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TRACKING CONTROL IN THE PRESENCE OF NONLINEAR

DYNAMIC FRICTIONAL EFFECTS: ROBOT EXTENSION

M. Feemster, D.M. Dawson, A. Behal and W. Dixon

ABSTRACT

In this paper, we extend the observer/control strategies previously pub-
lished in [25] to an n-link, serially connected, direct drive, rigid link, revolute
robot operating in the presence of nonlinear friction effects modeled by the Lu-
Gre model.  In addition, we also present a new adaptive control technique for
compensating for the nonlinear parameterizable Stribeck effects.  Specifically,
an adaptive observer/controller scheme is developed which contains a
feedforward approximation of the Stribeck effects.  This feedforward approxi-
mation is used in a composite controller/observer strategy which forces the
average square integral of the position tracking error to an arbitrarily small
value.  Experimental results are included to illustrate the performance of the
proposed controllers.
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I. INTRODUCTION

With the recent introduction of robot manipulator
systems into such high precision applications as that of
micro-surgery, researchers in the area of robotics are chal-
lenged to develop electromechanical systems that allow for
the exact placement of robot end-effectors.  That is, the
mechanical design coupled with the precise control of joint
actuators must promote accurate placement of the robot
manipulator.  However, the performance of model-based
control strategies for these mechanical systems is ulti-
mately limited by the model’s ability to accurately describe
the system dynamics.  With the accuracy required in many
position tracking or setpoint applications, the procurement
of more accurate friction models and the corresponding
model-based controllers for robot manipulator systems is
apparent.  Hence, several robotic researchers are cur-
rently focusing on the development of controllers based
on more accurate/complex friction models in an attempt to
increase the performance of robot manipulator systems.

Due to an extensive history of research on the friction
phenomena, a plethora of control algorithms currently
exist that employ numerous friction models1.  For example
in [8], Canudas et al. utilized a linear parameterizable
friction model to develop an adaptive control algorithm to

promote link position tracking for a robot manipulator.
Gonzalez et al. [14] utilized nonlinear feed-forward com-
pensation for friction while obtaining force control in
robotic manipulators.  In [2], Armstrong explored the
implications of the Stribeck effect on feedback control
using a reduced order model of friction.  Armstrong also
established experimental procedures to stabilize the per-
formance of the controller at low velocities.  In [4],
Armstrong applied dimensional and perturbation analysis
to solve a nonlinear low-velocity friction control problem.
Specifically, a simple PD controller was implemented
after reducing the parameters representing the friction
model from ten to five via a dimensional analysis.  In [13],
Friedland et al. proposed an adaptive control scheme
which entails the use of an observer to estimate the kinetic
friction coefficient.  Annaswamy et al. [1] developed an
adaptive tracking controller for a class of systems with
convex/concave parametrization.  The proposed controller
of [1] can be directly applied to mechanical systems with
significant friction effects to achieve globally uniformly
ultimately bounded position tracking.  In [12], Feemster et
al. developed an adaptive controller that achieved global
asymptotic setpoint regulation while actively compensat-
ing for the nonlinearly parameterizable Stribeck effects.

With the recent concern over the ability of static
friction models to accurately capture such low velocity
friction effects as hysteresis and stick-slip, researchers
have focused on the development of alternative dynamic
friction models.  To address the shortcomings of static

