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ABSTRACT

The problem of unified tracking and regulation visual servo control is addressed in this paper, for a wheeled mobile robot
(WMR) equipped with a single monocular camera system. The desired trajectory or desired fixed position and orientation are
defined using a prerecorded image sequence (i.e., a video) or a single image (i.e., a snapshot) of four feature points. Euclidean
homographies are developed by exploiting the projective geometric relationships that exist between the feature points in the live
image and the prerecorded sequence of images and the corresponding feature points in a fixed reference image. The information
obtained from the Euclidean homographies is then utilized to recast the WMR kinematics in a standard WMR form. A rigorous
Lyapunov-based analysis is provided to show that the proposed visual servo control approach achieves simultaneous tracking and
regulation control for the on-board camera-in-hand problem.
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I. INTRODUCTION

Wheeled mobile robot (WMR) control researchers have
targeted the problems of: stabilization of a robot about a
geometric path; stabilization of a robot about a time varying
trajectory; and stabilizing the vehicle to a desired set point.
Stabilization of the WMR to a desired set point is challenging
due to the structure of the governing differential equations.
That is, due to the implications of Brockett’s condition [1],
the set point stabilization control problem cannot be solved
via a smooth, time-invariant state feedback law. In light of
this obstacle, some researchers have proposed controllers that
utilize discontinuous control laws, piecewise continuous
control laws, smooth time-varying control laws, or hybrid
controllers to achieve set point regulation (see [2], and the
references therein for an in-depth review of the previous
work). A disturbance observer-based control approach is pre-
sented in [3] to achieve tracking control of an omnidirectional
mobile robot. The method in [3] utilizes a generalized pro-
portional integral-based observer to compensate for the

effects of additive nonlinear input perturbations. In [4], intel-
ligent control methods are proposed to improve tracking per-
formance in nonholonomic mobile robots. The techniques
presented in [4] involve replacing the proportional and dif-
ferential terms in a nonlinear control law with fuzzy func-
tions. In [5], a finite-time tracking control method for
nonholonomic mobile robots is presented under the restric-
tion that the desired velocities satisfy a given set of condi-
tions. The result in [5] is achieved by dividing the error
dynamics into two subsystems and designing controllers for
each of the subsystems. In [6], a transverse function (TF)-
based approach is utilized to achieve practical stabilization of
arbitrary reference trajectories, including fixed-points and
nonadmissible trajectories. The first result that solved the
unified tracking and regulation problem with a continuous
controller is given in [7]. In [7], a global exponential tracking
and regulation result was developed by using an exogenous
damped dynamic oscillator. A variety of controllers have
since been developed that were inspired by the dynamic oscil-
lator structure in [7] (e.g., see [2,8] and our preliminary work
in [9]).

In addition to the above WMR research, which has
focused on the control problem assuming that the Euclidean
states of the vehicle are known, additional research has
focused on the control via different sensor modalities [10]. Of
these approaches, advances in computer vision systems have
spawned significant efforts focused on vision-based control
of mobile vehicles. Image-based visual-servoing (IBVS) is a
popular approach to vision-based control. In [11], an image-
based visual servo controller was proposed for a mobile
manipulator application; however, the result requires geomet-
ric distances associated with the object to be known and relies
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on an image-Jacobian that contains singularities for some
configurations. Moreover, the result in [11] requires the addi-
tional degrees-of-freedom from the manipulator to regulate
the orientation of the camera. An IBVS method for WMR
set-point stabilization is presented in [12] using epipolar
geometry. Epipolar geometry-based visual servoing has some
inherent drawbacks, however, including baseline degenera-
cies and the requirement of many feature points. To overcome
the drawbacks associated with epipolar geometry, an estima-
tion technique is proposed in [13] to achieve set-point stabi-
lization of a WMR despite lack of depth information. The
technique in [13] exploits elements from both image-based
and position-based visual servo control methods by incorpo-
rating a combination of image signals and a rotation error
estimate in the system error vector definition. In [14], a
spherical image projection of a monocular vision system is
used, which relies on teaching and replay phases to facilitate
the estimation of an unknown object height parameter in the
image-Jacobian by solving a least-squares problem. In addi-
tion to estimation techniques, adaptive control methods can
be utilized to compensate for system uncertainty. In [15],
Dixon et al. used feedback from an uncalibrated, fixed
(ceiling-mounted) camera to develop an adaptive tracking
controller for a WMR that compensated for the parametric
uncertainty in the camera and the WMR dynamics.

