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ABSTRACT

Power control in a code-division multiple access (CDMA) based cellular network is a challenging problem because the
communication channels change rapidly because of multipath fading. These rapid fluctuations cause detrimental effects on the
control efforts required to regulate the signal-to-interference plus noise ratios (SINRs) to the desired level. Thus, there is a need
for power-control algorithms that can adapt to rapid changes in the channel gain caused by multipath fading. Much of the previous
work has either neglected the effects of fast fading, assumed that the fading is known, or assumed that all the link gains are known.
In this paper, we model the effects of fast fading and develop practical strategies for robust power control based on SINR
measurements in the presence of the fading. We develop a controller for the reverse link of a CDMA cellular system, and use a
Lyapunov-based analysis to prove that the SINR error is globally uniformly ultimately bounded. We also utilize a linear prediction
filter that utilizes local SINR measurements and estimates of the Doppler frequency that can be derived from local SINR
measurements to improve the estimate of the channel fading used in the controller. The power-control algorithm is simulated for
a cellular network with multiple cells, and the results indicate that the controller regulates the SINRs of all the mobile terminals
(MTs) with low outage probability. In addition, a pulse-code-modulation technique is applied to allow the control command to
be quantized for feedback to the transmitter. Simulation results indicate that the outage probabilities of all the MTs are still within
the acceptable range if at least 3-bit quantization is employed. Comparisons to a standard algorithm illustrate the improved
performance of the predictive controller.
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I. INTRODUCTION

Various transmitter power-control methods have been
developed to deliver a desired quality of service (QoS) in
wireless networks [1–9]. Early work on power control using a
centralized approach was investigated in [1], which intro-
duced the concept of signal-to-interference (SIR)-balancing,
where it is desired that all receivers achieve the same SIR.
Methods were developed to reduce co-channel interference
for a given channel allocation using transmitter power control
in [3]. In [3], the performance of optimum transmit-power
algorithms are analyzed in terms of outage probabilities.
These algorithms were framed with only path loss affecting
the channel uncertainty. A distributed autonomous power-
control algorithm was introduced in [4], where channel reuse
is maximized. Optimal power control algorithms were intro-
duced in [10–13]. In [12], an optimum power controller for
multicell CDMA wireless networks was designed, where the

channel was assumed to be slowly varying without fading.
Optimal power control algorithm for a Brownian motion
based model was developed in [13], and stochastic power
control algorithms were developed that required the measure-
ment of interference. Optimization-based approaches that can
provide features such as outage guarantees, robustness, and
power minimization in the presence of fading but that require
knowledge of all channel gains are presented in [7,8].

In [7–9], power control algorithms are designed for
systems with radio channel uncertainties caused by mobility
of the user terminals. These channel uncertainties include
exponential path loss, shadowing, and multipath fading,
which are modeled as random variables in the signal-to-
interference plus noise ratio (SINR) measurements. A distrib-
uted power-control scheme was suggested in [9]; however, the
fading process is modeled as slowly changing so that the
channel gain can be accurately estimated, and practical limi-
tations on the transmission power are not considered.

Multipath fading has the most critical effect on the
design of a power-control system because of the time and
amplitude scales. Multipath fading is caused by reflections in
the environment, which cause multiple time-delayed versions
of the transmitted signal to add together at the receiver. The
time offsets cause the signals to add with different phases,
and thus multipath fading can change significantly over
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distance scales as short as a fraction of a wavelength. For
instance, for a system using the 900 MHz cellular band, the
channel coherence time (the time for which the channel is
essentially invariant) for a MT traveling at 48 km/hr is
approximately 10 ms.

To allow the power controller to compensate for fast
fading in the channel, channel prediction may be used. Linear
models, referred to as autoregressive moving average process
with exogenous input (ARMAX), were used in [14] for the
power-control process. Hallen et al. focused on long-range
fading prediction [15,16] based on the fact that the amplitude,
frequency and phase of each multipath component vary much
slower than the actual fading coefficient. The focus of this
paper is to develop an SINR-based power-control algorithm
that would reduce the outage probability in the radio link by
predicting the power of the channel. The prediction-based
power-control process is developed based on the evolution of
radio-link parameters from the SINR dynamics and the avail-
able feedback SINR measurements.

