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Target Tracking in the Presence of Intermittent
Measurements via Motion Model Learning

Anup Parikh

Abstract—When using a camera to estimate the pose of a moving
target, measurements may only be available intermittently, due to
feature tracking losses from occlusions or the limited field of view
of the camera. Results spanning back to the Kalman filter have
demonstrated the utility of using a predictor to update state es-
timates when measurements are not available, but target velocity
measurements or a motion model must be known to implement a
predictor for image-based pose estimation. In this paper, a novel
estimator and predictor are developed to simultaneously learn a
motion model, and estimate the pose, of a moving target from a
moving camera. A stability analysis is provided to prove conver-
gence of the state estimates and function approximation without
requiring the restrictive persistent excitation condition. Two exper-
iments illustrate the performance of the developed estimator and
predictor. One experiment involves a stationary camera observing
a mobile robot with sporadic feature tracking losses, and a sec-
ond experiment involves a quadcopter moving between two mobile
robots on a road network.

Index Terms—Adaptive methods, estimation, switched systems,
target tracking.

1. INTRODUCTION

NUMBER of advances in imaging and computer vision

have enabled geometric reconstruction of features through
image feedback. Due to the projection in the imaging process,
and the resulting scale ambiguity, typical approaches exploit
multiple views of the scene, as well as scale information, to re-
cover the Euclidean geometry, e.g., stereo vision with a known
baseline or structure from motion (SfM) with known camera
motion. For online reconstruction (i.e., recursive methods), us-
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ing a single camera, a number of observer/filtering techniques
have been developed to solve the SfM problem (i.e., determine
the relative Euclidean coordinates of an object with respect to a
camera) for a stationary object and moving camera (cf. [1]-[7]),
a moving object with a stationary camera (cf. [7]-[12]), as well
as for the case where both the object and camera are in motion
(cf. [13] and [14]). In all cases, velocity information of either
the camera or target, or both, is used to inject scale information
into the system.

Previously developed SfM observers rely on continuous mea-
surement availability to show convergence of the estimates.
However, in many applications, image feature measurements
may be intermittently unavailable due to feature tracking losses,
occlusions, limited camera field of view (FOV), or even the
finite frame rate of the camera, which result in intermittent mea-
surements. In this paper, a novel estimator and predictor are
developed and shown to converge to within an error bound de-
spite the intermittent measurements. The estimation error obeys
different dynamics when operating in different modes (i.e., when
measurements are available versus when measurements are un-
available). Switched systems theory is used to analyze the over-
all stability and performance of the system despite the different
dynamics associated with the different modes. Switched sys-
tems’ methods are necessary due to the well-known result that
switching between stable systems can lead to instability [15].
The problem is exacerbated in this paper, as shown in the anal-
ysis, because the estimation error dynamics are unstable when
measurements are unavailable. Therefore, additional analysis
is necessary to demonstrate that, despite intermittent measure-
ments, the overall switched estimation error dynamics are stable.

Numerous results have been developed for feature tracking in
the presence of intermittent visibility of the target. For example,
[16] and [17] describe methods for learning a motion model
online for feature motion prediction. Similarly, in [18] and
[19] Kalman or particle filters are used to estimate feature mo-
tion and predict feature coordinates while occluded. In contrast,
[20]-[22] use visual context to increase the robustness of feature
trackers to occlusions. For the SfM problem, a technique that is
robust to occlusions or feature tracking losses is developed in
[23]; however, only the shape of the object is recovered, and not
the three-dimensional (3-D) position due to the orthogonal pro-
jection model used. In contrast to such results, the full 6 degree
of freedom (DOF) pose of the target is estimated in this paper,
and the estimates are shown to be stable.

Many of the probabilistic approaches for SfM, or the associ-
ated simultaneous localization and mapping (SLAM) problem,
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utilize a predictor similar to that developed in this paper or
circumvent the intermittent sensing issue by only updating
state estimates when new measurements are available (see [24]
and [25] for an overview). However, these approaches are
based on either linearizations of the nonlinear dynamics (cf.
[26]-[31]), and therefore only show local convergence, or are
sample based (e.g., [32] and [33]), and therefore, can only show
optimal estimation in the limit as the number of samples ap-
proach infinity. Much of the recent literature on target tracking
has focused on using suboptimal algorithms for tracking using
simplified motion models (e.g., constant velocity, constant turn
rate, etc.), with a focus on reduced complexity and improv-
ing practical performance, and do not analyze estimation error
growth due to model uncertainty or show estimation error con-
vergence [34], [35]. Some methods explicitly handle occlusions,
though they either assume availability of range measurements
and only estimate position, therefore rendering the system lin-
ear (cf. [36]-[38]), or only estimate relative depth ordering and
do not consider the pose estimation problem, e.g., [39]. Other
methods learn a model of the target motion online using function
approximation methods (cf. [40]-[47]), though do not provide
a convergence analysis. Conversely, the full nonlinear dynam-
ics are analyzed in this paper, resulting in an arbitrarily large
region of attraction around the zero estimation error trajectory
(i.e., the estimator converges for any set of initial conditions
provided gains and controller parameters are sufficiently large,
rather than linearization-based approaches that rely on suffi-
ciently small initial conditions on the estimation error, yielding
local convergence results), and the proposed estimator—predictor
structure has computing requirements that can be met by typical
or low-end modern computers (see Section VII). Furthermore,
convergence and consistency proofs of probabilistic estimators
typically require knowledge of the probability distribution of the
uncertainty in the system and result in convergence in mean or in
mean square. In comparison, analysis of deterministic observers
typically assume boundedness and some level of smoothness of
disturbances, and yield asymptotic or exponential convergence.
The primary contribution of this paper is in the development
and analysis of a novel estimator and predictor that ensures con-
vergence to an ultimate bound as well as online learning of a
motion model of the target using a deterministic framework.
Our previous results have shown stability of the position esti-
mation error during intermittent measurements [48], [49], pro-
vided dwell time conditions are satisfied. Dwell time conditions
specify the minimum amount of time a single mode or sys-
tem must be active before switching to another mode to main-
tain system stability, and reverse dwell time conditions specify
the maximum amount of time a system can remain active to
maintain system stability. These conditions must be met at ev-
ery switch from one mode to another. In the context of target
tracking with intermittent measurements, the dwell time condi-
tions specify the minimum contiguous duration the target must
remain in view, and reverse dwell time conditions specify the
maximum contiguous duration the target can remain out of view.
In [49], a zero-order hold is performed on the state estimates
when measurements are unavailable, resulting in growth of the
estimation error based on the trigonometric tangent function,
and an ultimately bounded estimation error result. Since the
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tangent function is unbounded for finite arguments, (reverse)
dwell time conditions are necessary at every period in which
measurements are (un)available to ensure stability. In [48], a
predictor was used to update the state estimates when measure-
ments are unavailable. This results in exponential growth of the
estimation errors when measurements are unavailable, allow-
ing the use of average dwell times for stability. Average dwell
time conditions are easier to satisfy than other dwell time condi-
tions since they only restrict the average mode durations rather
than every duration. A downside of the approach in [48] is that
the use of a predictor requires knowledge of a motion model
of the target to generate target velocity signals utilized in the
predictor.