Recently, several authors have explored the use of
homography-based visual servo control methods for WMRs.
The homography-based approach exploits a combination of
reconstructed Euclidean information and image-space infor-
mation in the control design. The Euclidean information is
reconstructed by decoupling the interaction between trans-
lation and rotation components of a homography matrix.
Some potential advantages of this methodology over the
aforementioned approaches are that an accurate Euclidean
model of the environment (or target image) is not required
and potential singularities in the image-Jacobian are elimi-
nated because the image-Jacobian for homography-based
visual servo controllers can be expressed in block triangular
form, where each block is full-rank. By comparing the
feature points of an object from a reference image to feature
points of an object in the current image and a prerecorded
sequence of images, projective geometric relationships
are exploited to enable the reconstruction of the Euclidean
coordinates of the target points with respect to the WMR
coordinate frame. The first use of homography-based visual
servo control of a WMR is given in [16]. In [16] a
homography-based approach was used in conjunction with a
control structure motivated by [17] to achieve the WMR set
point regulation problem where the camera was mounted
onboard the vehicle (i.e., camera-in-hand problem). The
approach was extended to the fixed camera problem (i.e.,
camera-to-hand) in [18]. Each of the controllers developed
in [16,18] uses an adaptive feedforward term to compensate

for an unknown depth constant. In [19], Chen et al. also
solved the WMR tracking control problem; however, due to
restrictions on the desired trajectory, the controller could not
be applied to also solve the set point stabilization problem.
Benhimane et al. use a first order local kinematic model of
a WMR in [20] to address a follow-the-leader problem in
which the follower is required to follow a path based on a
reference image viewed on the lead vehicle. Details are
not provided regarding how the authors of [20] compensate
for the uncertain depth information. A homography-based
visual servo controller is presented in [21], which combines
motion planning techniques with methods from hybrid
systems to enable a WMR to track optimal paths in Carte-
sian space. A key factor enabling the control technique in
[21] is that the qualitative structure of the optimal paths is
known a priori. Utilizing the optimal scheme in [22], the
control method in [21] achieves tracking in the presence of
camera field-of-view (FOV) constraints without estimating
the pose parameters.

The contribution of this paper is the development
that illustrates how state information determined from the
homography decomposition can be used to formulate the
WMR kinematic model in a form that is amenable to control
designs that solve the unified tracking and regulation WMR
visual servo control problem. Specifically, with minimal
knowledge of target points on a fixed reference plane, a geo-
metric reconstruction technique is utilized to determine a
constant depth parameter, then a series of transformations
yields a kinematic model that is developed in terms of signals
acquired from the homography decomposition that is in the
form of Brockett’s nonholonomic integrator. Once the model
has been expressed in the form of the nonholonomic integra-
tor, then several of the recently developed class of controllers
that solve the unified tracking and regulation problem can be
applied. For example, we apply a controller originally devel-
oped in [7] to yield a uniformly ultimately bounded (UUB)
tracking and regulation result for the camera-in hand
problem.

II. GEOMETRIC MODEL

As shown in Fig. 1, the origin of an orthogonal body-
fixed coordinate system B F attached to the onboard camera
is coincident with the center of mass of the WMR. As also
shown in Fig. 1, the x-axis and y-axis of B F define the plane
of motion where the x-axis of B F is perpendicular to the
wheel axis, and the y-axis is parallel to the wheel axis. The
z-axis of B F is perpendicular to the plane of motion and is
located at the center of mass of the WMR. The linear velocity
of the WMR along the x-axis of B F is denoted by vc(t) ∈ R,
and the angular velocity ωc(t) ∈ R is about the z-axis. As
shown in Fig. 1, the desired robot trajectory expressed in the
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desired, time-varying coordinate system d F is obtained from
a prerecorded set of images of a stationary target viewed and
recorded by the onboard camera as the WMR moves. For
example, the desired WMR motion could be obtained as an
operator drives the robot via a teach pendant, with the
onboard camera capturing and storing the sequence of images
of the stationary target. A fixed orthogonal coordinate system,
denoted by R F, represents a fixed (single snapshot) reference
position and orientation of the camera relative to the station-
ary target plane π F. For example, the fixed coordinate system
R F could be the position and orientation at the initial time t0.