In this paper, the radio channel characteristics discussed
above are analyzed, and the fading power is predicted and
used in the control design. For this purpose, a linear minimum
mean-square error (LMMSE) predictor is used to obtain a
reliable prediction of the fading coefficient at the next
instance. In our preliminary efforts in [17], we modeled the
dynamics of the stochastic time-varying radio channel for
cellular radio and developed a robust power control algo-
rithm. In our follow-up work in [18], we refined this model
and introduced a predictor for the fading process. The limi-
tation of [18] is that the predictor used measurements of the
fading process, while in practice, only the SINR can be meas-
ured directly. To address this issue, a LMMSE predictor is
developed in this paper that uses only SINR measurements
and estimates of the Doppler frequency that can be derived
from local SINR measurements, inclusive of path loss and
shadowing. The motivation behind using the SINR measure-
ments alone is that it is not possible to calculate the fading
power from the SINR measurements when the latter is
affected by shadowing, path loss, and interference in addition
to fast fading. A Lyapunov-based analysis is performed to
provide an ultimate bound on the SINR error, the size of
which can be reduced by choosing appropriate control gains.
In addition, variations in other components of the radio
channel such as path loss and log-normal shadowing are also
accounted for using this analysis tool. The controller uses
local SINR measurements [4,19] from the current and
neighboring cells to maintain the SINRs of MTs in the
acceptable communication range, provided channel gains are
limited to some practical region of operation. The real
channel gains may be arbitrarily low, in which case no power
control algorithm can achieve the desired performance due to
limits on the available power. In these cases, the controller
may not be able to regulate the SINR into the desired range,

and outage may occur, where the SINR falls too low for
acceptable communication. Simulation is used to assess the
performance of the proposed prediction and power-control
algorithm. Other contributions of this paper over [17,18]
include investigating the effects of the prediction window size
and quantization on the outage performance and a perfor-
mance comparison with Song’s up-down power control
algorithm [20].

II. NETWORK MODEL AND PROPERTIES

We consider the reverse link of a cellular system
employing CDMA. The SINR xi(l) ∈ R is defined (in dB) for
each radio link i = 1, 2, . . . n, as
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where l ∈ Z, the function log(·) denotes the base 10
logarithm, gi(l) ∈ R is the channel gain in the radio link
between MT i and the base station (BS), Pi(l) ∈ R is the
power transmitted by MT i to the BS, a ∈ R is the bandwidth
spreading factor or the processing gain [21] defined as the
ratio of the transmission bandwidth (in Hertz) to the data rate
(in bits/second), and Ii(l) ∈ R is the interference from the
MTs in all the cells, defined as
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In (2), ηi ∈ R denotes the thermal noise power in link i, which
is assumed to be a constant value greater than zero. Since the
noise power is bounded and the interference power from each
MT is less than its transmit power, Ii(·) is non-zero and
bounded.

The channel gain gi(l) in (1) is modeled as [22]

g l g
d l

d
H li d

i l
i

i( )
( )

( ) .. ( )= ⎛
⎝⎜

⎞
⎠⎟
−

0
0

0 1 210
κ

δ (3)

In (3), gd0 ∈R is the near-field gain (see [23] for model
details). The second factor in (3) is the exponential path loss,
which depends on the distance di(l) ∈ R from MT i to the BS
and the path-loss exponent, κ ∈ R, which typically takes
values between two and five. Exponential path loss holds in a
region outside the near-field region (i.e., the region satisfying
df ≤ d0 ≤ di(l), where df is the Fraunhofer distance). MTs
cannot travel within distance d0 of the BS and only
communicate with the BS if they are within a predetermined
radius of coverage, so di(·) is non-zero and bounded within a
particular operating cell. The factors 100 1. ( )δi l and |Hi(l)|2 in
(3) are used to model large-scale log-normal shadowing
(from buildings, terrain, or foliage) and small-scale multipath
fading, respectively.
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For analytical purposes, the shadowing is generally
modeled as log-normal; i.e., δi(l) ∈ R is a Gaussian random
process. The fading is often modeled as Rayleigh fading,
where Hi(t) is usually taken to be a zero-mean, complex-
valued, wide-sense stationary Gaussian random process [23],
and thus |H(t)| is a Rayleigh random variable for each t.
However, both of these processes are unbounded, which
means that any non-negative channel gain is possible, and
hence any received power level is possible. However, gi(l)
cannot take arbitrarily large values in practice because the
received power cannot exceed the transmitted power. Further-
more, a cellular system cannot practically transmit to
overfaded users who are in very deep fades (i.e., when gi(l) is
close to zero) because doing so would require extremely large
power at that user and the other users (because the power
transmitted to each user causes interference at the other users)
[24]. Hence, the subsequent control-system development is
based on the assumption that the shadowing gain 100 1. ( )δi l and
fading gain |Hi(·)|2 are both bounded from above and below.
However, the performance is simulated in Section VI and
Section VII for channels that may result in arbitrarily low
signal levels, which may result in the power-control algorithm
failing to regulate the SINR to the desired region.