In this paper, the target motion model is learned online. A
number of adaptive methods have been developed to compen-
sate for unknown functions or parameters in the dynamics; how-
ever, parameter estimates may not approach the true parameters
without persistent excitation (PE) [50]-[52]. The PE condition
cannot be guaranteed a priori for nonlinear systems (as apposed
to linear systems, e.g., [50, Th. 5.2.1]) and is difficult to check
online, in general. Recently, a technique known as concurrent
learning (CL) was developed to use recorded data for online
parameter estimation [53]-[55] with an alternative excitation
condition. In CL, input and state derivatives are recorded and
used similar to recursive least squares to establish a negative
definite parameter estimation error term in the Lyapunov analy-
sis, and hence, a negative definite Lyapunov derivative provided
a finite excitation condition is satisfied. However, state deriva-
tives can be noisy, and require extensive filter design and tuning
to yield satisfactory signals for use in CL. A further contribu-
tion of this paper is that the CL technique is reformulated in
terms of an integral (ICL), removing the need for state deriva-
tives, while preserving convergence guarantees. Compared to
traditional adaptive methods that utilize PE to ensure parameter
convergence, and hence, exponential stability, ICL only requires
excitation for a finite period of time, and the excitation condition
can be checked online.

In this paper, data are recorded online when measurements
are available (i.e., the target is in view of the camera). Using
the ICL technique, a motion model of the target is learned and
used in a predictor to estimate target pose when it is not visible
to the camera. A stability analysis is provided to show that
this estimation and prediction with learning scheme yields an
estimate of the target pose that converges to within an arbitrarily
small bound around the true target pose.

Two experiments are included to illustrate the performance
of this estimator. One experiment involves a stationary camera
observing a mobile robot moving according to a static vec-
tor field. The results of this experiment demonstrate that the
learning component of the estimator quickly converges and ac-
curately predicts the robot motion. The second experiment in-
volves a moving camera observing two mobile robots moving
along a road network. Due to the limited FOV and resolution
of the camera, measurements of both robots are not available
simultaneously. Despite the intermittent measurements, and the
stochastic motions of the robots at various points on the road
network, the results demonstrate the feasibility of the developed
approach for tracking the pose of multiple targets.
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Fig. 1. Reference frames and coordinate systems of a moving camera observ-
ing a moving target.

II. SYSTEM DYNAMICS

Fig. 1 is used to develop the image kinematics. In Fig. 1,
Fq denotes a fixed inertial reference frame with an arbitrarily
selected origin and Euclidean coordinate system, F¢ denotes a
reference frame fixed to the moving object, with an arbitrarily
selected origin and Euclidean coordinate system, and F¢ de-
notes a reference frame fixed to the camera. The right-handed
coordinate system attached to F¢ has its origin at the principal
point of the camera, e3 € E? axis pointing out and collinear with
the optical axis of the camera, e; € E? axis aligned with the hor-
izontal axis of the camera, and e5 £ e3 x ¢; € E®. The vectors
r, € E3 and 7. € E? represent the vectors from the origin of
Fe to the origins of F¢ and F¢, respectively. The kinematics
of the coordinates of the relative position vector expressed in
the camera coordinate system are

T=v, — v —w T (1)

where z € R? denotes the position of the origin of F; with
respect to the origin of F¢ (i.e., the relative position of the ob-
ject with respect to the camera), v, £ [v1 Vg2 vqg}T € R3
is the velocity of the origin of JF¢ with respect to the ori-
gin of F¢ (i.e., the inertial linear velocity of the object),
v & [vcl Voo  Ves ]T € R? is the linear velocity of the ori-
gin of F¢ with respect to the origin of ¢ (i.e., the inertial linear
velocity of the camera), and w, £ [wcl Weo  We3 } g € R3is
the angular velocity of F¢ with respect to F¢ (i.e., the iner-
tial angular velocity of the camera), all expressed in the camera
coordinate system. Also, ()™ : R?* — R3*3 represents the skew
operator, defined as

. 0 —-p3 p
P = | p3 0 —-m
-p2 D 0

In the following analysis, the quaternion parameterization
will be used to represent orientation. Let ¢ € H be the unit
quaternion parameterization of the orientation of the object
with respect to the camera, which can be represented in the
4-D vector space R* using the standard basis 1, 4, j, k as
= [qo qZ]T € S*, where S” £ {x eER2Tx = 1}, and
qo and g, represent the scalar and vector components of g.
Based on this definition, a vector expressed in the object

coordinate system &, € R? can be related to the same vec-
tor expressed in the camera coordinate system §. € R3, as
& =q-& -q, where () : S* — S* represents the unit quater-
nion inverse operator definedas ¢ £ [qp  —q; ]T with identity
g-q=q-q=[1 0 0 O]T,and('):R4 x R* — R* rep-
resents the Hamilton product,' with property ¢, - ¢, € S* for
Gu» @ € S*. The Hamilton product can be expressed in block
matrix notation as

7‘1{{1;
Gaol3 +q,

qa0

Qa Qb = o

qb

where I, € R9*9 is the identity matrix. The kinematics for the
relative orientation of the object with respect to the camera are
(see [56, Ch. 3.4] or [57, Ch. 3.6])

1

qziB(Q)(wq_(j'wa'Q) 2)

where B : S* — R**? is defined as

A _fvT
B©= LOIB + 55}

and has the pseudoinverse property B (£)" B (€) = I3 (see [56,
Ch. 3.4]).