1 We refer the reader to [3,5,7] and [15] for reviews on the various
friction modeling techniques.
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models, Canudas et al. [7] proposed a dynamic model for
friction that more accurately predicts friction behavior
caused by the Stribeck effect, hysteresis, and the varying
break-away force.  In addition, Canudas et al. [7] explored
the development of observer-based control strategies for
the proposed model.  Olsson et al. [20] analyzed an ob-
server-based control strategy for the dynamic friction
model of [7] with regard to the controller’s sensitivity to
modeling errors and sensor noise.  Canudas et al. [9] also
proposed a model-based, adaptive friction compensation
method for the model of [7] that was experimentally tested
on a DC motor servomechanism.  For the dynamic model
of [7], Lischinsky et al. [19] developed a model-based
friction compensation scheme for a six degree of freedom
Schilling Titan II hydraulic robot.  Panteley et al. [21]
developed a global position tracking controller for an
n-degree of freedom robot manipulator perturbed by fric-
tion forces (i.e., the friction compensation problem is
viewed as a disturbance rejection problem).  In [10],
Canudas et al. proposed a passivity-based friction compen-
sation scheme based on the friction model of [7] to achieve
global asymptotic position tracking.  In [25], Vedagarbha
et al. constructed three observer/controller schemes that
achieved different transient performance specifications
assuming exact model knowledge.  In addition, Vedagarbha
et al. [25] proposed two adaptive observer-based control
strategies to compensate for selected parametric uncertainty.
In [23], Sivakumar et al. developed a robust, adaptive,
variable structure controller to minimize the effects of
friction described by the dynamic friction model of [7] in
positioning applications.  Jain et al. [17] proposed a robust
adaptive controller to compensate for dynamic friction
effects separated from the control input through drive
compliance.  The controller of [17] does not require any
knowledge of the parameters associated with model [7]
except for an upperbound on the static friction level to
achieve setpoint regulation.  In [26], Yazdizadeh et al.
illustrated a Lyapunov-based design strategy for construct-
ing a nonlinear estimator to compensate for the Coulomb
friction coefficient to ensure asymptotic stability without
placing any assumptions on the velocity.

In this paper, we extend the observer based control
strategies of [25] to an n-link, direct drive, rigid link
revolute robot.  Specifically in Section II, we present the
dynamic model of a robot manipulator system operating in
the presence of nonlinear friction effects.  In Section III,
the various error signals necessary to facilitate the control
development are defined.  We develop a partial-state exact
model knowledge, observer based control strategy to
achieve global exponential link position tracking in Sec-
tion IV.  In Section V, we develop two adaptive, partial-
state feedback controllers that actively compensate for
selected parametric uncertainty in the system model and

achieve global asymptotic position tracking.  The first
adaptive controller compensates for all model parameters
except those associated with the nonlinear parameterizable
Stribeck effect.  The second adaptive controller addresses
the normal variations associated with the Stribeck effect
(i.e., all other system parameters are assumed to be known).
In Section VI, we present a new adaptive control technique
for compensating for the nonlinear parameterizable
Stribeck effect.  Specifically, an adaptive observer/control-
ler scheme is developed which contains a feedforward
approximation of the Stribeck effect.  This feedforward
approximation is used in a composite controller/observer
strategy which forces the average square integral of the
position tracking error to an arbitrarily small value.  Experi-
mental results are presented in Section VII.

II. ROBOT MANIPULATOR MODEL
AND PROPERTIES

The dynamic model for a n-link, serially connected,
direct drive, rigid-link revolute robot operating in the
presence of nonlinear dynamic friction effects [7] can be
expressed by the following

   M(q)q + Vm(q, q)q + G(q) + Fdq + χ(q)z = τ (1)

  z = q – f (q)z (2)

where the auxiliary functions χ(q ) ∈  ℜ n × n and f(q ) ∈
ℜ n × n are explicitly defined as2

   χ(q) = θ0 – θ1 f (q) (3)

   
f (q) = diag { fi(qi)} = diag

qi

β 0i + β 1i exp
qi

2

β 2i

for i = 1, …, n, (4)

where q(t), q (t), q (t) ∈  ℜ n × n denote the link position,
velocity, and acceleration vectors, respectively, M(q) ∈
ℜ n × n denotes the inertia matrix, Vm(q, q) ∈  ℜ n × n denotes the
centripetal-Coriolis matrix, G(q) ∈  ℜ n denotes the gravity
vector, Fd ∈  ℜ n × n denotes the positive definite diagonal
matrix representing the viscous friction effects, z(t) ∈  ℜ n

denotes the unmeasurable internal friction state vector,
θ0 ∈  ℜ n × n and θ1 ∈  ℜ n × n are positive definite, constant
diagonal matrices that weight the friction effects, f(q) ∈
ℜ n × n denotes a diagonal matrix used to capture the
Stribeck frictional effect (β0i, β1i, and β2i are positive,
constant parameters), and τ(t) ∈  ℜ n represents the torque
input control vector.

The robot dynamics of (1) are assumed to exhibit the
following properties that will be exploited in the control
development/stability analysis:

2 We note that there is a slight modification in the definition of
f(q) from that of [25] (i.e., β

2i
 is not squared in (4))
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Property 1. The inertia matrix M(q) is symmetric, positive
definite, and satisfies the following inequality

   m1 y
2 ≤ yTM(q)y ≤ m2 y

2 ∀ y ∈ ℜ n (5)

where m1 and m2 are known positive, scalar constants, and

 ⋅  denotes the standard Euclidean norm.