Understanding how the SINR changes is beneficial for
the development and analysis of the subsequent power-
control law. The SINR at the next update interval xi(l + 1) ∈ R
can then be expressed by taking the first difference of (1) as
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where the functional ρi ∈ R is defined ∀i = 1, 2, . . . , n as
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control signal defined ∀i = 1, 2, . . . , n as
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which is used to determine the power update law.

III. LINEAR PREDICTION

The development of a power controller for radio links in
a CDMA network is challenging due to rapid, large scale
changes in SINR and is exacerbated by a constraint that each
link’s transmit power is less than some Pmax ∈ R. In this
paper, we attempt to improve performance by estimating the
SINR agi(l + 1)/Ii(l + 1) to compensate for the delays in meas-
urement and control. Note that the various channel compo-
nents that contribute to the SINR, such as fading and
shadowing power and path loss are not computable from the
received SINR, which motivates our design based on the
SINR.

Let X g l I li i i( ) ( ) ( )⋅ � . We use linear minimum mean-
square error (LMMSE) prediction of Xi(l) given n1 past
values, Xi(l − 1), Xi(l − 2), . . . , Xi(l − n1). The LMMSE esti-
mator is [25]
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where the coefficients βi
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statistics of Xi(l), μ is the mean of the random process Xi(·) for
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θcos be the Doppler frequency of MT i,

where vi is the velocity of motion of the MT, θi is the angle
between the transmitted signal and the direction of motion of
the MT, and λ is the wavelength of the transmitted signal. The
Doppler frequency of the MT can be estimated from the
SINR measurements (cf. [26]). Let Tp be the prediction
observation sampling time, and the prediction observation
sampling rate is selected such that it is at least the Nyquist
rate, i.e., twice the expected maximum of the Doppler
frequencies of the MTs [16]. The coefficients βi

m( ) in (6) can
be determined using the orthogonality condition [25], and
by using the autocovariance function for fading defined
in [27,28] (we assume that the interference during the
duration of the prediction sampling is approximately
constant [29]). The autocovariance function for |Hi(·)|2
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zeroth-order Bessel function of the first kind, and fn is
the maximum Doppler frequency. Therefore, defining
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where the components of Z are defined ∀j, k = 1, 2, . . . , n1 as

Z Z
J f T j k j k

j kjk kj

n p

Hi

= =
−( )( ) ≠

=
⎧
⎨
⎪

⎩⎪
0
2 2

2

π
σ

;

; ,
(8)

fn ≠ 0 and σ
Hi

2 is the variance of the random process
|Hi(·)|2 for all l. The Doppler frequency of each MT is
measured periodically and this is used to update the
coefficients of the LMMSE estimator. Note that the
coefficients of βi in (7) are bounded if the covariance matrix
in (8) is invertible, which will occur with probability 1 if 1/Tp

is greater than the Nyquist rate [16] and the effect of
measurement noise is considered. Thus, the linear predictor
X̂ i( )⋅ is bounded.
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IV. CONTROL DEVELOPMENT

4.1 Control objective

The network QoS can be quantified by the ability of the
SINR to remain within a specified operating range with upper
and lower limits, γmin,γmax ∈ R for each link defined ∀i = 1, 2,
. . . , n as