III. ESTIMATION OBJECTIVE

The primary goal in this paper is to develop a pose estima-
tor/predictor that is robust to intermittent measurements. The
design strategy is to filter the pose measurements when they
are available and predict future poses when measurements are
unavailable (e.g., the object is not visible to the camera). How-
ever, a predictor based on (1) and (2) would require linear and
angular velocities of the object to be known. The novelty in this
paper is to learn a model of the object velocities when measure-
ments are available, and use the model in the predictor when
measurements are not available. To this end, a stacked pose
state ) (t) € R” is defined as n () = [T (1) ¢" (t)}T and
the following assumptions are utilized.

Assumption 1: Measurements of the relative pose of the tar-
get are available from camera images when the target is in view.

Remark 1: The projection of a 3-D scene onto a 2-D sen-
sor during the imaging process results in scale ambiguity [58,
Ch. 5.4.4]. In typical SfM observers, target velocity is used to
inject scale into the system and recover the full Euclidean co-
ordinates of the target. However, in the scenario considered in
this paper, the target velocities are unknown. To resolve the am-
biguity, a known length scale on the target can be used, and
by exploiting Perspective-n-Point (e.g., [S9]-[65]) or homogra-
phy (e.g., [66] and [67]) solvers, the pose of the target can be
recovered.

!For brevity, a slight abuse of notation will be utilized throughout the paper.
For v1, v2 € R? and ¢ € S%, the equation vy = ¢ - v1 - ¢ can be written pre-
. B N 17 N 17

cisely as ¢y2 = q - qu1 - G, Where ¢,1 = [0 h ] and q,9 = [O V: ]

In other words, an R* quaternion g1 is derived from an R? vector v1 by setting
the scalar part of ¢, 1 to zero and setting the vector part of ¢, 1 as equal to v .
Similarly, the resulting vector vo is derived from the vector component of g, 2.
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Assumption 2: The object velocities are locally Lipschitz
functions of the object pose and not explicitly time dependent,
e vy (1) = 61 (p(n (1)) and w, (1) = s (p (1 (1) , ).
where ¢1, ¢ : R” — R? are bounded and p : R” x [0, 00) —
R7 is a known, bounded, and locally Lipschitz function.

Remark 2: This assumption ensures there exists some func-
tion that can be learned, i.e., the object velocities do not meander
arbitrarily. Moreover, via the Stone—Weierstrass theorem [68],
it ensures that universal function approximators [e.g., neural
networks (NN)] can be used to estimate the object velocities to
an arbitrary level of accuracy. The Stone—Weierstrass theorem
only guarantees the estimate is accurate over a compact set,
hence dependence on the state is allowed since it is bounded via
Assumption 3 below, but exclusion of an explicit dependence
on time is required since the interval ¢ € [0, 00) is considered
in the analysis. The velocities can change with time, since the
state of the object can change with time; however, the map-
ping between the object state and the object velocity is assumed
to be static. This assumption holds in cases of, e.g., projectile
or orbital motion, pursuit-evasion games, as well as simplistic
models of vehicles moving along a road network, e.g., the proof
of concept experiments provided in Section VII.

Assumptions analogous to Assumption 2 are implicit in ma-
chine learning and function approximation contexts. Intuitively,
if an explicit and unknown time dependence is allowed in the
function to be estimated, there is no guarantee that the data used
to approximate the function, and hence, the function estimate,
will be valid in the future. For example, in [47], Campbell et al.
describe a scenario of tracking a target with a finite set of behav-
iors and use a nonparametric approach to learn an anomalous
behavior. This type of target motion could be learned using our
approach if the velocity maps ¢, and ¢, were piecewise-in-time
static. For such a case, the analysis in the Section VI can be ex-
panded to include switching due to changing target behavior.
However, if the target exhibited new behavior (i.e., a new state
in the Markov model) at every timestep, there would be no hope
in learning the overall target behavior, since the past data would
provide no insight into future behavior.

In some scenarios, information beyond the object pose (e.g.,
traffic levels, time of day, weather, etc.) may be relevant in
predicting the target behavior. These auxiliary states can be
considered in the function approximation to capture a wider
class of possible target behavior without violating technical re-
quirements underpinning learning. The auxiliary states can be
included either directly if they are measurable, or by using an
observer, hidden Markov model, etc. to generate state estimates
if the auxiliary states are not measurable.

Remark 3: In some applications, the velocity field of the tar-
get is expected to be dependent on the target’s pose with respect
to the world, rather than its relative pose with respect to the cam-
era. The function p is used to transform the relative pose to its
world pose by using the camera pose with respect to the world. In
other applications, the velocity field is expected to rely solely on
the relative pose (e.g., a pursuit-evasion scenario in an obstacle-
free environment, where the evader’s motion would only be
dependent on its pose with respect to the pursuer/camera) or
the camera pose is unknown, in which case p can be taken as
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the identity function on 7 (t). As shown in the following, these
coordinate transformations are embedded in the bases of the
function approximation.

Assumption 3: The state 7 (t) is bounded, i.e., n(t) € X,
where X € R7 is a convex, compact set.

Remark 4: In estimation, for the state estimates to converge
to the states while remaining bounded, the states themselves
must remain bounded. This is analogous to the requirement of
bounded desired trajectories in control problems.

In this development, the unknown motion model functions ¢4
and ¢, are approximated with a neural network, i.e.,

{ vy (1) } _ [ ¢1(p(n(t),1))
7B (a(t)w, (1) 3B (a (1) é2 (p(n(t),1))

=Who (p(n,t)) +e(p(nt) ()

where o : R” — R? is a known, bounded, locally Lipschitz,
vector of basis functions, W € R?*7 is a matrix of the un-
known ideal weights, and € : R” — R is the function approxi-
mation residual, which is locally Lipschitz based on the locally
Lipschitz properties of v, (), wy (£), B (¢ (t)), p(n(t),t), and
o(+), and is a priori bounded with a bound that can be made
arbitrarily small based on the Stone—Weierstrass theorem, i.e.,
&2 5up,cx. 1en oy N2 (0 ()]l where ||| denotes the Eu-
clidean norm. Note that if W is known, ¢ (p (n (t),t)) can be
approximated by premultiplying by 2B7 (g (t)) and utilizing
the pseudoinverse property of B (¢ (t)).
To quantify the estimation objective, let

() £n(t) =7 (t) 4)
denote the estimation error, where 7 (t) € R” contains the po-
sition and orientation estimates. Also, let

W (t) & W — W (t) )

denote the parameter estimation error, where W (t) € RP*T is
the estimate of the ideal function approximation weights. Based
on these definitions, the kinematics in (1) and (2) can be rewrit-
ten as

) =Wro(p(n(t),t) +e(pn(t),t)+ f(n(t) ,t)(é)

where f : R” x [0,00) — R7 is a known function defined as

ve () + we (1) 2 (t)

IV. ESTIMATOR DESIGN

f(n(t)>t)é_

The following sections detail the estimator. The estimator is
summarized in Algorithm 1, where d¢ refers to the loop timestep.
A. Update

Based on the subsequent stability analysis, during the periods
in which measurements are available, the position and orienta-
tion estimate update laws are designed as

O =W o (p(r(2),0) +f (n(0),1) + ki ()
+ kasen (7 (1)) ™
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Algorithm 1: Algorithm for Estimator.