Property 2. The inertia and the centripetal-Coriolis matri-
ces exhibit the following property

   yT 1
2M(q) – Vm(q, q) y = 0 ∀ y ∈ ℜ n (6)

where  M (q) denotes the time derivative of the inertia
matrix.

Property 3. The robot dynamics of (1) are linearly parame-
terizable in the following manner

   Y(q, q, q)θ = M(q)q + Vm(q, q)q + G(q) + Fdq (7)

where the regression matrix Y(q , q , q) ∈  ℜ n × p contains
known functions of the link acceleration, link velocity, and
link position signals, and θ ∈ ℜ p contains the constant
system parameters.  It is assumed that if q(t), q(t), q(t) are
bounded, then Y(q, q , q) ∈  L∞.

Remark 1. The nonlinear state vector z(t) [7] has been
introduced in order to accurately take into account the
stick-slip friction phenomenon occurring on a microscopic
level between two contact surfaces.  Conceptually, this
model views the friction created between the two interact-
ing surfaces as being caused by a large number of bristles
in the narrow interstices of the rubbing surfaces.  The state
vector z(t) used in the mechanical model of (1) and (2)
represents the average deflection of thousands of such
bristles.  Clearly, the state z(t) does not proffer itself for
direct measurement.

Remark 2. We note that the structure of the function3

f(q) ensures that f(q) ∈  L∞ if q(t) ∈  L∞.  As illustrated in [7],
the structure of f(q) of (4) can be shown to guarantee that
the internal friction state z(t) is bounded.  That is, a simple
Lyapunov analysis applied to (2) yields

   z(t) ≤ δ0 (8)

where δ0 is some positive constant.

III. PROBLEM FORMULATION

In order to achieve the control objective of link
position tracking for the dynamic model of (1) and (2)
(under the assumption that link position and link velocity
measurements are available), we define the link position
tracking error e(t) ∈ ℜ n as

e = qd – q (9)

where qd(t) ∈  ℜ n represents the desired link position
trajectory.  We assume that qd(t) and its corresponding first
and second time derivative are bounded functions of time.
In addition, we define the filtered tracking error r(t) ∈ ℜ n

as follows

   r = e + αe (10)

where α ∈ ℜ n × n is a diagonal, positive definite, control gain
matrix.  To account for the inability to measure the internal
friction state z(t), we define the following observation error
signal z (t) ∈ ℜ n as follows

  z = z – z (11)

where z(t) ∈ ℜ n represents the yet to be designed dynamic
estimate for the unmeasurable friction state z(t).

IV. EXACT MODEL KNOWLEDGE
CONTROL DESIGN

In this section, we design an exact model knowledge
observer/controller to achieve link position tracking.  That
is, we assume that all of the system parameters of (1) and
(2) are known exactly.  Since we must provide for the
observation of the internal friction state z(t), we design an
exact model knowledge observer that exploits the me-
chanical system dynamics of (1) in order to provide for
convergence of the observation error (i.e., z (t) will be
driven to zero).  The stability of the proposed observer/
controller is analyzed through Lyapunov based arguments.

1. Controller design

In this section, we design the torque control input τ(t)
to promote link position tracking.  To simplify the control
development, we rewrite the mechanical dynamics of (1) in
terms of the filtered tracking error r(t) as follows

   M(q)r = M(q) (qd + αe) + Vm(q, q)q + G(q)

   + Fdq + χ(q)z – τ (12)

where (1) has been utilized.  In order to prepare for the
stability analysis, we add and subtract the term Vm(q, q)r to
the right hand side of (12) to obtain the following expres-
sion

3 We note that the definition of the function f(q) of (4) utilizes a
typical Stribeck capturing function as defined in Remark 3 of
[25].
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   M(q)r = – Vm(q, q)r + Wm(q, q) + χ(q)z – τ (13)

where the auxiliary signal Wm(q, q , t) ∈ ℜ n is explicitly
defined as

   Wm(q, q) = M(q) (qd + αe) + Vm(q, q) (qd + αe)

  + G(q) + Fdq . (14)

Based on the structure of the open-loop dynamics of
(13), we design the control input vector τ(t) in the following
manner

   τ = Wm(q, q) + χ(q)z + k sr (15)

where ks ∈ ℜ n × n is a diagonal, positive definite, control gain
matrix.  After substituting τ(t) of (15) into (13) and cancel-
ling common terms, we obtain the closed loop filtered
tracking error dynamics as follows

   M(q)r = – Vm(q, q)r – k sr + [χ(q)z] (16)

where the definition of (11) has been utilized.

