rates of the stable
and unstable systems, respectively) and if switching between
systems does not occur too often, on average. Using this result,
Theorem 1 indicates that the vision-based estimation approach
developed in this paper is exponentially stable by developing
Lyapunov-like functions that satisfy the hypotheses of Lemma 1.

Lemma 1: Consider the family of systems in (13). Suppose
there exists continuously differentiable functions Vp : Rn ×
[0,∞) → R, strictly positive constants c1 , c2 , λs , λu ∈ R>0 ,
and constant μ ∈ R greater than 1, such that

c1 ‖η‖2 ≤ Vp (η, t) ≤ c2 ‖η‖2

∂Vp

∂t
+

∂Vp

∂η
φp (η, t) ≤ −λsVp (η, t) , ∀p ∈ Ps

∂Vp

∂t
+

∂Vp

∂η
φp (η, t) ≤ λuVp (η, t) , ∀p ∈ Pu

Vp ≤ μVq , ∀p, q ∈ P.

If there exists positive constants ρ, T0 ∈ R≥0 , such that

ρ <
λs

λs + λu

T u (t, τ) ≤ T0 + ρ (t − τ) , ∀t ≥ τ ≥ 0

and if σ : [0,∞) → P is a piecewise constant, right continuous
switching signal with average dwell time

τa >
ln μ

λs (1 − ρ) − λuρ

then the switched system

η̇ = φσ (η, t)

is globally exponentially stable.
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Proof: Lemma 1 is an extension to Theorem 2 in [89] for
nonautonomous systems with nonautonomous functions Vp . The
majority of the proof is omitted since it is identical to the proof
of Lemma 1 in [89]. However, in this case, the functions α1 ,
α2 ∈ K∞ are quadratic and the trajectory of the switched system
can be reduced to

‖η‖ ≤
[
c2

c1
μN0 exp ((λs + λu ) T0)

]
‖η (0)‖ exp (−λ (t − t0))

where λ � 1
2 (λs − (λs + λu )ρ − ln μ

τa
) ∈ (0, (1 − ρ)λs + ρλu )

⊂ R>0 . �
Theorem 1: The switched system

ė = fσ (t,x, x̂)

generated by the family of systems described by (8)–(11)
and piecewise constant, right continuous switching signal σ :
[0,∞) → {s, u} is globally exponentially stable provided that
the switching signal σ satisfies the total unstable activation time
condition

Tu (t, τ) ≤ T0 + ρ (t − τ) , ∀t ≥ τ ≥ 0 (14)

and average dwell time condition

τa >
ln μ

λs (1 − ρ) − λuρ
, (15)

where T0 ∈ R is an arbitrary positive constant and ρ, λs , λu ,
μ ∈ R are known positive constants that satisfy μ ≥ 1 and ρ <

λs

λs +λu
.

Proof: Via converse Lyapunov theorems [90, Theorem 4.14],
the existence of an exponential state tracking observer from
Assumption 6 implies the existence of a Lyapunov function
Vs : [0,∞) × R3 → R that is norm bounded (i.e., c1 ‖e‖2 ≤
Vs (t, e) ≤ c2 ‖e‖2 for some c1 , c2 ∈ R>0) and exponentially
decaying (i.e., V̇s ≤ −λsVs for some λs ∈ R>0), during the
periods in which measurements are available. Consider a con-
tinuously differentiable, Lyapunov-like function defined as
Vu (e) � c5 ‖e‖2 , where c5 ∈ R is bounded by c1 ≤ c5 ≤ c2 .
Using (12), the growth of Vu during the periods in which the
object is outside the camera FOV can be bounded as

V̇u ≤ 2c5K ‖e‖2 ≤ λuVu ,

where λu � 2K. From the definition of Vu and the norm bounds
on Vs

Vp ≤ μVq , ∀p, q ∈ {s, u} , (16)

where μ � c2
c1

. Using Lemma 1, the system is globally expo-
nentially stable for any switching signal that satisfies (14) and
(15) with trajectory