Fig. 2 shows the geometric relationships between the
coordinate systems B F and R F, and a reference plane π that
contains four target points Oi for i ∈ {1, 2, 3, 4} that are not
collinear. It is assumed that the distance S1 between the target
points O1 and O2 is known. The normalized Euclidean coor-
dinates of these image points expressed in B F and R F are
given by mi(t), mRi ∈ R3, respectively, and the desired image
coordinates mdi(t) can be expressed in terms of d F as

m t m t m t
m t

x t

m t m t m t
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T i
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di diy diz
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under the standard assumption that the distances from the
origin of the respective coordinate frames to the targets along
the focal axis remains positive (i.e., xi(t), xdi(t), xRi ≥ ε > 0
where ε is an arbitrarily small positive constant). In (1),
m ti( ) , m tdi( ), mRi ∈�3 denote the (unnormalized) Euclidean

coordinates of the target points Oi. As shown in Fig. 2, a
projection of the target points Oi is captured by the WMR
camera, resulting in a set of image points Oi

∗ for i ∈ {1, 2, 3,
4} in the image plane πi. The image points Oi

∗ will have
projected pixel coordinates, which are denoted by uBi(t),
vBi(t) ∈ R for B F, udi(t) vdi(t) ∈ R for d F, and uRi, vRi ∈ R for
R F . The pixel coordinates uBi(t), vBi(t); udi(t), vdi(t); and uRi, vRi

are defined as elements of pBi(t) ∈ R3 (i.e., the time-varying
image points), pdi(t) ∈ R3 (i.e., the desired image point
trajectory), and pRi ∈ R3 (i.e., the constant reference image
points), respectively, as

p v u p v u

p v u
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T
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= [ ] = [ ]
= [ ]

1 1

1 .
(2)

The normalized Euclidean coordinates of the target points are
related to the image data via the pinhole lens models

p Am p Am p AmBi i di di Ri Ri= = = , (3)

where A ∈ R3×3 is a known, constant, intrinsic camera
calibration matrix.

The rotation from R F to B F is denoted by
RB(θ) ∈ SO(3), and the desired time-varying rotation from
R F to d F is denoted by RD(θd) ∈ SO(3), where θ(t) ∈ R
denotes the right-handed rotation angle about zi(t) that aligns
the orientation of B F with R F and θd(t) ∈ R denotes the
right-handed rotation angle about zdi(t) that aligns the desired
orientation of d F with R F. The translation from B F to R F
is denoted by xf(t) ∈ R3, where xf(t) is expressed in B F, and
the desired translation from d F to R F is denoted by

Fig. 1. Geometric relationships between the body-fixed frame
B F and the fixed reference frame R F showing the
WMR displacement vectors B

fx t( ) (dashed gray arrow).
R

fx t( ) (solid black arrow), desired WMR position vector
R

dfx t( ), and rotational velocity ωc(t).

Fig. 2. Diagram illustrating the unknown distance d*; the camera
image plane πi containing image points O1

∗ and O2
∗; the

target plane π with target points Oi for i ∈ {1, 2, 3, 4};
and the reference frames R F, B F, and π F.
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xdf(t) ∈ R3, where xdf(t) is expressed in d F. Since the motion
of the WMR is constrained to the xy-plane, xf(t) and xdf(t) are
defined as

x t x t x tf f f
T

( ) ( ) ( )� 1 2 0[ ] (4)

x t x t x tdf df df
T

( ) ( ) ( ) .� 1 2 0[ ] (5)

The following coordinate transformations can be deter-
mined [16,18]:

m R m x m R m xi B Ri f di D Ri df= + = +, . (6)