Input: 7 (0), W (0)

Output: 7 (t), W ()
Initialization:
Initialize {t1,....tx }, {1, ..oy
{Any,....,Any} 100
Estimator loop:
while target tracking do

if target is in view then

1(t) =[5 W ()" o

InhA{FL, L FN )

(p(n(7),7))+

fA(n (7)) k17 (7) + hasgn (5 (7)) dr

Wt Hff st [Proi(Te (o (1 (7), 7)) 7 (7)

+kCLF Z yT (Anz f yz :|
N TR
ft,Af,fT n(r),7)dr

Data Selection:
for: =1[1to N do

N
)‘«1’, <_)\min {y (t)T y (t) + Z yJTy7}
j=1j#i
end for
k « argmax {1;}

if Ay > Amin {% quyz} then
et
Vi — V()
Fi — .7:(75)
Amy, — ' (t) —
end if
else

T (t—At)

— [ proi(W (1) o (p (i (7) , 7))
+ £ (r),7)ldr

N N
W [, [proj(kCLr S 7 (A,
i=1
—Fi = VW (7)) dr
end if

end while
return 7j (¢), W (¢)

where sgn(+) is the signum function To facilitate the design
of an ICL update law, let Y (t) 2 [* 0T (p(n(r),7))dr

and F (t) 2 [ T (n(1), )dT, where At € ]Rls apositive
constant denotlng the size of the window of integration. The ICL
update law for the motion model approximation parameters is
designed as

W = proj (To (o). ) ®)"

N
+hal Y V! (A = F - nW (t))) (8)

i=1

where proj(-) is a smooth projection operator (see [69,
Appendix EJ, [70, Remark 3.7]) with bounds based on the state
bounds and velocity bounds of Assumptions 2 and 3, N € N,
kor € R, and T € RP*P are constant, positive definite, and
symmetric control gains, An; £ 0 (t;) —n? (t; — At), F; =
F(t;), Vi 2 Y (t;), and t; represents past time points, i.e.,
t; € [At,t] at which measurements are available. The princi-
pal goal behind this design is to incorporate recorded input and
trajectory data to identify the ideal weights. The time points ¢;,
and the corresponding Ar;, F;, and ); that are recorded and
used in (8) are referred to as the history stack. As shown in the
subsequent stability analysis, the parameter estimate learning
rate is related to the minimum eigenvalue of Zf\;l )),L.T Y;, mo-
tivating the use of the singular value maximization algorithm in
[54, Ch. 6] for adding or replacing data in the history stack.

To gain additional insight into the adaptive update law design
in (8), the integral of the transpose of (6) is

. o r N )
/t,At” (T)dT—/Mt (p(n(7),7))Wd

[t

t

- fF(n(r),

t—At

T) dT.

Using the Fundamental Theorem of Calculus and simplifying

yields
0’ (t)— V(OOW+E)+ F(t) Vt e [At,00)
©)
where V¢ € [At, 00) 2 ', (p(n(r),7))dr. Using
the relation in (9), the update law in (8) can be simplified as

0 (t— At)=

N
+ ke DY VIVW (t)

i=1

W = proj (ra (p(n(6),0)7i ()"

(10)

N
+hal Y V) 55)

i=1

for all t > At, where & £ & (t;). Taking the time derivative of
(4), substituting (6) and (7), and simplifying yields the following
closed-loop error dynamics when measurements are available

i) =W @) a(pnt),t) = ki) +2(pn(),1)
— kosgn (7} (1)) . (11)

B. Predictor

During periods when measurements are not available, the
state estimates are simulated forward in time using

i (6) = proj (W () o (p (0 (6),0)) + £ (3 (1) 1)) -

Similarly, the recorded data continues to provide updates to the
ideal weight estimates via

(12)

. N
W (#) = proj <kar SOV (An - F -y (t))) (13)

i=1
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which can be simplified as

. N N
W (t) = proj (kCLF SOVIVW ) + kal > V! 5) :

i=1 i=1 (14)

Taking the time derivative of (4), substituting (6) and (12), and

simplifying yields the following closed-loop dynamics when
measurements are not available

7 =W )" alp(t),0)+f(n(t),0) = f 0 ).t)
+W (@O (0 (p(n(t),1) = (p( (1).1)))

+elp(n(®),1)). (15)

V. IMPLEMENTATION AND DATA SELECTION

The integration time window At can be selected small relative
to the time scale of the dynamics (see Section VII for examples)
to reduce the adverse effects of noise and function approxi-
mation error. After time At (i.e., t > At), the signals Y (),
F(t),and n (t) —n" (t — At) are available. For initialization
of the history stack, the values of Y (¢), F (t), and n’ (¢) —
n' (t — At) can be saved at every time step until N values have
been recorded, and hence, va:l I (Am —F =YW (t))
can be calculated. However, typically the data collected during
initialization is not sufficiently rich (i.e., do not satisfy As-
sumption 4). Therefore, a procedure similar to that described in
[54, Ch. 6] can be used for replacing data in the history stack.

Specifically, if Apin {y O Y (t)+ Zfiuﬂ VEY; } > Amin

{vazl yfyi} for some j € {1,2,..., N}, where Apin {-}
refers to the minimum eigenvalue of {-}, then replace ¢ i Vi, Fj,
and An; with ¢, Y (¢), F (t), and " (t) — ' (t — At), respec-
tively. In this way, Amin {Zi\il yf yi} is always increasing. If
the system trajectories are sufficiently exciting (i.e., satisfy As-
sumption 4), Amyin {va: 1 3)7;Tyi} will be strictly greater than
zero in finite time, at which point new data are not needed, and
hence, the system trajectories no longer need to be exciting.