‖e‖ ≤ ‖e (t0)‖C exp (−λ (t − t0)) ,

decay rate λ � 1
2 (λs − (λs + λu )ρ − ln μ

τa
) ∈ (0, (1 − ρ)λs +

ρλu ) ⊂ R>0 and positive constant C � c2
c1

μN0 exp((λs +
λu )T0) ∈ R>0 . �

Remark 6: In application, the constraint on the unstable ac-
tivation time (i.e., (14)) is trivially satisfied. An arbitrarily large
amount of time can be spent in the unstable system (i.e., mea-
surements are unavailable), and T0 can be increased to com-
pensate. This condition is only relevant in the limit as t → ∞,

where, on average, more time needs to be spent in the stable
system (i.e., measurements are available) based on the relative
convergence and divergence rates of the two systems. How-
ever, by increasing T0 to satisfy stability conditions for large
unstable activation times Tu (t, τ), the bounding envelope on
the estimation error increases exponentially. This highlights the
importance of increasing the duration in which the object is
visible, even in the short term.

Remark 7: The average dwell time, τa , and the total
allowable invisibility time in (14), are functions of the error
decay and growth rates of the observer and predictor. As the
observer convergence rate increases or the predictor divergence
rate decreases, the upper bound on the allowable ρ increases,
increasing the total allowable time duration in which the object
can remain outside of the camera FOV. In addition, increasing ρ
decreases the lower bound on the allowable average dwell time,
enabling the use of a larger set of switching signals. However,
increasing ρ decreases the convergence rate of the switched
system; by allowing longer durations in which measurements
are unavailable (from (14)), the error of the switched system
is slower to converge. Conversely, as ρ → 0, the allowable
amount of time without measurements decreases and the
convergence rate of the switched system increases. The limiting
case where ρ = 0 denotes the case when measurements are
available for all time after a finite number of switches. Finally,
switching signals with larger average dwell times also increase
the switched system convergence rate since the jumps in the
Lyapunov-like functions occur less frequently.

Remark 8: The average dwell time conditions in Lemma 1
and Theorem 1 come as a result of the possibility that the
Lyapunov-like functions for each subsystem may differ, even
though they all satisfy a common quadratic bound. However, in
some cases (e.g., [6], [10]), the constants c1 and c2 are equal,
and c5 can be chosen as c5 = c1 = c2 . Therefore, μ = 1 and
the average dwell time condition reduces to the trivial condition
τa > 0.

VI. SIMULATION

Simulations were performed using MATLAB to verify the
robustness to measurement loss of the proposed observer and
predictor estimation scheme. The observer in [85] was used to
satisfy Assumption 6 and estimate the states when measure-
ments were available, while the predictor in (10) was used when
measurements were unavailable. Camera and object velocities,
vc(t) = [2 1 0.5 cos(t/2)]T m/s, ω(t) = [0 0 1]T rad/s,
and vq (t) = [0.5 0 0]T m/s and observer matrices

A =

⎡

⎢
⎣

0 −1 2

1 0 1

0 0 0

⎤

⎥
⎦ , C =

[
1 0 0

0 1 0

]

, D =

⎡

⎣
1
0
0

⎤

⎦ ,

K =

⎡

⎢
⎣

0.8278 0

0 0.8278

−1.5374 0

⎤

⎥
⎦ , Y =

⎡

⎢
⎣

0 0

0 −1

0 −1.5374

⎤

⎥
⎦

were set to match the simulation parameters in [85]. The switch-
ing signal σ was generated with randomly selected dwell times.
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Fig. 3. True and estimated states, utilizing a predictor to evolve the state
estimates when measurements are unavailable. Vertical lines represent switching
times, e.g., the first vertical line represents the time when the object is no longer
visible, and the predictor is started with the last state estimate from the estimator,
the second vertical line represents the time when the object is in view again and
the estimator is restarted with the state estimate from the predictor, etc.

The dwell times were selected from a uniform random distribu-
tion between 0 and 5 s, and 0 and 2 s for the s and u subsystems,
respectively. Simulation results are shown in Fig. 3 with the
switching times shown as vertical lines where the first vertical
line represents the time when the object is no longer visible
(i.e., the predictor is started with the last state estimate from the
estimator), and the next vertical line represents the time when
the object is in view again and the estimator is restarted with the
state estimate from the predictor, etc.

The exponential trajectories for both subsystems developed in
the analysis are reflected in the simulation results. For example,
the divergence of the predictor lessens as x̂ approaches x. This
is expected, since exponential solutions are dependent on the
initial condition, and as the estimator converges, the initial error
at every predictor activation approaches zero.

