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ABSTRACT This paper investigates the controller synthesis problem for a multi-agent system (MAS) with
intermittent communication. We adopt a relay-explorer scheme, where a mobile relay agent with absolute
position sensors switches among a set of explorers with relative position sensors to provide intermittent
state information. We model the MAS as a switched system where the explorers’ dynamics can be either
fully-actuated or under-actuated. The objective of the explorers is to reach approximate consensus to a
predetermined goal region. To guarantee the uniform boundedness of the state estimation errors and the
approximate consensus of the explorers, we derive maximum dwell-time conditions to constrain the length
of time each explorer goes without state feedback (from the relay agent). Furthermore, the relay agent needs
to satisfy practical constraints such as charging its battery and staying in specific regions of interest. Both the
maximum dwell-time conditions and these practical constraints can be expressed by metric temporal logic
(MTL) specifications.We iteratively compute the optimal control inputs for the relay agent to satisfy theMTL
specifications, while guaranteeing the uniform boundedness of the state estimation errors and approximate
consensus of the explorers. We implement the proposed method on a case study with the CoppeliaSim robot
simulator.

INDEX TERMS Metric temporal logic, multi-agent systems, intermittent communication, switched systems.

I. INTRODUCTION
Traditionally, coordination strategies for multi-agent systems
(MASs) have been designed under the assumption that state
feedback is continuously available and each agent can con-
tinuously communicate with its neighbors over a network.
This assumption is often impractical, especially in mobile
robot applications where shadowing and fading in the wire-
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less communication can cause unreliability, and each agent
has limited energy resources [1]. Due to these constraints,
there is a strong interest in developing MAS coordination
methods that rely on intermittent information over a com-
munication network. In [2], [3], [4], [5], [6], and [7], the
authors develop event-triggered and self-triggered controllers
to only utilize sampled data from networked agents when
triggered by conditions that ensure desired stability and per-
formance properties. However, these results usually require a
network, represented by a connected graph, to enable agent
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coordination. In [8], the authors develop a framework that
enables a MAS to achieve position consensus at a known and
common location without needing a global communication
network, i.e., there is no communication graph coupling all
agents. In addition, the framework does not require all agents
to measure their global position or inter-agent displacements
to achieve position consensus. A relay-explorer strategy is
adopted, where the MAS is divided into N explorers and a
single relay agent. Each explorer uses dead-reckoning-based
navigation and intermittent feedback to maneuver towards
the desired rendezvous point, while the relay agent vis-
its each explorer to provide said intermittent feedback. By
introducing a relay agent, the explorers are able to navigate
towards the desired location without performing additional
maneuvers to obtain position information, such as moving
towards known feedback zones. This relay-explorer strategy
provides an alternative solution to the position consensus
or rendezvous problem, relative to graph-based methods
like [3], [4], and [5], that eliminates the need of a global
communication topology and for all agents to be equipped
with global position or inter-agent position sensors.

In this article, we develop a distributed and graphless con-
trol strategy that solves the position consensus problem and
improves upon our previous work in [8] and [9]. The result
leverages dead-reckoning-based navigation, intermittent state
feedback, a Lyapunov-based switched systems analysis, and
Metric Temporal Logic (MTL) to achieve approximate con-
sensus relative to a known and common location. As an
illustrative example, Fig. 1 shows three explorers working
towards reaching the green goal region, while one relay agent
provides intermittent state information to each explorer. To
facilitate navigation via dead reckoning and the provision
of intermittent state feedback, we develop model-based esti-
mators that generate position estimates of the explorers. In
addition, for each explorer, we derive a maximum dwell-time
condition that constrains the length of time it can go without
state feedback to ensure a desired degree of accuracy for
the position estimate. Specifically, satisfaction of the maxi-
mum dwell-time condition for each explorer guarantees the
uniform boundedness of its state estimation error by a user-
defined bound.

The maximum dwell-time conditions can be encoded
using MTL specifications, as in [10]. Such specifications
have also been used in robotic applications for time-related
constraints [11]. Since the relay agent is typically more
energy-consuming than the explorers, due to high-quality
communication hardware and superior kinematic capability,
the relay agent is likely required to satisfy additional MTL
specifications, such as charging its battery and staying within
specific regions of the workspace. In the example shown
in Fig. 1, the relay agent needs to satisfy an MTL specifi-
cation ‘‘reach the charging station G1 or G2 every 6 time
units and always stay in the purple region D’’. Under the
proposed control design, the explorers achieve approximate
consensus relative to a desired rendezvous location provided
the maximum dwell-time conditions are satisfied for all time,

FIGURE 1. Illustrative example of an MAS with a relay agent (quadrotor)
and three explorers (mobile robots). The two red structures (G1 and G2)
represent charging stations that the relay agent can utilize. The purple
region D describes a space in which the relay agent must always reside,
and the yellow region E depicts a restricted space from which the relay
agent must intermittently exit. The green goal region defines a feedback
zone, where, once within the goal region, an explorer can obtain state
information about itself through, for example, wireless communication
with a positioning system.

which ensure the desired uniform boundedness of the posi-
tion estimation errors needed to yield sufficiently accurate
dead-reckoning-based navigation. Then, we synthesize the
relay agent’s controller to satisfy the MTL specifications
that encode the maximum dwell-time conditions and the
additional practical constraints. There is a rich literature
on controller synthesis subject to temporal logic specifica-
tions [12], [13], [14], [15], [17], [18]. For linear or switched
linear systems, the controller synthesis problem can be con-
verted into amixed-integer linear programming (MILP) prob-
lem [14], [15]. However, rather than solve a single MILP
problem, we solve a sequence of MILP problems (iteratively)
due to the jumps exhibited by the position estimates of the
explorers, due to their resetting with the intermittent global
position feedback provided by the relay agent.

This paper provides additional insights and generalizes our
previous work in [19]. (a) The proposed approach in [19] only
applies to fully-actuated or over-actuated dynamics for the
explorers, while we extend the approach to under-actuated
dynamics (e.g., unicycle dynamics) for the explorers in this
paper. (b) We used both maximum and minimum dwell-time
conditions to achieve stability and approximate consensus
for the explorers in [19], while in this paper we only rely
on the maximum dwell-time conditions, i.e., the minimum
dwell-time conditions are not necessary to enable the result.
(c) This paper provides additional evidence of the approach
through CoppeliaSim robot simulators with multiple MTL
specifications in the case studies. We implemented the devel-
oped method in a simulation case study with three mobile
robots as explorers and one quadrotor as the relay agent. The
results in three different scenarios show that the synthesized
controller can lead to satisfaction of the MTL specifica-
tions, while ensuring the uniform boundedness of the state
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estimation errors and achieving the approximate consensus
objective.