VI. ANALYSIS

The system considered in this paper operates in two modes.
The evolution of a Lyapunov-like function is developed in
Lemma 1 for the mode when measurements are available and the
update is used. Similarly, the evolution of a Lyapunov-like func-
tion is developed in Lemma 2 for the mode when measurements
are unavailable and the predictor is active.

In addition to the switching that occurs as measurements be-
come intermittently unavailable, in the following stability anal-
ysis, time is partitioned into two phases. During the initial phase,
insufficient data have been collected to satisfy a richness con-
dition on the history stack. In Theorem 1, it is shown that the
designed estimator and adaptive update law are still sufficient
for the system to remain bounded for all time despite the lack of
data. After a finite period of time, the system transitions to the
second phase, where the history stack is sufficiently rich and the
estimator and adaptive update law are shown, in Theorem 2, to
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asymptotically converge to an arbitrarily small bound. To guar-

antee that the transition to the second phase happens in finite

time, and therefore, the overall system trajectories are ultimately

bounded, we require the history stack be sufficiently rich after

a finite period of time, as specified in the following assumption.
Assumption 4:

N

Fh, T>0:Yt>T, dnin {Zy?%} >1  (16)

i=1

where Ay, {-} refers to the minimum eigenvalue of {-}.

The condition in (16) requires that the system be sufficiently
excited, though is weaker than the typical PE condition since
excitation is only needed for a finite period of time. Specifically,
PE requires

t+At

[ obm@.me e m)dzar=0 w0

t (17)
whereas Assumption 4 only requires the system trajectories to
be exciting up to time 7' (at which point ZlN: VI, s full
rank), after which the exciting data recorded during ¢ € [0, T']
is exploited for all £ > T'. Another benefit of the development
in this paper is that the excitation condition is measurable (i.e.,

Amin {ZZN:1 ))Z-T yi} can be calculated), whereas in PE, At is

unknown, and hence, an uncountable number of integrals would
need to be calculated at each of the uncountable number of time
points ¢ in order to verify PE.

To facilitate the following analysis, let to* and #° denote
the nth instance at which measurements become available and
unavailable, respectively. Then, during ¢ € [to", t°) measure-
ments are available and the estimator is active, whereas during
t € [toff ¢ | ) measurements are unavailable and the predictor
is active. The duration of contiguous time each of these modes
are active is denoted A" £ ¢0ff — o and A0 £ ¢on | — ¢off,
respectively, and the total amount of time each of these modes
is active between switching instances a and b are denoted
T°" (a,b) £ Zf:a A" and T°T (a,b) & Zf: AT, respec-

a

T
tively. Also, & (1) £ [ﬁ(t)T vec (W (t))T} cR7THP de-

notes a stacked state and parameter error vector, where vec (-)
denotes a stack of the columns of (-).

To facilitate the Lyapunov-based analysis in Lemmas 1 and
2, as well as Theorems 1 and 2, consider the Lyapunov function
candidate V : R™*7” — R defined as

A 1. T ~ 1 I T 117

VW) 2 5am" a) + o (W@ T @), as)
The function in (18) can be bounded as 3 [|€ (¢)]* <
V(@) < By ||€@)|]°, where tr(-) denotes the matrix

trace operator, [ £ %min {l,kmin (F’l)}, and [ £

%max {1, Amax (I"l) } Also, due to the projection operator

in (8) and (13), and since W is a constant, W (¢) is bounded,
and V (€ (t)) < ¢o + ¢3 |77 ()||*, where ¢3, ¢5 € R~ are pos-
itive constants.

Lemma 1: The estimator in (7) and (8) remains bounded
during ¢ € [ton, ¢off).

no'n
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Proof: Taking the time derivative of (18) during ¢ €
[ton o) substituting (10) and (11), and simplifying yields

V(E®D) <~k 7@ +a

where ¢; € R+ is a positive constant. Using the bounds on V/,
V' can be bounded as

V@@»<—“v&@»+(““+q)

C3 3

Using the Comparison Lemma [71, Lemma 3.4]

c
VIE®) < VE@ewlat- )+ (o)
19)
vt € [t 13), where A £ A&,
After sufficient data have been gathered (i.e., t € [t o) N
[T, o), where T' was defined in Assumption 4)

V(E®) V(W) exp[=Ar (t =] + o (20)

cm 2 133
> “UB min{ky e}’

{ZZ\; RN }, and Acp > 0 based on Assumption 4. [ |

Remark 5: Note that ¢; is based on a bound on the data in
the history stack );, the CL gain k¢, and the bound on function
approximation error £, and therefore, cannot be arbitrarily de-
creased through gain tuning. However, the ultimate error bound
after sufficient data has been gathered, cyp can be made arbitrar-
ily small by increasing the gains k1 and k¢, and by decreasing
g, e.g., increasing the number of neurons in the NN.

Lemma 2: The predictor in (12) and (13) remains bounded
during ¢t € [ ¢on ).

Proof: Taking the time derivative of (18) during ¢ €
[toff, ¢on ), substituting (14) and (15), and simplifying yields

where Ap £ . der = keLAmin

A min{ki, Ao} A
39

V(@) <eillE @) +es

where ¢y, c; € R+ are positive constants. Using bounds on V,
V' can be bounded as
Ca

< 2
T B

Using the Comparison Lemma [71, Lemma 3.4]

V(£(t) V (£(t) + ¢s.

(0] C O (o) on
V(M) (e (@) e |5 (-h)] e gt
(2D
which remains bounded for all bounded ¢. [ |

Theorem 1: The estimator and predictor in (7), (8), (12),
and (13) remain bounded provided there exists a k£ < oo, and

sequences {At"}> | and { At :;0 such that

Vn € N.
(22)

;iTO“‘ (nk, (n+1) k) < AT (nk, (n + 1) k)
1

Proof: Consider a single cycle of losing and regaining mea-
surements, i.e., t € [tO", t°", ;). Based on (19) and (21)

Cy4

V@(%Msv&mmwﬂ&

‘@ C4 A poff
— — AL . 23
+(02+k1)exp{ﬁl n} (23)

Using (23), the evolution of V' over k cycles is
V(& (#n000)) SeoV (€ (B +er

where cg, c; € R+ are positive, bounded constants, and cg <
1 based on (22). Let {s, },_, be a sequence defined by the
recurrence relation

ff
AT mt;;“]

Sp4+1 = M(Sn,)

with initial condition sp = V' (£ (tJ")), where M : R — Risde-
finedas M (s) £ cgs + c7.Since cg < 1, M isacontraction [72,
Definition 9.22], and therefore, all initial conditions sy approach
the fixed point s = 15756 [72, Th. 9.23]. Since the sequence {s,, }

upper bounds V" in the sense that V' (£ (¢27.)) < s,,, V is also ul-

timately bounded. However, V' may grow within {t;’,‘}f , t?;‘l ) k]
since the dwell time condition in (22) is specified over k cycles
rather than a single cycle, and therefore, the ultimate bound of
&, which is based on the ultimate bound of V' is

. Cr C4 poff
lim su 1) < exp | =T
s )] < e (S

off
where Tm ax

2 sup T°" (nk, (n + 1) k). [ |

Theorem 2: Anfter sufficient data are collected, ie., t €
[T, 00), the estimator and predictor in (7), (8), (12), and (13)
converge to a bound that can be made arbitrarily small provided
there exists a k < oo, and sequences {A¢2"} > and {A"}_
such that (22) is satisfied.