An ad hoc approach for state estimation while undergoing in-
termittent measurements would be to implement a ZOH during
periods in which measurements are unavailable. A simulation
using ZOH was also performed, where ˙̂x was defined by the
observer in [85] during the periods when measurements were
available, and state estimates were not updated (i.e., ˙̂x = 0)
during the periods in which measurements were unavailable,
with the last estimate being used to reinitialize the observer
when measurements became available. As shown in Fig. 4, us-
ing the same switching signal as in the previous simulation,
the performance greatly degrades, with no indication of conver-
gence. Comparing the results from Figs. 3 and 4 indicate that
the predictor not only provides accurate state estimates when
measurements are unavailable, but also aids in observer con-
vergence when measurements are available by reinitializing the

Fig. 4. True and estimated states without a predictor. State estimates are held
constant until measurements are available. Vertical lines represent switching
times.

observer with a more accurate initial state estimate. On the other
hand, using a ZOH, the initial error at every time at which the
observer is activated is larger (since the error grows at a tangen-
tial rate [65] instead of an exponential rate), and therefore the
estimator requires more time to converge. This demonstrates
the tradeoff mentioned in the introduction; by utilizing more
information (i.e., velocity information of the object when not in
view), a predictor can be utilized to relax dwell time conditions
and ensure estimator convergence in the presence of a wider
class of switching signals. However, if velocity information is
not available, the more stringent conditions described in [65]
must be satisfied to ensure convergence.

VII. EXPERIMENTS

Experiments were also performed to verify the theoretical
results. The overall goal of the experiment was to represent
the scenario of tracking the Euclidean position of a coopera-
tive mobile vehicle in a GPS-denied environment via a camera.
Specifically, the objective was to demonstrate the convergence
of the relative position estimation errors when the estimator and
predictor structure described in Section IV is implemented. An
IDS UI-1580SE camera with 2-pixel binning enabled and a lens
with a 90° FOV was used to capture 1280 × 960 pixel resolu-
tion images at a rate of approximately 15 frames per second. A
Clearpath Robotics TurtleBot 2 with a Kobuki base was utilized
as a GPS-denied mobile vehicle simulant. An augmented ver-
sion of the observer in [6] provided range estimates while the
mobile robot was visible (details are given in the Appendix). A
fiducial marker with a corresponding tracking software library
(see [91] and [92]) was used to repeatably track the image fea-
ture pixel coordinates and 3-D orientation of the mobile robot
while it was in view. Although the library is capable of utilizing
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marker scale information to reconstruct the fully scaled rela-
tive Euclidean position between the camera and the marker, the
scale information was not necessary for implementation, and
was not used in the experiment. The optic flow signals (i.e.,
derivatives of the measurable states) required for the observer
were approximated via finite difference.

A NaturalPoint, Inc. OptiTrack motion capture system was
used to record the ground truth pose of the camera and target at a
rate of 360 Hz. The pose provided by the motion capture system
was also used to estimate the linear and angular velocities of
the camera necessary for the range observer, where the current
camera velocity estimates were taken to be the slope of the lin-
ear regression of the 20 most recent pose data points. The wheel
encoders and gyroscope onboard the mobile robot provided es-
timates of the linear and angular velocity of the mobile robot,
expressed in the robot body coordinate system, which were
communicated to the range observer. When the robot was in the
camera FOV, the fiducial marker tracking algorithm orientation
estimate was used to rotate the linear and angular velocities of
the robot into the camera frame. When the robot was outside
the camera FOV, the relative orientation between the camera
and robot was estimated via dead-reckoning with the onboard
gyroscope.

Two experiments were performed. In the first experiment, the
camera was mounted on a stationary tripod, while the mobile
robot was driven via remote control in an arbitrary motion,
including leaving and entering the camera FOV. In the second
experiment, the camera was moved by hand in an arbitrary
motion, while the TurtleBot was sent constant forward velocity
and angular turn rate commands, resulting in an approximately
circular path. In this experiment, the intermittent measurements
were caused by both the TurtleBot leaving the camera FOV, and
an object placed directly in front of the camera lens, completely
occluding the scene. The supplementary video accompanying
this paper gives a representative sample of the motion of the
mobile robot and the camera during both these experiments,
and is available for download at http://ieeexplore.ieee.org. The
resulting evolution of the state estimates and the reconstructed
Euclidean coordinates of the target are shown in Figs. 5 and
6 for the first experiment, and Figs. 8 and 9 for the second
experiment. In both cases, the estimates track the true values
despite the intermittent visibility of the mobile robot.