II. PROBLEM FORMULATION
A. AGENT DYNAMICS
Consider a multi-agent system (MAS) consisting ofQ ∈ Z>0
explorers indexed by F ≜ {1, 2, . . . ,Q} and a relay agent
indexed by 0. Let T ≜ R≥0 represent the continuous-time
set and Td ≜ {t[0], t[1], . . . } represent the discrete-time set,
where t[j] = jTs is the time instant at time index j ∈ I =
{0, 1, . . . } and Ts ∈ R>0 is the sampling period. The state,
control input, and position of explorer i ∈ F are denoted by
xi ∈ Rm, ui ∈ Rn, and yi ∈ Rz, respectively. The state, control
input, and position of the relay agent are denoted by x0 ∈ Rl ,
u0 ∈ Rn, and y0 ∈ Rz, respectively. The known continuous
linear time-invariant (LTI) motion model of explorer i and
discrete LTI motion model of the relay agent are1

ẋi = Axi + Bui + di, x j+10 = A0x
j
0 + B0u

j
0,

yi = Cxi, yj0 = C0x
j
0, (1)

where A ∈ Rm×m, B ∈ Rm×n, C ∈ Rz×m, A0 ∈ Rl×l ,
B0 ∈ Rl×n, C0 ∈ Rz×l , and x j0 ≜ x0(t[j]) denotes the
value of x0 at time t[j]. Similarly, we have uj0 ≜ u0(t[j]) and
yj0 ≜ y0(t[j]). Furthermore, for each i ∈ F , let di : T → Rm

be a bounded and locally Lipschitz function representing an
exogenous disturbance. Since di is bounded, there exists a
d i ∈ R>0 such that ∥di(t)∥ ≤ d i for all t ∈ T2. We assume
the pair (A,B) is controllable.

B. NAVIGATION AND COMMUNICATION
Each explorer is equipped with a relative position sensor and
hardware to enable communication with the relay agent and
a home base within the goal region. Since the explorers lack
absolute position sensors, they are unable to locate them-
selves within the global coordinate system. Nevertheless, the
explorers can use their relative position sensors to self-locate
relative to their initially known locations, which are expressed
in the global coordinate frame. However, relative position
sensors, like encoders and inertial measurement units (IMUs),
can produce unreliable position information since wheels of
mobile robots may slip and IMUs may generate noisy data.
Hence, the di term in (1) models the inaccurate position
measurements from the relative position sensor of explorer
i as well as any external influences from the environment.
Navigating with relative position sensors results in dead-
reckoning, which becomes increasingly inaccurate with time
if not corrected. On the other hand, the relay agent is equipped
with an absolute position sensor and hardware to enable

1We consider discrete-time system dynamics for the relay agent to avoid
discretization error induced by conversion from the continuous-time domain
to the discrete-time domain when synthesizing control inputs for the relay
agent through optimization with MTL specifications (see Section IV).
We note that using discrete-time system dynamics for the relay agent and
continuous-time system dynamics for the explorer agents results in a hybrid
multi-agent system [20], [21].

2
∥ · ∥ denotes the 2-norm.

communication with each explorer. Note that, for each i ∈
F , communication is distance limited where explorer i and
the relay agent can communicate provided their Euclidean
distance is below a fixed communication radius. Unlike a
relative position sensor, an absolute position sensor allows
the agent to locate itself within the global coordinate frame.

Let xg ∈ Rm be a fixed user-defined state. A goal region
(e.g., see Fig. 1) centered at the positionCxg ∈ Rz with radius
Rf ∈ R>0 defines a feedback zone. If ∥yi − Cxg∥ ≤ Rf , then
explorer i can obtain state information about itself, i.e., xi, via
communication with a home base. Let R ∈ R>0 denote the
communication radius of the relay agent and each explorer.
Within this work, the relay agent has full knowledge of its
own state x0 for all time and the initial state xi(0) for each
explorer i ∈ F . The relay agent provides state information to
explorer i (i.e., services explorer i) if and only if ∥yi−y0∥ ≤ R
and the communication channel of explorer i is on. We define
the communication switching signal ζi for explorer i as ζi =

1 if the communication channel is on for explorer i, and
ζi = 0 if the communication channel is off for explorer i.
In general, the relay agent is unable to continuously service all
explorers simultaneously as would be the casewhen explorers
are dispersed over an expanse. In addition, we do not model
the communication topology with a graph since we analyze
each subsystem individually rather than analyze the ensem-
ble dynamics. Communication between explorers does not
occur, and communication between the relay agent and each
explorer takes place at isolated times. Hence, let {t is}

∞

s=0 ⊂ T
be an increasing sequence of servicing times for explorer i,
where t is denotes the s

th servicing instant for explorer i.

C. APPROXIMATE CONSENSUS
Given a goal region centered atCxg with radiusRf , one objec-
tive is to design distributed controllers for all explorers that
achieve approximate consensus within the goal region. This
objective is decomposed into two tasks, where it is the task of
the explorers to dead-reckon towards Cxg, and it is the task of
the relay agent to intermittently service each explorer. Since
a single relay agent must intermittently service Q explorers,
the MAS can be modeled as a switched system, where the
relay agent has 2Q modes of operation, i.e., the relay agent
can service no, a single, multiple3, or all explorers at an
instance depending on the configuration of the explorers. Let
σ : T → 2F be a piecewise constant switching signal that
determines the mode of operation of the relay agent. The
switching signal σ also determines the servicing times for all
explorers, i.e., {t is}

∞

s=0. To quantify the consensus objective,
let the tracking error of explorer i be

ei ≜ xg − xi ∈ Rm. (2)

To facilitate the analysis, let the state estimation error of
explorer i be

e1,i ≜ x̂i − xi ∈ Rm, (3)

3Whenever there is more than one explorer within the communication
region of the relay agent, those explorers are serviced by the relay agent.
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where x̂i ∈ Rm denotes the state estimate of explorer i. For
each i ∈ F , the state estimate of explorer i is synchronized
between explorer i and the relay agent, which is generated
by an estimator presented in the following section. Let the
estimated tracking error of explorer i be

e2,i ≜ xg − x̂i ∈ Rm. (4)

Using (3) and (4), (2) can be alternatively expressed as

ei = e2,i + e1,i. (5)

Given the tracking error in (2), approximate consensus is
achievedwithin the goal regionwhenever ∥ei∥ ≤ Rf /Smax(C)
for all i ∈ F , where Smax(C) ∈ R>0 is the maximum singular
value of C .

D. STATE ESTIMATOR AND CONTROLLER DEVELOPMENT
The state estimate of explorer i ∈ F is generated by the
following model-based estimator

˙̂xi = −Ae2,i + Bui, t ∈ [t is, t
i
s+1),

ŷi = Cx̂i, (6)

where, for each servicing instant t is, the state estimate of
explorer i is reset according to x̂i(t is) = xi(t is). Moreover, the
state estimate x̂i is initialized as x̂i(0) = xi(0) for all i ∈ F .
The controller of explorer i is

ui ≜ BTPe2,i, (7)

where P ∈ Rm×m is the positive definite solution to the
algebraic Riccati equation (ARE)

ATP+ PA− 2PBBTP+ kIm = 0m×m. (8)

In (8), k > 0 is a user-defined parameter, Im ∈ Rm×m is the
identity matrix, and 0m×m ∈ Rm×m is the zero matrix. Since
the pair (A,B) is controllable by assumption, there exists a
unique positive definite solution P to the ARE in (8). Substi-
tuting (4) and (7) into (6) yields the closed-loop estimator

˙̂xi = −(A− BBTP)(xg − x̂i), t ∈ [t is, t
i
s+1). (9)

The estimator in (9) enables the computation of x̂i over
each period of no communication, i.e., [t is, t

i
s+1), where x̂i is

employed by explorer i and the relay agent in two distinct
ways. Explorer i utilizes x̂i to compute its control input
with (4) and (7), while the relay agent uses x̂i to locate
explorer i with (9). In practice, explorer i and the relay agent
will have their own copy of the estimator in (9), where syn-
chronization is achieved by numerically integrating (9) while
using the same initial condition. Therefore, both agents can
determine x̂i without the need for continuous communication.
We now derive the relevant closed-loop systems. Substitut-

ing (1) and (6) into the time derivative of (3) yields

ė1,i = Ae1,i − Axg − di, t ∈ [t is, t
i
s+1), (10)

where, for each servicing instant t is, e1,i(t
i
s) = 0m and 0m ∈

Rm is the zero vector. Substituting (6) and (7) into the time
derivative of (4) yields

ė2,i = (A− BBTP)e2,i, t ∈ [t is, t
i
s+1), (11)

where, for each servicing instant t is, e2,i(t
i
s) = xg − xi(t is).