2. Observer design

Since the internal friction state z(t) does not lend
itself for practical measurement, we design an appropriate
dynamic estimate z (t) for use in the control torque vector
τ(t) of (15).  Based on the structure of (2) and the ensuing
stability analysis, we design the estimate z (t) as follows

   z = p – θ1
– 1M(q)q (17)

where the dynamics for the internal variable p(t) ∈ ℜ n are
given by

   
p = θ1

– 1 – θ0z + M(q)q – Vm(q, q)q – G(q) –Fdq + τ +

+ θ1q + χ(q)r (18)

After taking the time derivative of (17), pre-multiply-
ing the result by the matrix θ1, substituting in the dynamic
model of (1), and simplifying the resulting expression, we
obtain the following non-implementable dynamics for z(t)

   θ1z = – θ0z + θ1q + χ(q)r + χ(q)z

   = θ0z + χ(q)r + θ1q – θ1 f (q)z (19)

where the definition of (3) and (11) has been utilized.  After
taking the time derivative of (11), pre-multiplying through
by the matrix θ1, substituting in (2) and (19), and cancelling

the common terms, we obtain the following expression for
the closed-loop observation dynamics for z (t)

   θ1z = – θ0z – χ(q)r . (20)

Remark 3. We note that the term χ(q)r has been injected
into (18) to cancel the bracketed interconnection term in
(16) during the subsequent stability analysis.

3. Stability analysis

In order to examine the stability of the proposed
observer/controller, we define the following non-negative,
scalar function as follows

   V0 = 1
2rTM(q)r + 1

2 z Tθ1z . (21)

We note that V0(t) of (21) can be upper and lower
bounded by the following inequalities

    λ 1 x 2 ≤ V0 ≤ λ 2 x 2
(22)

where the composite vector x(t) ∈ ℜ 2n is explicitly defined
as

   x = rT z T
T

, (23)

 λ1 and λ2 are positive, scalar, constants given by

   λ 1 = 1
2 min {m1, λ min{θ1}}

   λ 2 = 1
2 max {m2, λ max{θ1}} (24)

where λmin{⋅} and λmax{⋅} denote the minimum/maximum
eigenvalue of a matrix, respectively.  After taking the time
derivative of V0(t), substituting in (16) and (20), utilizing
(6), and cancelling the resulting common terms, we obtain
the following expression for  V0(t)

    V0 = – rTk sr – z Tθ0z ≤ – λ 3 x 2
(25)

where the positive, scalar constant λ3 is given by

   λ 3 = min {λ min{k s}, λ min{θ0}} . (26)

After utilizing the inequalities of (22), we can rewrite
 V0(t) of (25) in the following manner

   V0 ≤ –
λ 3

λ 2
V0 . (27)

After solving the differential inequality of (27) and
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utilizing the inequality given by (22), we obtain the follow-
ing expression for the composite vector x(t)

   x(t) ≤ λ 2

λ 1
exp –

λ 3

2λ 2
x(0) . (28)

Clearly from (28), we can see that x(t) goes to zero
exponentially fast; hence, from the definition of (23), we
know that the filtered position tracking error variable r(t)
and the observation error z (t) also go to zero exponentially
fast.  Since the filtered tracking error variable r(t) is related
to e(t) through an exponentially stable transfer function, we
can then show that the link position tracking error e(t)
converges to zero exponentially [24].  Standard signal
chasing arguments can be used to show that all signals in
the controller/observer and the mechanical system remain
bounded during closed-loop operation.

V. ADAPTIVE CONTROL DESIGN

In this section, we present the two adaptive observer/
controller schemes of [25] to compensate for parametric
uncertainty in selected parameters of the mechanical sys-
tem of (1).