Proof: The proof follows similarly to the proof of Theorem 1.
Consider a single cycle of losing and regaining measurements
after sufficient data has been collected, i.e., t € [t0", 2" ) N
[T, o). Based on (20) and (21)

C4

V(E(t01)) SV (E®)) exp {Bﬁti’sz - krAtZ“]
1
cy

+ cyg exp {ﬂ Atsz] .
1

Using (24), the evolution of V over k cycles is
V(& (#mn)) S eV EEm) + o

where cg, cg € R+ are positive, bounded constants, and cg < 1
based on (22). By using the same contraction arguments as in
Theorem (1), the ultimate bound of £ is

(24)

. Cy C4 roff
lim su )] < e —T°
s )] < e (S

where T°ff

max

2 sup T°T (nk, (n + 1) k). |
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Remark 6: The fundamental difference between Theorems 1
and 2, and hence the need for sufficiently rich data, is the control
over the ultimate error bound. In Theorem 1, ¢; is based on ¢5,
which is based on the projection bound on the ideal function
approximation weight errors, which is a priori determined, and
therefore, the ultimate error bound cannot be decreased. In The-
orem 2, cg is based on cyg which can be made arbitrarily small
by, for example, increasing the number of neurons in the NN.

Remark 7: The dwell time condition in (22) is similar to
an average dwell time condition, but only over k cycles. The
condition requires that, over k cycles, the total amount of time
that the stable subsystem is active (i.e., the target in view),
scaled by the decay rate of the stable subsystem, is greater than
the total amount of time that the unstable subsystem is active
(i.e., the target not in view), scaled by the error growth rate.
This is a relaxed condition compared to typical (i.e., single
cycle) forward and reverse dwell time conditions as it allows
flexibility in allocating time in the subsystems over k cycles.
For example, if a large amount of time is spent observing the
target in the first of k cycles, relatively little time is needed with
the target in view in the remaining k — 1 cycles to still satisfy
(22) and ensure error convergence. With single cycle dwell time
conditions, any surplus time spent observing the target beyond
what is necessary to satisfy the dwell time condition has no
benefit in the sense of relaxing the dwell time requirements of
subsequent cycles.

VII. EXPERIMENTS

Experiments were performed to verify the theoretical results
and demonstrate the performance of the developed estimation
and prediction scheme with online model learning. In the first ex-
periment (Section VII-A), a stationary camera observed a target
moving along a smooth vector field. In the second experiment
(Section VII-B), a moving camera observed two targets moving
along aroad network. In both experiments, a Clearpath Robotics
TurtleBot 2 with a Kobuki base was utilized as a mobile vehicle
simulant (i.e., the target). A fiducial marker was mounted on the
mobile robot, and a corresponding tracking software library (see
[73] and [74]) was used to repeatably track the image feature
pixel coordinates, as well as provide target pose measurements,
when the target was in the camera FOV. A NaturalPoint, Inc.
OptiTrack motion capture system was used to record the ground
truth pose of the camera and target at a rate of 360 Hz. The pose
provided by the motion capture system was also used to esti-
mate the linear and angular velocities of the camera necessary
for the estimator, where the current camera velocity estimates
were taken to be the slope of the linear regression of the 20 most
recent pose data points. The same procedure was used to cal-
culate the linear and angular velocities of the target for ground
truth and comparison with the learned model.

For both experiments, radial basis functions (RBF) were used
in the NN, with parameters selected based on the description
provided in the subsequent sections. Estimator gains were se-
lected as k1 = 3, ko = 0.1, ke = 1, and I = I, and the inte-
gration window was selected as At = 0.1 s. Further discussion
on how the parameters and gains were selected is provided in
Section VII-C.
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Fig. 2. During the first experiment, the target was commanded to follow a
vector field of this form.

A. Target Motion Along a Smooth Vector Field

In the first experiment, a stationary camera observed a tar-
get moving in a vector field of the form shown in Fig. 2. An
IDS UI-3060CP camera was used to capture 1936 x 1216 pixel
resolution images at a rate of 60 frames per second. The func-
tion p (), t) introduced in Assumption 2 was used to determine
the estimated 2-D position of the target in the world coordinate
system using the camera pose (see Remark 3). For this exper-
iment, 81 kernels were used in the NN, with means arranged
in a uniform 9 x 9 grid across the vector field (see Fig. 2) and
covariance selected as >, = 0.315. A total of NV = 600 data
points were saved in the CL history stack. During the first 60 s
of the experiment, target visibility was maintained to quickly
fill the CL history stack. Data were added at a rate of approxi-
mately 1 sample per second (the rate at which the data selection
algorithm described in Section V could be executed, which is
considered approximate since the operating system does not
necessarily have deterministic execution cycles), resulting in
10% of the history stack filled at the end of the initial learning
phase. After the initial phase, periodic measurement loss was
induced artificially by intermittently disregarding pose mea-
surements and switching to the predictor. The dwell times for
each period were selected randomly as At2" ~ U (15,30) and
At ~ U (10, 20). The results of this experiment are shown in
Fig. 3 through Fig. 7. As shown in Figs. 3 and 4, the predictor
initially performs poorly; however, prediction significantly im-
proves as more data are acquired. Boundedness of the unknown
parameter estimates is validated in Fig. 5. Figs. 6 and 7 demon-
strate that once sufficient data are acquired, the NN output tracks
the motion of the target well, therefore reducing the need for
large feedback and sliding mode gains, as well as accurately
predicting target motion when measurements are unavailable.
Accurate motion prediction is achieved despite the target devi-
ating from the prescribed vector field due to the nonholonomic
constraints on the mobile robot, as well as random disturbances
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Fig. 3. Relative position estimates for the first experiment with a stationary
camera.
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Fig. 4.
camera.