γ γi i ix l,min ,max( ) ,≤ ≤ (9)

where γi,min and γi,max depend on the quality-of-service
requirements of mobile station i. Keeping the SINR above the
minimum threshold eliminates signal dropout, whereas
remaining below the upper threshold minimizes interference
to adjacent cells. The control objective for the following
development is to regulate the SINR to a target value γi ∈ R
such that γi,min ≤ γi ≤ γi,max, while ensuring that the SINR
remains between the specified lower and upper limits for each
channel. To quantify this objective, a regulation error
ei(l) ∈ R is defined as

e l x l i ni i i( ) ( ) , , , . , .= − ∀ =γ 1 2 … (10)

4.2 Closed-loop error system

By taking the first difference of (10), using (3), and (4),
and properties of the log(·) function, the open-loop error
dynamics for each link can be determined as
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where the auxiliary function χgi(·) ∈ R is defined ∀i = 1, 2,
. . . , n as
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Section II.
Based on (11) and the subsequent stability analysis, the

auxiliary power controller ui(l) is designed as
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where X̂ i( )⋅ are given in (6), and the prediction observation
sampling rate is chosen to be at least the Nyquist rate for (15)

to hold. From (5), (13), and (14), the power update law for
each radio channel is obtained ∀i = 1, 2, . . . , n as

[ ( 1)] ( ) ( ) 10 log ( 1) ( ).P l k k e l a X l x li dB p e i i i+ = − + − +{ }+ˆ
(16)

V. STABILITY ANALYSIS

Theorem I. The power update law in (16) ensures that all
closed loop signals are bounded, and that the SINR regulation
error approaches an ultimate bound ε ∈ R, which can be
decreased with increasing kp in (13) up to the maximum
power limits and decreasing the sampling intervals up to
practical limits, provided ke in (13) is selected as

0 1< ≤ke , (17)

and γmin and γmax in (9) are chosen appropriately.

Proof. Let V(e,l) : D × [0,∞) → R be a positive definite
function defined as
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Taking the first difference of (18), by using the fact that
Δ(ab) = aΔb + bΔa + ΔaΔb, and substituting for (11) yields
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where Δei(l) is the error between the sampling time for radio
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is bounded by a constant c, the size

of which can be controlled by the sampling time. An analysis
for this claim can be developed as in [17], though the
subsequent simulation is carried out by selecting a high (and
feasible) sampling rate. Substituting (13) into (19) yields
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by completing the squares and using (18), the inequality in
(20) can be rewritten as

ΔV k V
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some positive scalar c2, i.e., ς ≤ c2 based on the development
in Section II and Section III. Note that kp is used to damp out
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© 2014 Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd

1462 Asian Journal of Control, Vol. 16, No. 5, pp. 1459–1469, September 2014



gain used by the controller where 0 < 2ke ≤ 1. Provided the
sufficient condition in (17) is satisfied, lemma 13.1 of [30]
can be invoked, and further (18) can be used to develop an
upper bound for the SINR error as

e l e l k
k

k
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k
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n

i e
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The assumption that χgi l( )∈ ∞L , the fact that Ŷ li( )∈ ∞L from
Section III, (14), and (15), and the fact that e li( )∈ ∞L from
(22) can be used to conclude that u li( )∈ ∞L from (13), and
hence P li( )+ ∈ ∞1 L from (16). Based on (22), as l → ∞, the
norm-squared SINR error is ultimately bounded as
ε ≤ c2/(4kekp) + c/ke. The ultimate bound can be decreased by
increasing kp; however, the magnitude of kp is practically
restricted by the constraint that 0 < Pmin ≤ Pi(t) ≤ Pmax, and the
sampling interval Ts.

Based on the power constraint, the stability of the
system is guaranteed if the given SINR thresholds γmin and
γmax satisfy the following conditions: γ χmin maxmin [ ]≤ +g dBP ,
and γ χmax minmax [ ]≥ +g dBP , where χ χ χg gi gtmin max( )≤ ≤ , ∀i
from (12) and the explanation in Section II.

The controller is designed based on the stability analy-
sis, that in-turn uses the nonlinear SINR model defined in (4).
The bounds on the stochastic uncertainties may be high, and
hence high control gains might be required to stabilize the
system. Given limited available power, the SINR may go
outside the thresholds of γmin and γmax. To validate the perfor-
mance and hence address the feasibility of the controller, a
metric known as Outage Probability, defined as the probabil-
ity that the SINR xi(l) goes below γmin (i.e., xi(l) ≤ γmin), is
used. Note that if xi(l) ≥ γmax, the radio link achieves better
performance (lower error rates) for radio i but might increase
the interference to other links. Detailed simulations in Section
VI and Section VII evaluate the performance in terms of
outage probabilities.