Comparing the two experiments, the predictor appears to per-
form better in the case of a static camera. This reflects the
prediction error growth rate bounds developed in the theoreti-
cal analysis; the growth rate is based on the camera and target
velocity, and therefore is larger when both are moving. The es-
timator also appears to perform better in the case of a static
camera. This is due to camera rotation about the X- or Y -axes
resulting in large changes in x; the pixel coordinates of a distant
object move slowly when the camera is purely translating, but
move quickly when the camera rotates. Therefore, any error or
delay in the angular velocity signal has a much larger effect on
performance, and in the moving camera experiment, the numer-
ical method used to estimate the camera angular velocity results
in more error (due to suppression of high-frequency compo-
nents) and delay (due to using “old” data) compared to the static

Fig. 5. State estimates from the experiment with a static camera. Vertical
black lines denote switches.

Fig. 6. Reconstructed Euclidean coordinates of the target from the experiment
with a static camera. Vertical black lines denote switches.

camera case, where the angular velocity estimate error is purely
noise.

As can be seen in Figs. 7 and 10, during periods when the
object is not visible, the estimation error grows since there is
no feedback from image measurements. However, exponential
error growth would manifest as lines with constant positive
slope on the log scale plots, whereas in the results, the errors
increase and then decrease, indicating that the estimation error
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Fig. 7. State estimation errors from the experiment with a static camera.
Vertical black lines denote switches.

Fig. 8. State estimates from the experiment with a moving camera. Vertical
black lines denote switches.

growth bounds used in the stability analysis in Section V are
conservative.

To analyze the growth of the estimation error during peri-
ods when measurements are unavailable, the mean value the-
orem was used to develop a linear bound on fu , as shown in
(12). However, based on the quadratic terms in (2), the bound-
ing constant K may need to be extremely large to bound fu

throughout the bounded set X . Since only bounds on the states
and velocities are available, the calculated value of K may also

Fig. 9. Reconstructed Euclidean coordinates of the target from the experiment
with a moving camera. Vertical black lines denote switches.

Fig. 10. State estimation errors from the experiment with a moving camera.
Vertical black lines denote switches.

be larger than the smallest constant that bounds fu during a
specific application. To investigate the conservativeness of K,
and therefore the conservativeness of the exponential bound de-
veloped in Theorem 1, Figs. 11 and 12 show the error and its
corresponding time derivative during each experiment, as well
as the linear best fit line, minimum bounding line, and bounding
line calculated based on the known quantities in Assumptions 1
and 2. For the experiment with a static camera, the best fit
line (blue) had a slope of 0.1862, the minimum bound (green)
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Fig. 11. Error growth magnitude as a function of the magnitude of the error,
and corresponding bounds, for the experiment with a static camera.

Fig. 12. Error growth magnitude as a function of the magnitude of the error,
and corresponding bounds, for the experiment with a moving camera.

had a slope of 0.5098, and the calculated K (red) was 8.987.
For the experiment with the moving camera, these values were
0.7337, 2.357, and 22.54, respectively. In both cases, the calcu-
lated bounds were an order of magnitude greater than the ideal
bound; however, this is expected due to the conservative nature
of Lyapunov analysis.

An additional experiment was performed using a motion
model of the target (as described in Assumption 3 and the pro-
ceeding explanation) rather than directly communicated veloc-
ities. In this experiment, the camera was kept stationary, and

Fig. 13. During one experiment, the target was commanded to follow this
vector field.

a velocity field of the form shown in Fig. 13 was prescribed
in the world coordinate system, and a low-level controller was
implemented to have the mobile robot follow the velocity field,
though it should be noted that the robot did not follow the ve-
locity field exactly due to the nonholonomic constraints of the
robot and limits on the wheel velocity. The velocity field was
rotated into the camera coordinate system and used as a veloc-
ity estimate of the robot in the predictor. For simplicity, camera
feedback was artificially blocked at set intervals. The results of
this experiment are shown in Figs. 14–16. Despite the actual
target velocities being unknown, the state estimates generated
by the observer/predictor framework successfully track the true
states, with steady-state performance similar to that of the first
two experiments, as shown in Fig. 16, and as compared to Figs. 7
and 10.