Substituting (1), (5), and (7) into the time derivative of (2)
yields

ėi = (A− BBTP)ei + BBTPe1,i − Axg − di. (12)

Let ξi ≜ [eTi , e
T
1,i, ν]

T
∈ R2m+1 be an auxiliary state for

explorer i, where ν ∈ T is a timer variable that evolves
according to ν̇ = 1 with ν(0) = 0. Using ν̇ = 1, (10),
and (12), the closed-loop dynamics of ξi during flows, i.e.,
over each [t is, t

i
s+1), is ξ̇i = hi(ξi), where

hi(ξi)≜

 (A−BBTP)ei + BBTPe1,i − Axg − di(ν)
Ae1,i − Axg − di(ν)

1

 . (13)

Whenever t = t is, s ∈ Z≥0, the auxiliary state ξi jumps such
that ξ+i = [eTi , 0

T
m, ν]T, where ξ+i denotes the value of ξi after

a jump. Hence, for each jump time t is, the value of ei after the
jump is set equal to the value of ei before the jump, the value
of e1,i after the jump is set equal to 0m, and the value of ν

after the jump is set equal to the value of ν before the jump.
Remark 1: The control strategy allows the explorers to

dead-reckon to a common goal location while only inter-
mittently communicating with a relay agent to obtain state
feedback. In the future, one could leverage inter-explorer
communication and distributed state estimation to accom-
modate more general communication topologies and develop
more accurate state estimates for each explorer.

E. METRIC TEMPORAL LOGIC (MTL)
To achieve the uniform boundedness of the state estimation
errors and approximate consensus of the explorers while
satisfying the practical constraints of the relay agent, the
requirements of the MAS can be specified in MTL specifica-
tions (see details in Section IV). In this subsection, we briefly
review MTL interpreted over discrete-time trajectories [22].
The domain of the position y of a certain agent is denoted by
Y ⊂ Rz. The Boolean domain is B = {True, False}, and the
time index set is I = {0, 1, . . . }.With slight abuse of notation,
we use y to denote the discrete-time trajectory as a function
from I to Y . A set AP is a set of atomic propositions, each of
whichmapsY toB. The syntax ofMTL is defined recursively
as

φ := ⊤ | π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1UIφ2

where ⊤ stands for the Boolean constant True, π ∈ AP is
an atomic proposition, ¬ (negation), ∧ (conjunction), ∨ (dis-
junction) are standard Boolean connectives, U is a temporal
operator representing “until” and I is a time interval of the
form I = [j1, j2] (j1 ≤ j2, j1, j2 ∈ I). We can also derive
two useful temporal operators from “until” (U), which are
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“eventually” ♢Iφ ≜ ⊤UIφ and “always” □Iφ ≜ ¬♢I¬φ.
We define the set of states that satisfy the atomic proposition
π as O(π ) ⊂ Y . The subscript I in the temporal operators
♢I , □I , and UI refers to the bounded temporal operators.
When the subscript I is not used in the temporal operators,
this implies the use of unbounded temporal operators, where
the time interval I = [0,∞) by default.

Next, we introduce the Boolean semantics of MTL for
trajectories of finite length in the strong and the weak view,
which are modified from the literature of temporal logic
model checking and monitoring [23], [24], [25]. We use t[j]
to denote the time instant at time index j ∈ I and yj ≜
y(t[j]) to denote the value of y at time t[j]. In the following,
(y0:H , j) |HS φ (resp. (y0:H , j) |HW φ) means the trajectory
y0:H ≜ y0 . . . yH (H ∈ Z≥0) strongly (resp. weakly) satisfies
φ at time index j, (y0:H , j) ̸|HS φ (resp. (y0:H , j) ̸|HW φ) means
y0:H fails to strongly (resp. weakly) satisfy φ at time index j.
Definition 1: The Boolean semantics of MTL for trajecto-

ries of finite length in the strong view is defined recursively
as follows [16]:

(y0:H , j) |HS π iff j ≤ H and yj ∈ O(π ),

(y0:H , j) |HS ¬φ iff (y0:H , j) ̸|HW φ,

(y0:H , j) |HS φ1 ∧ φ2 iff (y0:H , j) |HS φ1

and (y0:H , j) |HS φ2,

(y0:H , j) |HS φ1 ∨ φ2 iff (y0:H , j) |HS φ1

or (y0:H , j) |HS φ2,

(y0:H , j) |HS φ1UIφ2 iff ∃j′ ∈ j+I, s.t.(y0:H , j′) |HS φ2,

(y0:H , j′′) |HS φ1,∀j′′ ∈ [j, j′].

Definition 2: The Boolean semantics of MTL for trajecto-
ries of finite length in the weak view is defined recursively as
follows [16]:

(y0:H , j) |HW π iff either of the following holds :

1) j ≤ H and yj ∈ O(π ); 2) j > H ,

(y0:H , j) |HW ¬φ iff (y0:H , j) ̸|HS φ,

(y0:H , j) |HW φ1 ∧ φ2 iff (y0:H , j) |HW φ1

and (y0:H , j) |HW φ2,

(y0:H , j) |HW φ1 ∨ φ2 iff (y0:H , j) |HW φ1

or (y0:H , j) |HW φ2,

(y0:H , j) |HW φ1UIφ2 iff ∃j′ ∈ j+I, s.t.(y0:H , j′) |HW φ2,

(y0:H , j′′) |HW φ1,∀j′′ ∈ [j, j′].

Intuitively, if a trajectory of finite length can be extended
to infinite length, then the strong view indicates that the
truth value of the formula on the infinite-length trajectory is
already ‘‘determined’’ on the trajectory of finite length, while
the weak view indicates that it may not be ‘‘determined’’
yet [25]. As an example, a trajectory y0:3 = y0y1y2y3 is not
possible to strongly satisfy φ = □[0,5]π at time 0, but y0:3 is

possible to strongly violate φ at time 0, i.e., (y1:3, 0) |HS ¬φ

is possible.
For an MTL formula φ, the necessary length L(φ) is

defined recursively as follows [26]:

L(π ) := 0, L(¬φ) := L(φ),

L(φ1 ∧ φ2) := max(L(φ1),L(φ2)),

L(φ1U[j1,j2]φ2) := max(L(φ1),L(φ2))+ j2.