VI. SIMULATION RESULTS

A cellular network topology using the proposed power-
control algorithm was simulated with one cell of interest and
one tier of six adjacent cells in the typical seven-cell reuse
pattern. Ten MTs were simulated in each cell. The Random-
Waypoint model is used to simulate the mobility of the MTs,
with the initial topology drawn from the steady state (station-
ary) distribution (cf. [31,32]). The mobile velocity at each
waypoint is randomly chosen from a uniform distribution
between 2 km/h and 48 km/h. Thus, the probability density

function of the velocity is given by [32] f v
C

v
f vi

h
V h( ) ( )|= 0 ,

where f vV h| ( )0 1

48 2

1

46
=

−
=

km h km h km h
and Ch =

14.47 is a normalization constant. The subscript h is used to
denote the phase of the MT [32]. The velocity for each of the
MTs is obtained using the inverse transform method [33] as

v r= +exp( . . ),3 179 0 6931 (23)

where r is uniformly distributed between 0 and 1. The
purpose of the simulation section is to detail the performance
of the controller, and this is done by including the plot of the
worst-case scenario of the radio-link, i.e., when the Doppler
frequency is high (refer to Fig. 1). The simulations were
repeated 10 times (Monte Carlo Simulations) operating 70
MTs (10 MTs in each of the typical seven-cell reuse pattern)
in each simulation so that the data collected for the
subsequent analysis is sufficient. Also, each simulation was
carried out with fixed control gains kp and ke. The average
value of the outage probabilities of the MTs operating in each
of the four maximum Doppler frequency ranges are tabulated
(refer to Table I) along with the feasible window size for
various ranges of the Doppler frequencies.

Path loss, with free space propagation effects and log-
normal shadowing, is modeled [23] as shown in (3). The
angle θ is measured periodically, and the Doppler frequency
is obtained from (23), which is used to generate the Rayleigh
fading and update the coefficients of the LMMSE predictor.
The channel sampling time (Ts) and prediction observation
sampling time (Tp) are both set to 1.7 ms, based on perform-
ing a continuous time SINR error analysis [17]. The target
SINR, γ was set to 8 dB, with a desired operating range
between 6 and 10 dB, which is defined in Section 4.1.
Thermal noise, η, was set to −83 dBm. The initial power level
for all MTs was chosen as 10 dBm. Also, the prediction
window size is updated online to avoid an ill-conditioned
matrix Z. Starting at a specified maximum prediction window
size, the size of the window is consecutively reduced by 1
until det Z ≥ 10−5.

The results in Fig. 1 are obtained with kp = 0.65,
ke = 1.3 × 10−4, and the spreading factor a is chosen as 512,
which is the maximum for Wideband CDMA systems. Note
that the same values of the control gains and spreading factor
are also used in the subsequent simulations. The control gains
were tuned using simulations with a different set of random
seeds than those used in the performance evaluation. The
output of the linear predictor is limited to ˆ

maxX = 47 dB for
the reasons explained in Section III.

Fig. 1 shows the SINR error, channel gain and power
plots of an MT operating with a maximum Doppler frequency
of 31.60 Hz. A Doppler frequency of 31.60 Hz represents an
MT with high mobility. (MTs with higher velocities can rely
on time diversity, rather than fading, to operate in a fading
channel.) The dotted lines note the regions of deep fades,
which result in large prediction errors. The inaccuracy of the
linear predictor and the limits on maximum transmit power
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(and, correspondingly, control effort) in the deep faded zones
cause outage at the MT at those times. The SINR of this radio
link operating with a maximum Doppler frequency of
31.60 Hz is in the acceptable communication range at all
other times, and the required power is in the implementable
range.

Simulations were carried out for prediction-based
power-control algorithms with different prediction window

sizes based on the same topology model with ten MTs in a
cell to compare the results. Table I shows the average %
outages for different ranges of the maximum doppler fre-
quency (cf. [7,34]) of the MTs when the simulation is carried
out using different prediction window sizes. The average %
outages for the MTs were computed by running 5–10 simu-
lations and classifying the MTs based on their maximum
doppler frequencies (column 1 in Table I). The best window
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Fig. 1. Error, channel gain, and power plot of a MT with maximum Doppler frequency 31.60 Hz.