The angular velocities can be expressed as ω θc = − � and
ω θcd d= − � , where ωcd(t) ∈ R denotes the desired angular
velocity of the WMR expressed in d F. The rotation angles

are assumed to satisfy the inequalities − ≤ ≤π θ π
2 2

( )t and

− ≤ ≤π θ π
2 2

d t( ) . (Although it is assumed that the target points

never leave the FOV of the camera, recent Daisy-chaining
results show how target points out of the FOV can be related
to image points in the FOV [23].) The plane π has normal
vector −n* as expressed in R F. The distance d* ∈ R+ from
R F to π along the unit normal n* of π is given by

d n mT
Ri* ( *) .= (7)

Using (7), the expressions given in (6) can be rewritten
as

m Hm m H mi Ri di d Ri= =, , (8)

respectively, where H(t), Hd(t) ∈ R3×3 are Euclidean
homographies. By using (4) along with the definitions of the
rotation matrices RB(t) and RD(t), H(t) can be expressed as
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where n n n nx y z

T

* = ∗ ∗ ∗⎡
⎣

⎤
⎦

. By examining the terms in (9), it

is clear that H(t) contains signals that are not directly obtained
from the vision system. That is, θ(t), xf(t), and d* are not
directly available from the camera image. The d* parameter
can be determined from knowledge of the distance S1. The
procedure for determining d* will be explained in detail in the
next section. The six unknown elements of Hjk(t) for j = 1, 2
and k = 1, 2, 3 can be determined indirectly from the image
coordinates by solving a set of linear equations. Specifically,
by using the definitions given in (1), the expressions given in
(8) can be rewritten as

m
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respectively, where
x

x
tRi

i
i= ∈γ ( ) � and

x

x
tRi

di
di= ∈γ ( ) �

denote depth ratios. By using (3), the first Euclidean
relationship in (10) can be represented as

p AHA pBi i Ri= −γ 1 (11)

= γ i RiGp . (12)

Thus, since A is known and i ∈ {1, 2, 3, 4}, it is possible to
solve a set of linear equations for G(t) to recover H(t), RB(t),
x t

d
f ( )

,
*

n*, and γi(t). Similarly, for the same four target points

in d F and R F, the corresponding unknown elements of Hd(t)
can be determined. To compute θ(t) from RB(t), the following
expression can be utilized [18]:

θ = −⎛
⎝⎜

⎞
⎠⎟arccos ( ( ) )
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1tr RB

where − ≤ ≤π θ π
2 2

( ) .t

2.1 Calculation of the distance d* from the object plane
to the camera frame

From (7), the distance d* can be determined based on
knowledge of the vectors n* and mRi. The development in this
section will describe how n* and mRi and hence, the distance
d*, can be determined based on knowledge of the distance S1

between any two target points Oi on the reference plane.

2.1.1 Solving for the distance d*

By utilizing the properties of similar triangles along
with knowledge of the distance S1 between points O1 and O2,
the vector magnitudes mR1 and mR2 can be determined
and used to calculate mR1 and mR2 as

m
m

m
m m
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m
mR
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R R

R

R
R1

1

1
1 2

2

2
2= =, . (13)

Since n* can be calculated from the sets of linear alge-
braic equations in (8) or (11), the distance d* can be calcu-
lated from (7) using the value of mR1 obtained from (13). The
distance d* is measured in the direction of the normal vector
n* from the origin of R F to the plane π. Similarly, performing
these steps using the normal vector n = RB(t)n* instead of n*

gives the distance d from the origin of the current WMR
camera frame B F to the plane π at any time. Hence, the
distance d* is known, and the Euclidean Homography given in

(9) is expressed in terms of known parameters (i.e.,
x t

d
f ( )

*
is
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known). The full procedure for this geometric reconstruction
technique has been summarized here for brevity (see [9] for
complete details).