Relative orientation estimates for the first experiment with a stationary

such as wheel slip. The norm of the position root-mean-square
error (RMSE) vector was 0.25 m and the orientation RMSE was
24.4° for this experiment, considering data after 200 s (i.e., after
initial data collection).

For comparison, a modified version of the estimator was im-
plemented on the same data collected during the first experiment.
The modification represents the case of using an ideal predictor,
analogous to one of the scenarios considered in [48]. Specifi-
cally, the feedforward NN terms were replaced with the actual
target velocities in this modification, leading to the position es-
timates shown in Fig. 8. Despite the improved performance,
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Fig.5. Evolution of the NN ideal weight estimates during the first experiment

with a stationary camera.
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Fig. 6. Output of the NN compared with ground truth linear velocities for the
first experiment with a stationary camera. The jump in the ground truth signal at
approximately 450 s was caused by inaccurate numerical velocity approximation
when the motion capture system temporary lost track of the target.

the target velocities are typically not available, and therefore,
this design may not be implementable in many applications.
However, through the learning scheme developed in this pa-
per, the estimator performance quickly approaches that of the
ideal scenario, without requiring target motion information. For
comparison, the norm of the position RMSE vector was 0.03 m
and the orientation RMSE was 1.2° for this experiment using
the ideal predictor, confirming the obvious notion that perfect
velocity prediction results in better performance.

An extended Kalman filter (EKF) with a constant velocity
model was also tested for comparison. The measurement data
and visibility times were the same as in the first experiment,
resulting in the position estimates shown in Fig. 9. As expected,
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Fig. 7. Output of the NN compared with ground truth orientation rates (i.e.,
1

5B (q(t)) wy (1)) for the first experiment with a stationary camera.

‘ True [ Estimator A Predictor ‘
2 T T T N T y T
B | R [ 4 ) I\ N 4 B "
e RR ANNR b \ ‘ EARAATRE A R T
— T P i “" i A 1) A\WES A
£ o b b [ATER dlIAPAA b IVTAG AT IRed [ H
Feh cha\ A Ald P Y H 1A A ' v
-1 HE 1A 7\ 4 . i A
= Al g U R i I TR | 1 i "l !‘
2_ AW RAYAXUAXN wAE VR YA Y Y VEWXW Y]
3 L L L L L
0 100 200 300 400 500 600

)./ ]

WA R A’ BARNAW

NANARTARNNANATHNAD
A it

N Rb ) 4
b A o 1N i A
=4 q t (b9 AR LT m A mA t
g th it | I i} 4 i1} 1]
= LY, § Al th d 1] T
N A AP M
B | A ] G 4
SEh i P Ancd S BT U A
VY my B X AN
L

=L

AW

5 .
0 100 200 300 400 500 600
Time [s]

Fig.8. Relative position estimates for the experiment with a stationary camera
using a modified observer with an ideal predictor. Although performance is
satisfactory, this design requires unmeasurable target velocity information, and
therefore is not implementable in many applications.

the EKF performs well when the actual target velocities are
constant, in comparison to our estimator during the beginning
of the experiment, since our estimator is still learning the mo-
tion model. However, as the target velocity changes, as would
be common in many practical scenarios, our model-learning
approach outperforms the EKF, even during periods where the
target velocity is constant. One way to improve the initial per-
formance of our estimator (e.g., while the model parameters are
still being learned) would be to include the velocity of the target
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Fig.9. Relative position estimates for the experiment with a stationary camera
using a EKF with a constant velocity model. Without a good motion model, the
EKF quickly diverges when the target is not in view.

Quadcopter
Observing
One Target

Fig. 10.  Overall setup of the second experiment, with a quadcopter observing
the targets as they move along a road network.

in the state, as is done in the EKF. However, the augmented state
space would require a larger NN, and therefore more data, and
would require estimating an acceleration motion model rather
than a velocity motion model, which may not perform, as well
as a velocity motion model. With the EKF, the norm of the po-
sition RMSE vector was 1.67 m and the orientation RMSE was
57.5° for this experiment, both of which are much larger than
the corresponding errors using our model learning approach.

B. Multiple Targets on a Road Network

A second experiment was performed to demonstrate the uti-
lization of results developed in this paper to an application.
Specifically, the goal of this experiment was to use a single
moving camera to estimate the pose of two targets independently
moving along an unknown road network (shown in Figs. 10 and
11). At intersections in the road network, the targets randomly
selected a direction to travel, hence violating Assumption 2. In
this experiment, a camera on-board a Parrot Bebop 2 quadcopter
platform was used to capture 640 x 368 pixel resolution images
(see Fig. 12), which were wirelessly streamed to an off-board
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Fig. 11.  During the second experiment, both targets traveled along this net-

work, randomly selecting turns at intersections.

Fig. 12.  View from the flying quadcopter. Only one target is visible in the
FOV at a time.

computer at 30 frames per second. The function p (1, t) was
augmented to also output the estimated target heading in the
world coordinate system, and the NN was composed of 172
kernels, with mean positions evenly spaced along the roads
at 0.37 m intervals, mean headings parallel to the road, and
covariance Y, = 0.1735. Two independent instances of the esti-
mator developed in this paper were used to estimate the target
poses, one for each target; however, for simplicity, since the
targets share a common road network, the CL history stack was
shared between the two estimators, with a total of N = 2000
data points saved in the stack. Independent history stacks could
also have been used. During the initial phase, the quadcopter
was commanded to follow a single target for approximately
300 s, therefore acquiring enough data to reasonably approx-
imate a motion model of the targets along the road network.
After the initial phase, the quadcopter was commanded to fol-
low whichever target was closest to an intersection, since this is
where the assumptions are violated, i.e., a deterministic function
approximator would not be expected to accurately approximate
a stochastic function. After the target selected a direction, and
left the intersection, the predictor for this target is activated, and
the quadcopter follows the other target. This strategy matches a

True O Estimator A Predimor]
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Fig. 13.  Position estimates of target 1 expressed in world coordinates for the
second experiment with a quadcopter observing two moving targets.
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Fig. 14. Orientation estimates of target 1 relative to the world coordinate
system for the second experiment with a quadcopter observing two moving
targets.

reasonable strategy one might employ in a real world scenario:
observe a target at intersections or other areas where the target
can act randomly, but once the target has selected a direction, a
sufficiently learned predictor is expected to perform well, and
the observer can move on to other targets.