Table I. Comparison against various prediction window sizes.

Max. Doppler
frequency
renge (Hz)

Best window size
such that det Z ≥ ζ

Average % of samples such that xi ≤ γmin

Max. Prediction
window size of 1

Max. Prediction
window size of 2

Max. Prediction
window size of 3

Max. Prediction
window size of 4

0–10 2 10.62 5.19 — —
10–20 2, 3 15.62 4.01 6.91 —
20–30 3 19.94 13.42 7.29 —
30–40 3, 4 22.98 9.88 7.00 5.07
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size is the maximum value of the window size so that the
matrix Z is not ill-conditioned (i.e., det Z ≥ ζ), and the corre-
sponding average % outage is entered in bold. The maximum
doppler frequency is measured frequently (cf. [26] and the
references therein), i.e., 400Ts in this simulation, and the
measured values are used to calculate the linear coefficients
βi

m, ∀m = 1, 2, . . . , n1 − 1. It can be inferred that these bolded
values fall within the threshold level for voice communica-
tions. For voice communications, the typical outage target is
10% [35].

The results in Table II show the performance of the
predictive control algorithm for different numbers of users
per cell. Outage probabilities less than 10% can be achieved
for 10, 20, or 40 users per cell. However, the control gain kp

must be increased as the number of users to achieve this
outage probability, and this results in an increase in the
average transmitted power per user.

VII. QUANTIZED POWER-CONTROL

In practice, the number of bits that can be sent for power
updates to the mobile terminal is limited. Thus, this section
considers the design of a power-control mechanism that
selects from a finite set of power adjustments. Various results
in the literature focus on developing quantized power-control
algorithms [6,14,36]. A power-control algorithm with a fixed
step size was introduced in [6]. Due to the time-varying
nature of the radio channel, the performance of this mecha-
nism is limited. A pulse-code-modulation realization was
developed in [36] to reduce the outage probability by varying
the range of the power updates. In this section, a power-
update mechanism based on the pulse-code-modulation reali-
zation is used to update the transmitter power at the mobile
terminal, and the outage probabilities of the radio links are
compared with the outage probabilities without quantization
obtained in Section VI.

The realization of the power-control command is based
on the error signal generated at the BS. The quantization of
the error signal is done by analyzing the probability density
function of the worst case unquantized error signals (cf.
Section VI), i.e., the radio links operating at the high Doppler
frequency.

We assume that a power control command is only issued
if the error signal is large. The presence of a power control
command is usually signaled by a separate control bit (as in
IS-95/cdma2000). Thus, for k-bit quantization, 2k + 1 levels
can be used, where one level maps to a zero command. The
error is then quantized by partitioning the empirical density
of the error signals that operate at high maximum Doppler
frequencies that are obtained from a separate simulation of
the unquantized system (to avoid over-training), into bins of
equal probability. The quantized value of the corresponding
control is then defined as the median given that the signal lies
in that bin, as that is found to offer better performance than
other measures, such as the conditional mean. The
quantization scheme depends on the number of bits used for
quantization. The thresholds on the error when no power
control command is issued is tuned (to ±0.035 dB, in this
case) based on repeated simulation of the unquantized
system, quantizing the control signal, simulation of the
quantized system, and performance analysis in terms of
outage probability.

Monte Carlo simulations were carried out on the
network topology as described in Section VI, using the 2-bit
(22 = 4 combinations) and 3-bit (23 = 8 combinations)
quantized error signals to determine the n-bit power control
command decision that is provided to the MT. Results were
obtained by first simulating using the unquantized power con-
troller (i.e., power controller with infinite feedback band-
width). Another simulation is carried out by seeding the
preceding simulation using the same random seeds, but now
using a 2-bit feedback. Similarly, results are obtained for a
3-bit feedback. Then, 10 new simulations are executed using
the unquantized controller, and the above mentioned process
is repeated for 2-bit and 3-bit feedback. Data is collected,
stored and tabulated in Table III. Table III shows the average
outage probability of the various schemes (unquantized, 2-bit,

Table II. Percentage of sample times experiencing outage for
different number of users in the cell of interest. The
control gain kp is tuned for the system based on the
number of users, and ke = 1.3 × 10−4. The prediction
window sizes are selected based on the condition det
Z ≥ ζ (refer to Table I for the best window size
selection).