III. TRANSFORMATION TO
NONHOLONOMIC INTEGRATOR

The kinematic equations for the WMR can be deter-
mined by taking the time derivative of the Euclidean position
as

�x v xf B f= − + × ω (14)

where vB(t), ω(t) ∈ R3 denote the linear and angular velocity
of the mobile robot expressed in B F as

v v

t

B c
T

c
T T

�

� �

0 0

0 0 0 0

[ ]
[ ] = −⎡⎣ ⎤⎦ω ω θ( )

(15)

respectively, where vc(t), ωc(t) ∈ R denote the linear and
angular velocity of the center of mass of the WMR. The
following expressions can be obtained from (14) and (15):

�x v xf c f c1 2= − + ω (16)

�x xf f c2 1= − ω . (17)

The Euclidean coordinates of the current WMR position
and orientation and desired position and orientation can be
expressed in the fixed reference frame R F as xRf(t), θ(t), and
xRd(t), θd(t), respectively, where the coordinate transform from
B F to R F is given by:

x R xf B Rf= − . (18)

After taking the time derivative of (18), the expressions in
(16) and (17) can be rewritten in terms of the fixed reference
frame as follows:

− + = −� �x x vRf Rf c1 2cos sinθ θ (19)

− − =� �x xRf Rf1 2 0sin cosθ θ (20)

where (15) was utilized. The system of equations in (19) and
(20) can be utilized to obtain the kinematic expressions

�x vRf c1 = cosθ (21)

�x vRf c2 = − sin .θ (22)

Based on (15), (21), and (22), the WMR kinematics can now
be expressed as

�q S q v= ( ) (23)

where q t q t( ), ( )� �∈ 3 are defined as

q x x q x xRf Rf
T

Rf Rf

T= [ ] = ⎡⎣ ⎤⎦1 2 1 2θ θ� � � � , (24)

the matrix S(q) ∈ R3×2 is defined as

S q( )

cos( )

sin( ) ,= −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

θ
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and the velocity vector is defined as

v t v v vT
c

T
( ) .� �

1 2[ ] = −⎡⎣ ⎤⎦θ (26)

Based on the previous development, the kinematic
model for the desired trajectory can be expressed as

�q S q vd d d= ( ) (27)

where q t q td d( ), ( )� �∈ 3 are defined as

q x xd Rd Rd
T= [ ]1 2 θ (28)

� � � �q x xd Rd Rd d

T= ⎡⎣ ⎤⎦1 2 θ ,

S(·) was defined in (25), v t v vd d d
T( ) � �1 2

2[ ] ∈ denotes the
desired time-varying linear and angular velocity, and xRd1(t),
xRd2(t) ∈ R denote the desired linear velocity components as
expressed in R F. With regard to (27), it is assumed that the
signal vd(t) is constructed to produce the desired motion and
that vd(t), �v td ( ) , qd(t), and �q td ( ) are bounded for all time.

IV. MODEL TRANSFORMATION

The control objective is to force the WMR to follow a
desired time-varying trajectory or move to a desired fixed
position and orientation by following a sequence of prere-
corded camera images or a single image of the stationary
reference points Oi. To quantify the control objective, let
�x tf 1( ), �x tf 2( ), � �θ( )t ∈ be the difference between the actual
WMR position and orientation and the desired position and
orientation as

� �
�

x x x x x xf Rf Rd f Rf Rd

d

1 1 1 2 2 2= − = −
= −θ θ θ

(29)

where xRf1(t), xRf2(t), θ(t) are defined in (24), and xRd1(t),
xRd2(t), θd(t) ∈ R represent the desired WMR position and
orientation.

To rewrite the kinematic model given in (23) in a form
that facilitates the subsequent unified tracking and regulation
control synthesis and stability analysis, a global invertible
transformation is defined as [7]
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where Ω(t) ∈ R3×3 is defined as
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w(t) ∈ R and z(t) = [z1(t) z2(t)]T ∈ R2 are auxiliary tracking
error variables, and �x tf 1( ), �x tf 2( ), �θ( )t were defined in (29).