F. PROBLEM STATEMENT
We now present the problem formulation for the control of
the MAS with intermittent communication and MTL specifi-
cations.

Problem 1: Design the control inputs for the relay agent
u0 = [u00, u

1
0, · · · ] (u

j
0 denotes the control input at time index

j) such that the following characteristics are satisfied while
minimizing the control effort

∑
∞

j=0 ∥u
j
0∥

2:
Correctness: A given MTL specification φ is weakly satisfied
by the trajectory of the relay agent.
Uniform Boundedness: For all i ∈ F and t ∈ T, the error
e1,i(t) is bounded, i.e., ∥e1,i(t)∥ ≤ VT , where VT > 0 is a
user-defined constant.
Approximate Consensus: The states of the explorers in {xi}i∈F
reach approximate consensus within the goal region centered
at Cxg with radius Rf .

III. STABILITY ANALYSIS
In this section, we provide conditions that generate a stable
switched system and enable approximate consensus for the
explorers. Let VT ∈ R>0 be a user-defined parameter that
quantifies the maximum tolerable state estimation error, i.e.,
it is desirable to ensure ∥e1,i(t)∥ ≤ VT for all t ∈ T and each
i ∈ F . We now derive a maximum dwell-time condition that
ensures ∥e1,i(t)∥ ≤ VT for all t ∈ [t is, t

i
s+1] and each s ∈ Z≥0.

Theorem 1: Suppose {t is}
∞

s=0 ⊂ T is an increasing
sequence of servicing times, such that t is+1 − t is > 0 for
all s ∈ Z≥0. If ∥e1,i(t is)∥ = 0 and the relay agent services
explorer i at time t is+1 such that the maximum dwell-time
condition

t is+1 − t
i
s ≤

1
Smax(A)

ln
(
VT Smax(A)

κi
+ 1

)
≜ 1ti (14)

is satisfied, then ∥e1,i(t)∥≤ VT for all t ∈ [t is, t
i
s+1] and each

s ∈ Z≥0, where κi ≜ Smax(A)∥xg∥ + d i ∈ R>0.
Proof: Consider the interval [t is, t

i
s+1) and the common

Lyapunov-like function candidate V1 : Rm
→ R≥0,

V1(e1,i) ≜
1
2
eT1,ie1,i. (15)

Substituting (10) into the time derivative of (15) yields
V̇1(e1,i) = eT1,i(Ae1,i − Axg − di), which implies

V̇1(e1,i) ≤ Smax(A)∥e1,i∥2 + κi∥e1,i∥. (16)

Using (15), (16) can be expressed as

V̇1(e1,i) ≤ 2Smax(A)V1(e1,i)+ κi
√
2V1(e1,i). (17)

91328 VOLUME 11, 2023



Z. Xu et al.: Controller Synthesis for MASs With Intermittent Communication and MTL Specifications

Over the flow interval [t is, t
i
s+1), both V1 and V̇1 are con-

tinuous, and, therefore, integrable4. Consequently, integrat-
ing (17) over [t is, t

i
s+1] yields

V1(e1,i(t))≤

( √
2κi

2Smax(A)

(
exp(Smax(A)(t − t is))− 1

))2

,

(18)

where integration of (17) over [t is, t
i
s+1) and [t

i
s, t

i
s+1] produces

the same result. Substituting (15) into (18) yields ∥e1,i(t)∥ ≤
8i(t) over [t is, t

i
s+1], where

8i(t) ≜
κi

Smax(A)

(
exp(Smax(A)(t − t is))− 1

)
. (19)

Moreover, 8i(t is+1) ≤ VT by (14) and (19). Since 8i(t) is an
increasing function, 8i(t) ≤ 8i(t is+1) over [t

i
s, t

i
s+1]. Hence,

∥e1,i(t)∥ ≤ 8i(t) ≤ 8i(t is+1) ≤ VT over [t is, t
i
s+1]. □

Remark 2: For each explorer i ∈ F, if the relay agent
services explorer i at time t is while satisfying the maximum
dwell-time condition in (14) for all s ∈ Z≥0, then ∥e1,i(t)∥ ≤
VT for all t ∈ T, which follows by mathematical induction.

We now show the tracking error in (2) is globally uni-
formly ultimately bounded (GUUB). Given a symmetric and
real-valued matrix P, the maximum and minimum eigenval-
ues of P are denoted by λmax(P) ∈ R and λmin(P) ∈ R,
respectively.
Theorem 2: Suppose {t is}

∞

s=0 ⊂ T is an increasing
sequence of servicing times, such that t is+1 − t is > 0 for all
s ∈ Z≥0. If the relay agent services explorer i while satisfying
the maximum dwell-time condition in (14) for each s ∈ Z≥0
and e1,i(t i0) = 0m, then the estimator in (6) and controller
in (7) ensure the tracking error in (2) is GUUB for all t ∈ T
in the sense that

∥ei(t)∥ ≤
ρiC1
k
+
√
C1∥ei(0)∥ exp(−C2t) ≜ 9i(t), (20)

where C1 ≜ λmax(P)/λmin(P), C2 ≜ k/(2λmax(P)), and ρi ≜
2d iλmax(P)+2VTλmax(PBBTP)+2Smax(PA)∥xg∥. Moreover,
e2,i(t) and ui(t) are bounded for all t ∈ T.

Proof: Consider the common Lyapunov-like function
V2 : R2m+1

→ R≥0, such that

V2(ξi) ≜ eTi Pei. (21)

Recall that P is the symmetric and positive definite solution
to the ARE in (8), which exists since the pair (A,B) is con-
trollable. Using the Rayleigh quotient, (21) can be bounded
as

λmin(P)∥ei∥2 ≤ V2(ξi) ≤ λmax(P)∥ei∥2. (22)

The change in V2(ξi) is given by V̇2(ξi) = ⟨∇V2(ξi), hi(ξi)⟩
during flows, where hi(ξi) is the vector field provided in (13).
Therefore,

V̇2(ξi) = eTi (A
TP+ PA− 2PBBTP)ei

4Recall that x̂i is reset at each service time t is, where the reset occurs in zero
continuous-time. Hence, e1,i evolves continuously over [t is−1, t

i
s), resets to

0m at time t is, evolves continuously over [t
i
s, t

i
s+1), etc.