The results of this experiment are shown in Fig. 13 through
Fig. 16, and a video demonstrating the experiment is avail-
able at https://www.youtube.com/watch?v=QCIQtsQdhsM.
Figs. 13-16 show the true and estimated pose of the targets
in world coordinates, thus, demonstrating that after sufficient
data are collected, the target pose can be accurately estimated
even if the target remains outside the camera FOV for significant
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Fig. 15. Position estimates of target 2 expressed in world coordinates for the
second experiment with a quadcopter observing two moving targets.

qv2

Q3

Time [s]

Fig. 16. Orientation estimates of target 2 relative to the world coordinate
system for the second experiment with a quadcopter observing two moving
targets.

durations, despite significant delay due to the wireless transmis-
sion of the images, as well as the decreased measurement accu-
racy compared to the first experiment due to the low-resolution
camera.

C. Parameter Selection

As with many function approximation techniques, the param-
eters used for the NN are dependent on the specific application.
For the experiments discussed in the preceding sections, com-
monly used RBFs were selected as the kernel since they exhibit

IEEE TRANSACTIONS ON ROBOTICS, VOL. 34, NO. 3, JUNE 2018

local similarity (i.e., for the experiments, nearby points in the
state space are expected to have similar velocity values, and
RBFs have increasingly similar activation for increasingly sim-
ilarinputs). As demonstrated by the results, RBFs performed sat-
isfactorily, and therefore, more exotic kernels were not consid-
ered, but could be explored for other applications as necessary.

The primary concern for selecting the number and distri-
butions of the kernels is to ensure that the relevant parts of the
state space (i.e., the areas where the targets are expected to move
through) have nonzero kernel activation. The secondary concern
is to match the density and parameters of the kernels (e.g., mean
and variance for RBFs) to the complexity of the underlying vec-
tor field to be approximated. In other words, regions of the vector
field that are expected to have large spatial derivatives should
be approximated with a dense distribution of kernels, each with
relatively little extent (low variance for RBFs). If little is known
about where the target may travel or how aggressively it may
maneuver, a conservative approach can be taken, where a very
large number of kernels can be distributed over a large section
of the state space, and then packing the kernels densely and with
tight spatial extent. It is not surprising that with no knowledge of
the operational space the resulting conservative approach would
have increased memory and computational requirements.

In each experiment, the centers of the RBFs were distributed
across the vector field and road network, respectively. For the
second experiment, where the output of p also included the target
heading, the kernel centers were doubled, one for each of the two
directions parallel to the road. Kernel centers were separated by
a distance approximately 0.3 m and had variance of 0.3/, and
0.1173 for the first and second experiment, respectively, where
the smaller covariance was selected for the second experiment
due to the tight turns in the road map. In both experiments, these
initial parameter values performed satisfactorily, suggesting this
approach is insensitive to NN tuning.

The two experiments use two different imaging sensors with
varying capabilities. In the first experiment, a stationary high-
resolution camera is used to capture images at a high frame rate,
and images are transferred over a wired connection with low
latency and without compression. In the second experiment, a
moving low-resolution camera is used to capture images at a
relatively lower frame rate, and the images are transferred over
a wireless connection with high latency and lossy compression.
The experiments demonstrate the viability of our approach in
both cases using almost identical estimator parameters (with
minor differences in the NN kernel parameters, as described
previously), suggesting insensitivity to estimator gains despite,
e.g., frame drops, delay, lower measurement accuracy due to the
lower image resolution, etc.

Minor tuning of the gains (k, k2, kcr, and I') was required
beyond the initial values of 1 or I. Since signum functions
are known to produce high-frequency chatter, ky was set to
0.1, and k; was set to 3.0 to yield a desirable estimate conver-
gence rate when measurements were available. The integration
time window At was selected to be approximately equal to the
timescale of changes in the target velocity. Our initial selection
of At = 0.1 resulted in satisfactory estimator performance, and
therefore, was not adjusted.
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D. Discussion

Beyond the restriction on the target behavior to ensure learn-
ing is possible based on Assumption 2, the preceding exper-
iments demonstrate that the remaining assumptions are either
easily satisfied or do not significantly hinder estimator perfor-
mance when not met. As discussed in Remark 1, Assumption
1 (i.e., availability of pose measurements) can be satisfied by
currently available computer vision techniques and minimal do-
main knowledge. Assumption 3 (boundedness of the target pose)
is easily satisfied in any practical scenario. Assumption 4 (suf-
ficient richness in the data) is required to ensure NN parameter
estimate convergence; however, predictor performance may be
sufficient without it. For example, in the preceding experiments,
the calculated minimum eigenvalue of the history stack re-
mained within the floating point precision floor of the computer
system, suggesting the history stack is not full rank. Despite that
Figs. 6 and 7 demonstrate satisfactory predictor performance.

VIII. CONCLUSION

An adaptive observer and predictor were developed to esti-
mate the relative pose of a target from a camera in the presence
of intermittent measurements. While measurements are avail-
able, data are recorded and used to update an estimate of the
target motion model. When measurements are not available, the
motion model is used in a predictor to update state estimates.
The overall framework is shown to yield ultimately bounded es-
timation errors, where the bound can be made arbitrarily small
through gain tuning, increasing data richness, and function ap-
proximation tuning. Experimental results demonstrate the per-
formance of the developed estimator, even in cases of stochastic
target motion where the assumptions are violated.

Although the experiments demonstrate a robustness to moder-
ate violations of Assumption 2 (i.e., the targets in the experiment
with the road network do not always follow a static vector field),
estimation and prediction where a model does not exist (e.g., the
target follows a nonperiodic, time-varying trajectory) is still an
open problem. However, it may be possible to use the methods
developed in this paper to track objects undergoing a wider class
of motions through relaxation of Assumption 2. First, states be-
yond just the object pose (e.g., traffic levels) can be used in the
neural network to predict the object velocities. This can be used
to account for varying object behavior without relying on ex-
plicit time dependence. Furthermore, object velocity models can
be expanded to allow for piecewise constant mappings between
the object state and object velocity. This way, data collected to
estimate the model is ensured to be valid for at least a finite
period of time, while divergence of the measurements from pre-
diction can be used as an indication that new data need to be
collected, or that other components of the system (e.g., feature
tracking) are producing erroneous output. This approach could
allow the tracked objects to switch their mode of operation.
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