1. Case 1 - known stribeck function

In this subsection, we propose an adaptive partial-
state feedback control for the mechanical system of (1) and
(2) that compensates for all the parameters except those
appearing in f(q).  That is, we assume that f(q) is available
for use in the design of the observer/control algorithm.
After rewriting the mechanical system of (1) in terms of the
filtered tracking error variable r(t) as done similarly in (13),
we obtain

   M(q)r = – Vm(q, q)r + Ymθm + θ0z – θ1 f (q)z – τ
(29)

where the definition of (3) has been used, and (7) has been
utilized to define the regression matrix/parameter vector
formulation as

   Ymθm = M(q) (qd + αe) + Vm(q, q) (qd + αe)

  + G(q) + Fdq (30)

where Ym(q d, qd, qd, q , q, t) ∈ ℜ n × p denotes a known
regression matrix, and θm ∈ ℜ p represents a vector of
unknown, constant, system parameters.  Based on the
open-loop structure of (29) and the ensuing Lyapunov
stability analysis, we design the torque input vector as

   τ = k sr + Ymθm + θ0z – θ1 f (q)z + θ0ζ 0 – θ1 f (q)ζ 1

(31)

where ks ∈ ℜ n × n is defined as a diagonal, positive definite,
control gain matrix,  θm(t) ∈ ℜ p,  θ0(t) ∈ ℜ n × n,  θ1(t) ∈
ℜ n × n represent the dynamic parameter estimates for θm, θ0,
θ1, respectively, which are calculated on-line from the
following update laws

   θm = Γ mYm
Tr θ0i = γ0i(zi + ζ 0i)ri

   θ1i = – γ1i fi(qi) (zi + ζ 1i)ri    for i = 1, …, n, (32)

where Γm ∈ ℜ p × p denotes a diagonal, positive definite,
adaptation gain matrix, γ0i, γ1i denote positive, constant,
scalar adaptation gains, and ζ0(t), ζ1(t) ∈ ℜ n are nonlinear,
auxiliary filter signals with the following dynamics

   ζ 0 = – f (q)ζ 0 + r ζ 1 = – f (q)ζ 1 – f (q)r . (33)

After substituting τ(t) of (31) into (29) and simplify-
ing the result, we obtain the following expression for the
closed-loop filter tracking error dynamics as given by

   M(q)r = – k sr – Vm(q, q)r + Ymθm + θ0(z + ζ 0)

   – θ1 f (q) (z + ζ 1) + θ0(z – ζ 0)

   – θ1 f (q) (z – ζ 1) (34)

where  θm(t) = θm –  θm(t) ∈ ℜ p,  θ0(t) = θ0 –  θ0(t) ∈ ℜ n × n, and
 θ1 (t) = θ1 –  θ1 (t) ∈ ℜ n × n denote the corresponding

parameter estimation error.  We note that   θ0i (t),   θ1i (t)
denote parameter estimates for ith main diagonal elements
of θ0, θ1, respectively; hence,  θ0 (t) and  θ1(t) are only
updated on the main diagonal elements.  Based on the
structure of (2), we design the dynamics for the observer
z (t) as follows

  z = q – f (q)z . (35)

After taking the time derivative of (11), substituting
in (2) and (35), and cancelling common terms, we obtain
the following

  z = – f (q)z . (36)

Remark 4. We note that (35) represents a rather simplistic
method for designing the observer z (t) motivated from
rewriting the dynamic equation governing the unmeasurable
state (2) in terms of the estimated state.  We note that we are
forced to construct this simple observer due to the fact that
many of the system parameters are not known.

In order to examine the stability of the proposed
adaptive observer/controller of (31), (35), (32), and (33),
we define the following non-negative, scalar function V1(t)
as follows
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   V1 = 1
2rTM(q)r + 1

2 z T z + 1
2(z – ζ 0)

Tθ0(z – ζ 0)

   + 1
2(z – ζ 1)

Tθ1(z – ζ 1) + 1
2θm

TΓ m
– 1θm

   + 1
2

1
γ0i

Σ
i = 1

n

θ0i
2 + 1

2
1
γ1i

Σ
i = 1

n

θ1i
2 . (37)

After taking the time derivative of (37), substituting
in (34), (35), and (33), and simplifying the resulting
expression, we obtain the following expression for  V1(t)