+ 2eTi P(BB
TPe1,i − Axg − di). (23)

Using the ARE in (8), (23) can be bounded as

V̇2(ξi) ≤ −k∥ei∥2 + 2λmax(PBBTP)∥ei∥∥e1,i∥

+ 2Smax(PA)∥ei∥∥xg∥ + 2λmax(P)∥ei∥∥di∥. (24)

Since the relay agent satisfies the maximum dwell-time con-
dition in (14) for each s ∈ Z≥0, ∥e1,i(t)∥ ≤ VT for all t ∈ T
using Theorem 1. Recall that ∥di∥ ≤ d i. Hence, (24) can be
bounded as

V̇2(ξi) ≤ −k∥ei∥2 + ρi∥ei∥, (25)

where the auxiliary constant ρi is defined in Theorem 2.
Using (22), (25) implies

V̇2(ξi) ≤ −
k

λmax(P)
V2(ξi)+ ρi

√
V2(ξi)

λmin(P)
. (26)

During jumps, i.e., when t = t is for s ∈ Z≥0, the change in
V2(ξi) is computed using V2(ξ

+

i )−V2(ξi). Because ei evolves
continuously under hi(ξi) in (13), e+i = ei, and V2(ξi) =
eTi Pei, it follows that

V2(ξ
+

i )− V2(ξi) = 0. (27)

Let φi be a maximal solution to ξ̇i = hi(ξi) that satisfies
the jump condition. Since the vector field hi(ξi) is locally
Lipschitz and ξ+i = [eTi , 0

T
m, ν]T at each jump, the maxi-

mal solution exists, is unique, and is discontinuous only at
the points {t is}

∞

s=0. In fact, the maximal solution φi is only
discontinuous along the e1,i–coordinate at the points {t is}

∞

s=0.
Writing ξi(t) = φi(t), integrating (26) over flow intervals,
stitching the solutions of (26) for adjacent flow intervals
using (27), and employing (22) yields (20). By (20), ei is
bounded. Since ei is bounded and e1,i is bounded by inductive
use of Theorem 1, (5) implies e2,i is bounded. Hence, ui is
bounded given (7). □
Remark 3: From (20), we see that

lim sup
t→∞

∥ei(t)∥ ≤
3max(P)
3min(P)

ρi

k
≜ 3(ρi),

where 3(ρi) can be made small by making ρi small, i.e.,
selecting a small VT ∈ R>0 and setting the desired state as
the origin. A change of coordinate transformation can be used
to make the desired state the origin.
Remark 4: Observe that ∥Cxg − yi∥ ≤ Smax(C)∥ei∥

by (1) and (2). Suppose the radius of the goal region is
selected such that Smax(C)3(ρi) < Rf holds. Then, (20)
implies that there exists a time Ti > 0 where 9i(Ti) ≤
Rf /Smax(C) and ∥ei(t)∥ ≤ Rf /Smax(C) for all t ≥ Ti.
Consequently, ∥Cxg − yi(t)∥ ≤ Rf for all t ≥ Ti, which
allows explorer i to receive continuous position feedback from
the goal region. Hence, x̂i(t) = xi(t) for all t ≥ Ti, and (3)
implies ∥e1,i(t)∥ = 0 for all t ≥ Ti. Furthermore, (24)
implies 3(ρi) can be reduced to 3(ρ∗i ) once t ≥ Ti, where
ρ∗i ≜ 2d iλmax(P)+ 2Smax(PA)∥xg∥.
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IV. CONTROLLER SYNTHESIS WITH INTERMITTENT
COMMUNICATION AND MTL SPECIFICATIONS
In this section, we provide the framework and algorithms for
controller synthesis of the relay agent to satisfy the maximum
dwell-time conditions and the practical constraints. The con-
troller synthesis for the relay agent is conducted iteratively
as the state estimates for the explorers are reset to the true
state values whenever they are serviced by the relay agent,
and thus the control inputs need to be recomputed with the
reset values.

The maximum dwell-time outlined by the right-hand side
of (14) for explorer i (i ∈ F) is in the interval [niTs, (ni+1)Ts)
for some non-negative integer ni. We use the following MTL
specifications for encoding the maximum dwell-time condi-
tion. In the following MTL specification, η is a user-defined
parameter that determines an upper bound on the distance
between the estimated position of explorer agent i (ŷi) and
the position of the relay agent (y0). We also require that
niTs ≤ 1ti so that the maximum-dwell time condition as
stated in (14) is satisfied.

φm =
∧

1≤i≤Q

(
□♢[0,ni]∥y0 − ŷi∥ ≤ η

)
,

where φm means ‘‘for any explorer i, the relay agent needs to
be within η distance from the estimated position of explorer
i at least once in any niTs time periods’’.

The relay agent also needs to satisfy an MTL specification
φp for the practical constraints. One example of φp is as
follows.

φp = □♢[0,c]
(
(y0 ∈ G1) ∨ (y0 ∈ G2)

)
∧□(y0 ∈ D),

which means ‘‘the relay agent needs to reach the charging
station G1 or G2 at least once in any cTs time periods, and
it should always remain in the region D’’ (c is a positive
integer).

Combining φm and φp, the MTL specification for the relay
agent is φ = φm ∧ φp. We use [φ]ℓj to denote the formula
modified from the MTL formula φ when φ is evaluated at
time index j and the current time index is ℓ. [φ]ℓj can be
calculated recursively as follows (we use πj to denote the
atomic proposition π evaluated at time index j):

[π ]ℓj : =


πj, if j > ℓ

⊤, if j ≤ ℓ and yj ∈ O(π )
⊥, if j ≤ ℓ and yj ̸∈ O(π )

[¬φ]ℓj : = ¬[φ]
ℓ
j

[φ1 ∧ φ2]ℓj : = [φ1]ℓj ∧ [φ2]ℓj

[φ1UIφ2]ℓj : =
∨

j′∈(j+I)

(
[φ2]ℓj′ ∧

∧
j≤j′′<j′

[φ1]ℓj′′
)
, (28)

where ⊥ stands for the Boolean constant False. If the MTL
formula φ is evaluated at the initial time index (which is the
usual case when the task starts at the initial time), then the
modified formula is [φ]ℓ0.

Algorithm 1Controller Synthesis ofMASsWith Intermittent
Communication and MTL Specifications

1: Inputs: x00 , x
0
i , φ, xg, Rf , VT , η

2: ℓ← 0, ℓ∗← 0
3: SolveMILP-sol to obtain optimal inputs
u∗q0 (q = 0, 1, . . . ,N − 1)

4: while ∥Cxg − yi(t[ℓ])∥ > Rf for some i ∈ F do
5: W = {i | ∥y0 − ŷi(t[ℓ])∥ ≤ η}

6: ifW ̸= ∅ or ℓ ≥ ℓ∗ + N then
7: ∀i ∈W , update x̂ℓ

i in constraint (29) and
change constraint (29) as follows:
x̂ j+1i ← Z̄ (xg − x̂

j
i ), ∀i ∈ F ,

∀j = ℓ, ℓ+ 1, . . . , ℓ+ N − 1,
x̂ℓ
i ← xℓ

i , ∀i ∈W
8: Re-solveMILP-sol to obtain optimal inputs

u∗ℓ+q (q = 0, 1, . . . ,N − 1)
9: ifMILP-sol is infeasible then

Return Infeasible
10: end if
11: u∗ℓ+q0 ← u∗ℓ+q (q = 0, 1, . . . ,N − 1), ℓ∗← ℓ

12: end if
13: ℓ← ℓ+ 1
14: end while
15: Return u∗0 = [u∗00 , u∗10 , . . . ]

Algorithm 1 shows the controller synthesis approach
with intermittent communication and MTL specifications.
The controller synthesis problem can be formulated as a
sequence of mixed integer linear programming (MILP) prob-
lems, denoted as MILP-sol in Line 3, and expressed as
follows:

argmin
uℓ:ℓ+N−1
0

ℓ+N−1∑
j=ℓ

∥uj0∥
2

subject to: x j+10 = A0x
j
0 + B0u

j
0, y

j
0 = C0x

j
0,

∀j = ℓ, . . . , ℓ+ N − 1;

x̂ j+1i = Z̄ (xg − x̂
j
i ), ŷ

j
i = C̄ x̂ ji ,

∀i ∈ F,∀j = ℓ, . . . , ℓ+ N − 1; (29)

u0,min ≤ u
j
0 ≤ u0,max,

∀j = ℓ, . . . , ℓ+ N ;