After taking the time derivative of (30) and using (23),
we can rewrite the tracking error dynamics in a form that
is similar to Brockett’s nonholonomic integrator [1,7] as
follows:

�w u J z fT T= + (32)

�z u=

where J ∈ R2×2 is a constant, skew symmetric matrix defined
as

J =
−⎡

⎣⎢
⎤
⎦⎥

0 1

1 0
(33)

and f (z, vd, t) ∈ R is an auxiliary signal defined as

f v z v zd d= −2 2 2 1 1( sin ). (34)

In (32), the auxiliary kinematic control input u(t) = [u1(t)
u2(t)]T ∈ R2 is defined in terms of the position and orientation,
the linear and angular velocities, and the reference (desired)
trajectory as follows:

u T v
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where the globally invertible matrix T(t) ∈ R2×2 is defined as

T
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Remark 1. Based on the fact that Ω(t) in (31) can be inverted
as
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(37)

it is clear from (30) that if w(t), z1(t), z t2( ) ∈ ∞L then �x tf 1( ),
�x tf 2( ), �θ( )t ∈ ∞L . Moreover, we can conclude that if w(t),
z1(t), and z2(t) approach zero as t → ∞, then �x tf 1( ), �x tf 2( ),
and �θ( )t approach zero as t → ∞. If �θ( )t approaches zero as
t → ∞, then the difference between RB(θ) and RD(θd) becomes
the identity. Based on these facts, (6) and (29) can be used to
conclude that the Euclidean coordinates m ti( ) and m tdi( )
asymptotically align.

V. CONTROL DEVELOPMENT

Now that the WMR kinematics and tracking error
dynamics are in the standard forms given in (23) and (32),
respectively, many controllers could be used to achieve the
simultaneous tracking and regulation control objective. For
completeness, we present the controller developed in [7] as an
example. To this end, we define an auxiliary error signal
� �z t( ) ∈ 2 as the difference between the subsequently
designed auxiliary signal zd(t) ∈ R2 and the transformed vari-
able z(t), defined in (30), as follows

�z z zd= − . (38)

Based on the dynamic equations given in (32) and the
subsequent stability analysis, the auxiliary signal u(t) is
designed as [7]

u u kza= − (39)

where k ∈ R is a positive, constant control gain, the auxiliary
control term ua(t) ∈ R2 is defined as

u
kw f

Jz za
d

d d= +⎛
⎝⎜

⎞
⎠⎟ +

δ 2 1Ω . (40)

The auxiliary signal zd(t) ∈ R2 is defined by the following
oscillator-like relationship [7]:

�
�

z z
kw f

w Jz z zd
d

d
d

d
d d

T
d d= + + +⎛

⎝⎜
⎞
⎠⎟ =δ

δ δ
δ

2 1
20 0 0Ω ( ) ( ) ( ) (41)

where the auxiliary terms Ω1(t) ∈ R and δd(t) ∈ R are
defined as

Ω1

2

2
= + + +⎛

⎝⎜
⎞
⎠⎟

k
kw wfd

d d

�δ
δ δ

(42)

and
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δ α α εd t= − +0 1 1exp( ) (43)

respectively, α0, α1, ε1 ∈ R are positive constant parameters,
and f(z, vd, t) was defined in (34). As described in [7], the
closed-loop error dynamics for w(t) can be expressed as

� �w kw u Jza
T= − + (44)

and the closed-loop error system for �z t( ) can be determined
as

�� �z kz wJua= − + . (45)

VI. STABILITY ANALYSIS

Theorem 1. Given the closed-loop system of (44) and (45),
the position/orientation tracking errors defined in (29) are
UUB in the sense that

� � �x t x t t t

t

f f1 2 0 0

1 1 2 1

( ) , ( ) , ( ) exp( )

exp( )

θ β γ
β γ β ε

≤ −
+ − +

(46)

for some positive scalar constants β0, β1, β2, γ0, and γ1. Note
that ε1 was originally defined in (43).