In the error plots of the preceding experiments (Figs. 7, 10,
and 16), the estimation error appears to discretely change during
switches. This is due to how feature tracking loss was detected:
if new feature tracking data are not available for 0.2 s, the pre-
dictor is activated. This delay causes a slight discontinuity in
the estimation error, which is exacerbated by the log scale on
the error plots. The discontinuities seem largest when the esti-
mates are within the noise floor of the system, i.e., in Fig. 16,
compare the first set of switches during 0–10 s to the remaining
switches. This also explains why the predictor appears to out-
perform the estimator in rare instances; if the target, by chance,
happens to move toward the estimate during this delay period,
the predictor will be initialized with a better estimate, and the
exponential bound developed in the analysis, combined with
the faster loop times due to only needing velocity information
which was available at 360 Hz, dictates better prediction.

Finally, an EKF was implemented as an example of a typi-
cal probabilistic approach, where the robustness to intermittent
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Fig. 14. State estimates from the experiment where the target followed a
known vector field. Vertical black lines denote switches.

Fig. 15. Reconstructed Euclidean coordinates of the target from the experi-
ment where the target followed a known vector field. Vertical black lines denote
switches.

measurements is inherent to the predictor–corrector structure
of these types of approaches. For this implementation, the co-
variance matrices were set based on an estimated 1 pixel un-
certainty in the measurements, and 0.1 m/s uncertainty in the
velocity information used in the dynamic model. These values
were selected based on the uncertainty of the feature tracking
as well as the uncertainty in the inputs to the process (the dy-
namic model is a purely kinematic model with no uncertain
parameters, hence, the only uncertainty in the process comes

Fig. 16. State estimation errors from the experiment where the target followed
a known vector field. Vertical black lines denote switches.

Fig. 17. State estimates from the experiment where the target followed a
known vector field. Vertical black lines denote switches.

from the uncertain inputs, i.e., the measured velocities, which
were estimated as described previously). The results of this ex-
periment are shown in Figs. 17–19, where it is apparent that
convergence of the state estimate generated by the EKF is much
slower compared to the nonlinear observer implemented in the
first two experiments. However, in many applications, the co-
variance matrices are used as tuning parameters, i.e., treated as
gains, rather than selected based on the actual uncertainty in the
system, and therefore estimation convergence performance may



PARIKH et al.: SWITCHED SYSTEMS FRAMEWORK FOR GUARANTEED CONVERGENCE OF IMAGE-BASED OBSERVERS 277

Fig. 18. Reconstructed Euclidean coordinates of the target from the experi-
ment where the target followed a known vector field. Vertical black lines denote
switches.

Fig. 19. State estimation errors from the experiment the target followed a
known vector field. Vertical black lines denote switches.

be improved through tuning, though in doing so, one loses any
convergence and optimality guarantees of the EKF.

The primary difference between the approach developed in
this paper and the EKF is that our approach yields guarantees on
estimation error convergence due to considering the full, inher-
ently nonlinear dynamics of the image-based range estimation
problem, whereas the EKF relies on linearization, and therefore
can only yield local convergence guarantees, at best. Through
the nonlinear Lyapunov analysis, an exponential convergence

envelope is developed, hence the fast convergence compared to
the EKF. Since the EKF may only yield local convergence, it
may not converge at all in certain instances, i.e., with large initial
errors. As shown in the experimental results, even though the
observer is initialized with a larger initial error than the EKF,
the convergence is still faster than the EKF, despite the fact that
the exponential envelope, and hence the convergence time, is
proportional to the norm of the initial error.

The experimental results also seem to indicate better noise
rejection due to the better performance during the latter parts of
the experiment, however this is most likely a product of the high
gain tradeoff. High gains increase robustness to disturbances
and yield faster convergence, but also amplify noise, leading to
larger steady-state error. In general terms (since a direct compar-
ison between gains in the implemented observer and covariance
matrices in the EKF is not sensible), in this particular experi-
ment, the measurement and model uncertainties may be yielding
lesser “gains” in the EKF, resulting in slower convergence but
better noise rejection. The noise rejection of our approach can be
improved through gain scheduling, thus maintaining fast con-
vergence while improving long-term tracking performance. It
should also be noted that these experiments were performed
using only one of the many observers available in the literature
that can be “plugged in,” and for which the analysis in this paper
applies (see Assumption 6); other implementations may yield
improved performance.