(ỹ0:ℓ+N−1, 0) |HW [φ]ℓ0, (30)

where the time index ℓ is initially set as 0, N ∈

Z>0 is the number of time instants in the control hori-
zon, ỹ0:ℓ+N−1 = [y0:ℓ+N−10 , ŷ0:ℓ+N−11 , . . . , ŷ0:ℓ+N−1Q ],
uℓ:ℓ+N−1
0 = [uℓ

0, u
ℓ+1
0 , . . . , uℓ+N−1

0 ] are the control inputs
of the relay agent, and the input values are constrained
to [u0,min, u0,max]. Moreover, Z̄ is converted from Z =
−(BBTP − A) in ˙̂xi = Z (xg − x̂i) (stated in (9)) and C̄ is
converted fromC in (6) using a Zero-Order Holdmethodwith
a sampling period of Ts which causes zero local discretization
error at the sampling points for homogeneous linear system
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dynamics [27], [28] for a the discrete-time state-space repre-
sentation. Note that we only require the trajectory y0:ℓ+N−10 to
weakly satisfy φ as ℓ+N − 1 may be less than the necessary
length L(φ). At each time index ℓ, we check if there exists
any explorer that is being serviced (Line 5). If there are such
explorers, we update the state estimates of those explorers
with their true state values (Line 7). Then, we modify the
MTL formula as in (28). The MILP is solved for time index ℓ

with the updated state values and the modified MTL formula
[φ]ℓ0 (Line 8). The previously computed relay agent control
inputs are replaced by the newly computed control inputs
from time index ℓ to ℓ + N − 1 (Line 11). In Line 6, ℓ∗

refers to the last time index at which the controller input u0 is
calculated. Initially, ℓ∗ is set to 0 (Line 2). ℓ∗ is updated
whenever the MILP-sol needs to be resolved (i.e., either of
the two conditions is met). Specifically, both ℓ and ℓ∗ are set
to 0 in the beginning, and the MILP-sol is solved at ℓ = 0
(Lines 2 and 3). As an illustrative example, if at ℓ = 1, 2, 3,
neither of the conditions at Line 6 is met, then ℓ∗ remains to
be 0. If at ℓ = 4 at least one of the conditions is met, then we
re-solve the MILP-sol (Line 8) and set ℓ∗ = 4 (Line 11). In
order to guarantee the weak satisfaction of the MTL formula
φ (Constraint (30)), we use the big-M formulation, where we
employ a sufficiently large positive number M and binary
variables [29] (as there may be disjunction and eventually
operators in the MTL formula) to enforce the weak satisfac-
tion of a MTL formula φ.
Example 1: As an illustrative example, we want to guaran-

tee the weak satisfaction of theMTL formulaφ := □♢I ((y0 ∈
G1) ∨ (y0 ∈ G2)) evaluated at time index 0 (we use [φ]ℓ0 to
denote φ evaluated at time index 0 and the current time index
is ℓ) using the trajectory y0:ℓ+N−10 . We denote the length of the
time interval I = [0, c] with |I|, where c is a positive integer.
We also denote the length of the time horizon H = [0 : ℓ +
N − 1] with |H |. The atomic proposition y0 ∈ G1 represents
the interior area of the region G1. The interior area of region
G1 can be indicated using six inequalities representing the
boundaries of the three-dimensional region G1. The matrix
representation of these inequalities is denoted by A1y0 ≤ b1,
where A1 ∈ R6×3, y0 ∈ R3×1, and b1 ∈ R6×1. Similarly,
we represent the proposition y0 ∈ G2 using A2y0 ≤ b2,
where A2 ∈ R6×3, y0 ∈ R3×1, and b2 ∈ R6×1. In addition,
we use 1 to denote a vector of appropriate dimension with all
the entries to be one. We enforce the weak satisfaction of the
MTL formula [φ]0ℓ by defining the constraints in (31), which
ensures that the relay agent reaches at least one charging
station at least once in any cTs sampling period. In (31),
superscript j refers to the time index at which we enforce
the weak satisfaction of the MTL formula [φ]0ℓ in the control
horizon N using the trajectory y0:ℓ+N−10 . In (31), pj1 and
pj2 are binary variables associated with G1 and G2 at time
index j, respectively.

A1y
j
0 ≤ b1 +M (1− pj1)1, ∀j = ℓ, . . . , ℓ+ N − 1

A2y
j
0 ≤ b2 +M (1− pj2)1, ∀j = ℓ, . . . , ℓ+ N − 1

j+|I|−1∑
k ′=j

pk
′

1 +

j+|I|−1∑
k ′=j

pk
′

2 ≥ 1,

∀j = max {1, ℓ− |I| + 1}, . . . , ℓ+ |H | − |I|. (31)

Complexity: The computational complexity of the MILPs
can be characterized using the number of variables and the
constraints involved in the optimization problem. The main
measure of the problem size is the number of binary vari-
ables and continuous variables introduced in the problem.
We denote the set of atomic propositions used in theMTL for-
mula φ by P and the size of the set P by |P|. Also, we denote
the number of the operators (both logical and temporal) used
in the MTL φ by |φ|. For F explorer agents, the control
horizon N , a trajectory y of length |y|, and the L required
iterations for reaching the approximate consensus (by solving
MILP-sol at each iteration), the computation complexity of
Algorithm 1 is O(|y| · |P| · |φ| · F · N · L).
Let {t̂ is}

∞

s=0 ⊂ Td be an increasing sequence for explorer
i, iteratively generated by Algorithm 1, where t̂ is is the sth

time instant that ∥ŷi − y0∥ ≤ η holds. Moreover, let the
communication switching signal ζi be

ζi(t) ≜

{
1, if t = t̂ is for some s ∈ I,
0, otherwise.

(32)

Finally, we present Theorem 3, which provides theoretical
guarantees for achieving correctness, uniform boundedness,
and approximate consensus (in Problem 1).
Theorem 3: Given the estimator in (6), controller in (7),

and communication switching signal in (32) for each explorer
i ∈ F, if each optimization in Algorithm 1 is feasi-
ble, η ∈ [0,R), VT ∈ (0, (R − η)/Smax(C)], and
Smax(C)3(ρi) < Rf , then Algorithm 1 terminates in finite
time, the MTL specification φ is weakly satisfied, and the
explorers achieve approximate consensus within the goal
region, i.e., lim supt→∞∥ei(t)∥ ≤ 3(ρ∗i ), where ρ∗i =