Doppler freq. range (Hz)

Avg. % samples where xi ≤ γmin

10 users 20 users 40 users

0–10 1.3 2.2 2.6
10–20 2.1 4.1 5.0
20–30 5.1 6.1 6.7
30–40 5.5 8.4 9.5
Best kp 0.65 0.7 1
Avg. Transmit Power

(dBm)
−16.47 −15.51 −14.75

Table III. Percentage of sample times experiencing outage for
unquantized, 2-bit and 3-bit power-control commands.

Doppler freq.
range (Hz)

Avg. % samples where xi ≤ γmin

Unquantized 3-bit 2-bit

0–10 1.3 1.4 1.5
10–20 2.1 2.7 3.8
20–30 5.1 7.3 11.5
30–40 5.5 9.8 13.6
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and 3-bit power control command) obtained from such
repeated simulations to compare and choose the best (in
terms of reducing the outage probability) possible
quantization scheme based on the bandwidth constraints.
From Table III, a 3-bit power control command signal pro-
vides performance that falls in the acceptable region for voice
communication, and hence this scheme can be used in con-
junction with the controller to deliver the desired QoS for
each radio link. Note that the control gains kp and ke are fixed
throughout the course of the simulations.

We compared the performance of our control algorithm
with the up/down power control algorithm described and
analyzed in [20]. The up/down power control algorithm uses
1-bit feedback to determine whether to adjust the power up or
down by a fixed 0.5 dB. We compare the performance of the
up/down power controller to the power control algorithm
developed in this paper both with and without channel pre-
diction. The results are illustrated in Fig. 2. The results show
that the use of 3-bit feedback with our control algorithm
provides substantial gains over the 1-bit up/down control
algorithm for all mobile velocities. For Doppler frequencies
over 10 Hz, the use of channel prediction provides a signifi-
cant additional performance gain, especially at high Doppler
frequencies. For instance for mobile radios with Doppler
frequencies between 30 Hz and 40 Hz, the up/down power
controller has outage probability over 0.22. Using the power
control algorithm developed in this paper, but without

channel prediction, lowers the outage probability to less than
0.19. The addition of channel prediction further lowers the
outage probability to less than 0.1, thereby satisfying the
typical target outage probability for mobile voice communi-
cations. The complexity of the power-control scheme pro-
posed in this paper is dominated by the calculation of the
SINR predictor in (6). This requires matrix inversion (see
(7)), which has complexity that scales approximately as
O( )n3 , where n is the number of samples used in the predic-
tor. However, the simulations results presented in this section
show that n ≤ 4 is sufficient for this purpose, and the matrix
inversions need only be calculated at the rate of the channel
updates. This is minimal complexity compared to the many
other high-rate, low latency signal processing and decoding
operations that must be carried out by the CDMA cellular
base station. Thus, the proposed schemes both have the poten-
tial to improve the performance of power control in the
reverse link of CDMA cellular communications and are prac-
tical for implementation in the cellular base stations.

VIII. CONCLUSION

A LMMSE prediction-based power-control algorithm
was developed for a wireless CDMA-based multiple cellular
networked system despite uncertain multipath fading. The
predictor uses local SINR measurements at the previous and
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Fig. 2. Comparison against Song’s power control algorithm.
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current time instances, along with the Doppler frequency
(which can also be estimated from the SINR measurements)
to estimate the channel uncertainties. A Lyapunov-based
analysis is used to develop the controller and a resulting
ultimate bound for the sampled SINR error, which can be
decreased up to a point by increasing the control gains. Simu-
lations indicate that the SINRs of all the radio links are
regulated in the region γmin ≤ xi(·) ≤ γmax with an outage prob-
ability of less than 10%, and power requirements of all the
MTs were in the implementable range. Outages at some
samples were determined to be due to limitations of the linear
predictor, and this highlights the need for more sophisticated
prediction and control development tools to address this
issue. Simulations are also done using 2-bit and 3-bit control
feedback, and the results show that the performance is still
within the acceptable outage range if at least a 3-bit power
control command is used. Comparison against a standard
power control algorithm from the literature is done to dem-
onstrate the advantages of using channel prediction and
multi-bit feedback.
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