VIII. CONCLUSION

An analysis was performed to demonstrate the robustness of
a class of observers to intermittent loss of sensing. The analy-
sis is applicable to any exponentially convergent, image-based
observer. From signals generated via a known motion model of
the object, a predictor is used in conjunction with the observer
to provide state estimates during the periods when the object
is not visible. The predictor also aids in the stability analysis
by allowing the error growth to be bounded by an exponential
function during the periods when the object is hidden. If mea-
surement loss is uncontrollable, the average dwell time and total
unstable activation time can be calculated and checked against
(14) and (15) to verify the convergence of state estimates and
therefore their accuracy. These conditions could also be used to
relax trajectory constraints for camera motion. In our previous
results that do not use a predictor (cf. [65]), the error that is
bounded by a tangent function, with finite escape time, leading
to hard constraints on the maximum allowable contiguous time
measurements can remain unavailable. In contrast, the results in
this paper lead to the more relaxed average dwell time and total
activation time conditions in (14) and (15). Simulation results
in Section VI confirm that the improvements in stability and
performance the analyses suggest are a consequence of the use
of a predictor as opposed to the ZOH approach.

Experiments were performed to demonstrate the stability
and performance of the proposed estimator-predictor scheme
in two common scenarios. The experimental results are com-
pared to the theoretically developed bounds to elucidate how
conservative Lyapunov analysis can be. In addition, an EKF is
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implemented for the SfM problem as a comparison to the ap-
proach developed in this paper. An example of how a common
observer design that only recovers partial states can be aug-
mented for full-state estimation and therefore can be used during
periods of target visibility is provided.

The novelty of the developed approach is the ability to recon-
struct relative Euclidean measurements of a target viewed by
intermittent camera observations using any exponentially con-
vergent observer. This contribution is enabled by using switched
systems methods to analyze the stability of the state estimate
when constructed by switching between the observer and the
predictor. However, the current predictor is limited to applica-
tions, where target velocity information is measurable or avail-
able, either directly or through a known motion model. Further
investigation is required to circumvent this requirement, either
by changing the predictor structure, or by learning a motion
model online while the target is visible.

APPENDIX

In [6], an observer is designed for the unmeasurable state x3 ,
whereas it is assumed the estimates for the first two states x1 and
x2 are directly measurable. If this design were directly imple-
mented, the state estimates may discontinuously jump whenever
the target comes into view, violating the continuity assumption
of Theorem 1. By using filtered measurements for the complete
state estimate, the continuity assumption can be satisfied. The
observer used in the experiments described in Section VII is a
modified version of the observer in [6] and is defined by the
update laws

˙̂x1 = h1 x̂3 + p1 + k1e1

˙̂x2 = h2 x̂3 + p2 + k2e2

˙̂x3 = − b3 x̂
2
3 − (x1ω2 − x2ω1) x̂3 − k3

(
h2

1 + h2
2
)
x̂3

+ k3h1 (ẋ1 − p1) + k3h2 (ẋ2 − p2) + h1e1 + h2e2

where the error signals, e � [ e1 e2 e3 ]T ∈ R3 , are defined
as

e1 � x1 − x̂1 ,

e2 � x2 − x̂2 ,

e3 � x3 − x̂3 ,

the linear velocity signal is defined as b � vq − vc ∈ R3 , k1 ,
k2 , k3 ∈ R are positive constants, and the auxiliary signals h1 ,
h2 , p1 , p2 ∈ R are defined

h1 � b1 − x1b3 ,

h2 � b2 − x2b3 ,

p1 � x1x2ω1 −
(
1 + x2

1
)
ω2 + x2ω3 ,

p2 �
(
1 + x2

2
)
ω1 − x1x2ω2 − x1ω3 .

Using the Lyapunov function candidate

V =
1
2
e2

1 +
1
2
e2

2 +
1
2
e2

3

it can be shown that

V̇ ≤ −k1e
2
1 − k2e

2
2 − k4e

2
3

for some positive constant k4 ∈ R, using the same bounding
arguments and gain conditions as in [6]. Thus, the augmented
observer is exponentially convergent.
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