2d iλmax(P) + 2Smax(PA)∥xg∥. In addition, for each explorer
i ∈ F and servicing instance s ∈ Z≥0, t is+1 − t

i
s ≥ Ts, where

Ts > 0 is the sampling period in Algorithm 1.
Proof: We first utilize mathematical induction to prove

t̂ is = t is for each explorer i ∈ F and each servicing instance
s ∈ Z≥0. First, set t̂ i0 = t i0 = 0 for each i ∈ F . Next, fix
i ∈ F , and suppose t̂ is = t is for some s ∈ Z>0. We now show
t̂ is+1 = t is+1. Recall that t

i
s+1 is the next time instant explorer i

is serviced by the relay agent, which occurs if and only if ∥yi−
y0∥ ≤ R and the communication switching signal ζi is on, i.e.,
ζi = 1. Note that R is the communication radius of the agents.
On the other hand, t̂ is+1 ∈ Td = {t[0], t[1], . . .} represents
the next discrete time instant that ∥ŷi− y0∥ ≤ η holds, where
η ∈ [0,R). Since each optimization inAlgorithm 1 is feasible,
it follows that the MTL specification φm is weakly satisfied,
which results in t̂ is+1− t̂

i
s = t̂ is+1− t

i
s ≤ niTs. Recall that ni ∈

Z>0 and Ts > 0 is the sampling period. Therefore, as niTs ≤
1ti (1ti is defined in (14)), we can derive that t̂ is+1 − t̂ is =
t̂ is+1 − t is ≤ niTs ≤ 1ti. Since t̂ is+1 − t is ≤ 1ti, Theorem 1
implies that ∥e1,i(t̂ is+1)∥ ≤ VT . Using (1), (3), (6), and the
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triangle inequality, it follows that

∥yi(t̂ is+1)− y0(t̂
i
s+1)∥ ≤ ∥Cxi(t̂

i
s+1)− Cx̂i(t̂

i
s+1)∥

+ ∥Cx̂i(t̂ is+1)− Cx0(t̂
i
s+1)∥

≤ Smax(C)VT + η,

where VT ≤ (R − η)/Smax(C) implies that ∥yi(t̂ is+1) −
y0(t̂ is+1)∥ ≤ R. According to (32), ζi(t̂ is+1) = 1. Thus,
the relay agent services explorer i at discrete time t̂ is+1, and
t̂ is+1 = t is+1 holds. Therefore, t̂ is = t is for each i ∈ F
and s ∈ Z≥0 by mathematical induction. Moreover, since
Algorithm 1 generates the sequence of discrete servicing
times {t̂ is}

∞

s=0 and employs the sampling period Ts > 0, then
t is+1 − t

i
s = t̂ is+1 − t̂

i
s ≥ Ts for each (i, s) ∈ F × Z≥0.

If each optimization is feasible in Algorithm 1, then [φ]ℓ0 is
weakly satisfied for each ℓ as constraint (30) is satisfied;
hence, the MTL specification φ is weakly satisfied. With
t̂ is = t is, the maximum dwell-time condition in (14) is satisfied
for all t is and i ∈ F . From Theorem 2 and Remarks 3 and 4,
if Smax(C)3(ρi) < Rf holds, then, for each i ∈ F , there
exists a time Ti > 0 such that explorer i will be inside the
goal region for t ≥ Ti. Thus, at time t̃ = maxi∈F {Ti}, ∥Cxg−
yi(t̃)∥ < Rf holds for all i ∈ F , i.e., Algorithm 1 is guaranteed
to terminate within finite time. Finally, if VT ∈ (0, (R −
η)/Smax(C)], then according to Theorem 2 and Remark 4,
we have lim sup

t→∞
∥ei(t)∥ ≤ 3(ρ∗i ). □

V. IMPLEMENTATION
We now demonstrate the controller synthesis approach in the
example in Fig. 1 (in Section I). The relay agent is a quadrotor
modeled as a six degrees of freedom (6-DOF) rigid body [16].
We denote the system state as x0q = [pq, ṗq, θq, �q]T ∈ R12,
where pq = [xq,1, xq,2, xq,3]T and ṗq = [ẋq,1, ẋq,2, ẋq,3]T are
the position and velocity vectors of the quadrotor. The vector
θq = [αq, βq, γq]T ∈ R3 includes the roll, pitch and yaw
Euler angles of the quadrotor. The vector �q ∈ R3 includes
the angular velocities rotating around its body frame axes.
The nonlinear dynamic model of such a quadrotor is given
by mqp̈q = r(θq)Tqe3 − mge3, θ̇q = H (θq)�q, and I�̇q =

−�q× I�q+ τq, where mq is the mass, g is the gravitational
acceleration, I is the inertia matrix, r(θq) is the rotationmatrix
representing the body frame with respect to the inertial frame
(which is a function of the Euler angles),H (θq) is a nonlinear
mapping that projects the angular velocity �q to the Euler
angle rate θ̇q, e3 = [0, 0, 1]T, Tq is the thrust of the quadrotor,
and τq ∈ R3 is the torque on the three axes. The control
input is u0 = [u0,1, u0,2, u0,3, u0,4]T, where u0,1 is the vertical
velocity command, u0,2, u0,3 and u0,4 are the angular velocity
commands around its three body axes. We consider the state
of the kinematic model of the quadrotor (relay agent) as x0 =
[xq,1, xq,2, xq,3, ẋq,1, ẋq,2, αq, βq, γq]T and the 3-D position
representation of the relay agent as y0 = [xq,1, xq,2, xq,3]T.
By adopting the small-angle assumption and then linearizing
the dynamic model around the hover state and discretizing
using a Zero-Order Hold method with the sampling period

Ts, we obtain x j+10 = A0x
j
0 + B0u

j
0 and yj0 = C0x

j
0, where

A0 ∈ R8×8 and B0 ∈ R8×4.
For each i ∈ F , explorer i is modeled as a planar unicycle

with dynamics ẋi,1 = vi cos(θi), ẋi,2 = vi sin(θi), and θ̇i = ωi.
Note that (xi,1, xi,2) denotes the planar position of explorer i,
θi denotes the heading, and (vi, ωi) denotes the control input.
When (vi, θi) ∈ R \ {0} × R, the unicycle model can be
feedback linearized as (ẍi,1, ẍi,2) = (ui,1, ui,2) (see Section V
of [16]), where ui,1 and ui,2 are the control inputs of explorer
i and [

ẍi,1
ẍi,2

]
=

[
cos(θi) −vi sin(θi)
sin(θi) vi cos(θi)

]
︸ ︷︷ ︸

≜R(vi,θi)

[
v̇i
ωi

]
.

When (vi, θi) ∈ R \ {0} × R, the control input for the double
integrator model can be mapped to a control input for the
unicycle using [v̇i, ωi]T = R(vi, θi)−1[ui,1, ui,2]T.
For the state space representation of explorer i, xi ≜

[xi,1, xi,2]T, ui ≜ [ui,1, ui,2]T, di ≜ [di,1, di,2]T and yi ≜
[xi,1, xi,2, 0]T. Given Section II-C, ui is given by (7), which
employs the estimation error in (4) and the estimator in (9).
Observe that the estimator dynamics are discretized using
a Zero-Order Hold method, as in Algorithm 1. The initial
3-D positions of the three explorers are [−100,−100, 0]T,
[100, 150, 0]T and [150,−150, 0]T, respectively. The initial
3-D position of the relay agent is [−25,−150, 5]T. The con-
sensus state xg is set to [0, 0, 0]T. For each explorer i ∈
F , the random disturbance di(t) is a vector whose elements
are drawn at each time step t from a uniform distribution
centered about the origin spanning [−0.5d̄i, 0.5d̄i], where
d̄1 = 0.01, d̄2 = 0.04, and d̄3 = 0.01. The randomly
generated disturbance di(t) is used when calculating ẋi, for
each i ∈ F . Although the theoretical development applies
only to deterministic MASs with continuous and bounded
disturbances, random disturbances are simulated to highlight
the performance of the proposed control strategy.