Proof. Let V(t) ∈ R denote a radially unbounded
nonnegative function defined as

V t w z zT( ) .= +1

2

1

2
2 � � (47)

After taking the time derivative of (47) and making the
appropriate substitutions from (44) and (45), the following
expression can be obtained

�V kV≤ −2 . (48)

Standard arguments can now be employed to conclude that

Ψ Ψ≤ −exp( ) ( )kt 0 (49)

where the vector Ψ(t) ∈ R3 is defined as

Ψ = [ ]w zT T� . (50)

Based on (49) and (50), it is straightforward to see that
w(t), �z t( ) ∈ ∞L . Based on the fact that �z t( ), δd t( ) ∈ ∞L , we can
conclude that z(t), z td ( ) ∈ ∞L . From (32), (40)–(43), we can
show that ua(t), �z td ( ) , Ω1(t), u t( ) ∈ ∞L . Since z t( ) ∈ ∞L , it is
clear from (29)–(31) that �θ( )t , θ( )t ∈ ∞L , and (35) can be used
to prove that v t( ) ∈ ∞L ; therefore, it follows from (23)–(26)
that �θ( )t , �x tf 1( ), �x tf 2( ) ∈ ∞L . We can now employ standard
signal chasing arguments to conclude that all of the remaining
signals in the control and the system remain bounded during
closed-loop operation.

To prove the result in (46), the triangle inequality can be
applied to (38) to obtain the following exponential bound

z z z kt

t
d≤ + ≤ −

+ − +
� exp( ) ( )

exp( )

Ψ 0

0 1 1α α ε
(51)

where (43) and (49) have been utilized. The main result given
by (46) can now be directly obtained from (49)–(51).

Remark 2. We have not imposed any restrictions on the
desired trajectory (other than the assumption that vd(t), �v td ( ) ,
qd(t), and �q td ( ) ∈ ∞L ); hence, the position and orientation
tracking problem reduces to the position and orientation
regulation problem. That is, if the control objective is targeted
at the regulation problem, the desired position and orientation
vector, denoted by qd(t) = [xdf1(t), xdf2(t), θd(t)T ∈ R3 and
originally defined in (29), becomes an arbitrary desired
constant vector. Based on the fact that qd is now defined as a
constant vector, it is straightforward that vd(t) given in (27),
and consequently f(z, vd, t) defined in (34), equals zero. We
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Fig. 3. Desired (solid line) and actual (dotted line) WMR translational position and heading during closed-loop controller operation.
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also note that the auxiliary variable u(t) originally defined in
(35) is now defined as follows

u T v v Tu= =−1 (52)

where the matrix T(t) was defined in (36). Based on the above
simplifications, it is easy to show that the result given in (46)
is valid for the regulation problem as well.

VII. SIMULATION RESULTS

A numerical simulation was created to verify the per-
formance of the proposed WMR regulation and tracking
control law. To develop a realistic stepping stone to

experimental validation of the proposed control law, zero-
mean Gaussian random noise with a variance of approxi-
mately 1 pixel was included in the simulation. Fig. 3
shows the actual and desired position and orientation
during closed-loop controller operation. The simulation
results in Fig. 3 show the capability of the control law to
simultaneously achieve tracking and regulation control. The
desired trajectory was designed with a complete stop in the
motion of all three states between 4 and 5 seconds. Thus,
the WMR is capable of following a time-varying trajectory
or regulating to a desired set point using the proposed
control law. Fig. 4 shows the position and heading
tracking errors, and Fig. 5 shows the control commnds used
during closed-loop operation. The control commands remain
within reasonable limits throughout the duration of the
simulation.
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Fig. 4. Position tracking errors (top) and heading error (bottom) during closed-loop operation.
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VIII. CONCLUSION

A unified tracking and regulation WMR visual servo
control result is presented. To yield the result, image geom-
etry is used to relate a desired image (or video sequence) to a
reference image so that relative translation and rotation infor-
mation can be obtained from homography decomposition.
Once the depth parameter d* is calculated using a geometric
reconstruction technique, a series of transformations yields
a kinematic model that is developed in terms of signals
acquired from the homography decomposition that is in the
form of Brockett’s nonholonomic integrator. Once the model
has been expressed in the form of the nonholonomic integra-
tor, then several of the recently developed class of controllers
that solve the unified tracking and regulation problem can be
applied. A Lyapunov-based analysis is provided that illus-
trates a uniformly ultimately bounded tracking and regulation
result.
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