For approximate consensus, we consider the controller of
the explorers in (7), where P is as follows (computed from (8)
with k = 0.1).

P =
[
0.23 0.22
0.22 0.52

]
⊗ I2,

where ⊗ denotes the Kronecker product. We consider three
different scenarios as follows.
Scenario I: The relay agent needs to reach the charging
station G1 or G2 at least once in any cTs time (with c being
some positive integer), and it should always remain in region
D, where the two charging stationsG1 andG2 are rectangular
cuboids with length, width and height being 10, 10 and 5,
centered at [−100, 50, 2.5]T and [125, 0, 2.5]T, respectively.
The region D is a rectangular cuboid centered at [0, 0, 7]T

with length, width and height being 300, 300 and 6, respec-
tively (see Fig. 1). Scenario I can be expressed in the form
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TABLE 1. MTL specifications φp and results in Scenario I.

TABLE 2. MTL specifications φp and results in Scenario II.

of the MTL formula φp,I = □♢[0,c]
(
(y0 ∈ G1) ∨ (y0 ∈

G2)
)
∧□(y0 ∈ D).

Scenario II: The relay agent needs to reach the charging
station G1 or G2 at least once in any 6Ts time, always remain
in regionD (same as in Scenario I with c = 6), and never stay
in region E for over c′Ts time (with c′ being some positive
integer), where the region E is a rectangular cuboid centered
at [0, 0, 6]T with length, width and height being 75, 75 and 4,
respectively. Scenario II can be expressed in the form of the
MTL formula φp,II = □♢[0,6]

(
(y0 ∈ G1) ∨ (y0 ∈ G2)

)
∧

□(y0 ∈ D) ∧ ¬♢□[0,c′](y0 ∈ E).
Scenario III: The MTL specification φp,III = □♢[0,6]

(
(y0 ∈

G1) ∨ (y0 ∈ G2)
)
∧ □(y0 ∈ D) ∧ □((¬(y0 ∈ O1)) ∧

(¬(y0 ∈ O2))) depicts a situation where the relay agent must
always avoid two obstacles (O1 andO2) for safety concerns in
addition to servicing the explorer agents and carrying out the
other practical tasks (i.e., Scenario III is similar to Scenario
I with c = 6 with two added obstacles). Obstacle O1 is
a rectangular cuboid centered at [0,−125, 5] with length,
width and height being 50, 50 and 10, respectively. Obstacle
O2 is also a rectangular cuboid centered at [40, 60, 5] with
length, width and height being 20, 70 and 10, respectively.

We set Rf = R = 5, VT = 1, η = 4, Ts = 0.5, and N =
120. We consider c = 20, 10, 6 for Scenario I. Fig. 3 shows
the simulation results in Scenario I for the case of c = 20.
We observe that the obtained control inputs of the relay agent
gradually decrease as the explorers approach the goal region
(Fig. 2a), ∥e1,i(t)∥ is uniformly bounded by VT = 1 (Fig 2c),
and ∥e2,i(t)∥ gradually decreases and then oscillates when
the explorers approach approximate consensus to the goal
region (Fig. 2d). We measure the cumulative control effort as∑N̄

j=0 ∥u
j
0∥

2, where N̄ denotes the minimal time index such
that ∥Cxg − yi(t[N̄ ])∥ ≤ Rf for all i ∈ F . In Scenario I, the
obtained cumulative control effort corresponding to c = 20,

FIGURE 2. Results with MTL specification φp,I for the practical constraints
(c = 6): (a) the obtained optimal inputs for the relay agent; (b) 2-D planar
plot of the trajectories of three explorers and a relay agent; (c) ∥e1,i (t)∥;
(d) ∥e2,i (t)∥.

FIGURE 3. (a) 2-D planar plot of the trajectories of three explorers and a
relay agent for Scenario II (c = 1); (b) 2-D planar plot of the trajectories of
three explorers and a relay agent for Scenario III.

c = 10, and c = 6 is 70943.32, 101079.03, and 165224.55,
respectively.We observe that the cumulative control effort for
satisfying φp,I with c = 6 is more than that for satisfying φp,I
with c = 10, which is still more than that for satisfying φp,I
with c = 20. This is consistent with the fact that φp,I with
c = 10 implies φp,I with c = 20, and φp,I with c = 6 implies
both φp,I with c = 20 and c = 10, respectively. The MTL
formulas and the corresponding control effort for Scenario I
are summarized in Table 1.

For Scenario II, we consider c′ = 1, 2, 3. Similarly, for
Scenario II, we obtain the same trends for u0,k (t), ∥e1,i(t)∥,
and ∥e2,i(t)∥ as Figs. 2a, 2c, and 2d, respectively (we have not
included these plots for Scenario II due to space limitations).
Fig. 3a represents the 2-D planar plot of the trajectories of the
relay agent and the three agents. In Scenario II, the obtained
cumulative control effort corresponding to c′ = 1, c′ = 2, and
c′ = 3 is 644670.20, 165984.72, and 165241.50, respectively.
In addition, our results show that the cumulative control effort
for satisfying φp,II with c′ = 1 is more than that for satisfying
φp,II with c′ = 2, which is still more than that for satisfying
φp,II with c′ = 3. This is consistent with the fact that φp,I with
c′ = 2 implies φp,II with c′ = 3, and φp,II with c′ = 1 implies
both φp,II with c′ = 2 and c′ = 3. We also observe that more
cumulative control effort is needed in Scenario II to satisfy
the MTL specifications after the explorers arrive in region E
as the relay agent needs to get away from E after each service
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to the explorers. Videos of the simulations in Scenarios I and
II are available in the CoppeliaSim environment5. The MTL
formulas and the corresponding control effort for Scenario II
are summarized in Table 2.

Fig. 3b represents the 2-D planar trajectories of three
explorers and one relay agent in Scenario III. Similarly, for
Scenario III, we obtain the same trends for u0,k (t), ∥e1,i(t)∥,
and ∥e2,i(t)∥ as Figs. 2a, 2c, and 2d, respectively. The cumu-
lative control effort for this scenario is 291402.4851. When
comparing the cumulative control efforts associated with the
MTL specification φp,I with c = 6 and theMTL specification
φp,III, we observe that the cumulative control effort has been
increased due to the added obstacles O1 and O2.

VI. CONCLUSION
Wepresent ametric temporal logic approach for the controller
synthesis of a multi-agent system with intermittent commu-
nication. We iteratively solve a sequence of mixed-integer
linear programming problems for provably achieving cor-
rectness, uniform boundedness of e1,i with respect to time
for each explorer i ∈ F , and approximate consensus in the
explorers’ positions. Future work may investigate scenarios
where controller synthesis is conducted for the explorers with
more complex specifications and motion models. In addition,
it may be possible to improve the performance of the state
estimators by incorporating local measurements.
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