   V1 = – rTk sr – z T f (q)z + rTYmθm – θm
TΓ m

– 1θm

   
+ rTθ0(z + ζ 0) – θ0iΣ

i = 1

n 1
γ0i

θ0i

   
+ – rTθ1 f (q) (z + ζ 1) – θ1iΣ

i = 1

n 1
γ1i

θ1i

   –(z – ζ 0)
Tθ0 f (q) (z – ζ 0) – (z – ζ 1)

Tθ1 f (q) (z – ζ 1)
(38)

where (6) has been utilized.  Since  θ0(t) and  θ1(t) are main
diagonal matrices, the bracketed terms of (38) can be
written in the following manner

   rTθ0(z + ζ 0) = θ0iΣ
i = 1

n

(zi + ζ 0i)ri

   rTθ1 f (q) (z + ζ 1) = θ1iΣ
i = 1

n

fi(qi) (zi + ζ 1i)ri (39)

where fi(qi) denotes the ith diagonal element of f(q).  After
utilizing (39) and substituting in the parameter update laws
of (32), we obtain

   V1 = – rTk sr – z T f (q)z – (z – ζ 0)
Tθ0 f (q) (z – ζ 0)

   – (z – ζ 1)
Tθ1 f (q) (z – ζ 1), (40)

which can be upperbounded in the following manner

   V1 ≤ – rTk sr . (41)

From the fact that V1(t) is a non-negative function, and

 V1(t) is non-positive, we can state that V1(t) is either
decreasing or constant; hence, V1(t) ∈  L∞.  Therefore, all
signals contained in V1(t) of (37) remain bounded (i.e., r(t),
z (t),  θm(t),  θ0,  θ1, ζ0(t), ζ1(t) ∈  L∞).  Since z (t), z(t) ∈  L∞
(See Remark 2), we can show that the dynamic observer
z(t) ∈  L∞.  Hence, from (34), we can prove that r (t) ∈  L∞.
From the fact that V1(t) is decreasing or constant and the
structure of (41), we can easily illustrate that r(t) ∈  L2.
Hence, direct application of Barbalat’s Lemma [22] and
standard linear control arguments yield

   lim
t → ∞

r(t) = 0 ⇒ lim
t → ∞

e(t), e(t) = 0 . (42)

Standard signal chasing arguments can be used to
show that all signals in the controller/observer and the
mechanical system remain bounded during closed-loop
operation.

2. Case 2 - unknown normal force variation parameter

We now develop an adaptive observer/controller
scheme that addresses the parametric uncertainty problem
associated with normal force variation in the Stribeck
effect.  That is, we assume that the matrix f(q ) can be
expressed as follows

  f (q) = k fk(q) (43)

where k ∈  ℜ n × n denotes a diagonal matrix of unknown
positive constants, and fk(q) ∈  ℜ n × n represents a diagonal
matrix composed of known functions (Note that all other
system parameters of (1) are assumed to be known).  After
rewriting (1) in terms of the filtered tracking error variable
as done similarly in (13), we obtain the following expres-
sion

   M(q)r = – Vm(q, q)r + Wm(q, q) + θ0z – θ1k fk(q)z – τ .
(44)

where Wm(q, q ) was previously defined in (14), and (43)
has been utilized.  Based on the open-loop structure of (44),
we design the torque input τ(t) as follows

   τ = k sr + Wm(q, q) + θ0z – θ1k fk(q)z – θ1k fk(q)ζ k

(45)

where ks ∈  ℜ n × n is a diagonal matrix of positive, constant
control gains, k (t) ∈  ℜ n × n denotes the dynamic estimate for
the diagonal matrix k which is calculated using the follow-
ing update law

   k i = – γkiθ1i fki(qi) (zi + ζ ki)ri    for i = 1, …, n, (46)

where γki is a positive, scalar adaptation gain, and ζk(t) ∈ ℜ n

is an auxiliary filter state vector calculated on-line from the
following dynamic expression

   ζ k = θ1
– 1[ – fk(q)r – θ0r – θ0ζ k] . (47)

We note that k i(t) denotes the parameter estimate for
ith main diagonal element of k; hence, k i(t) is only updated
on the main diagonal elements.

After substituting τ(t) of (45) into (44) and cancelling
common terms, we obtain the following closed-loop ex-
pression for the filtered tracking error dynamics

   M(q)r = – k sr – Vm(q, q)r – θ1k fk(q) (z + ζ k)
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   – θ1k fk(q) (z – ζ k) + [θ0z] (48)

where k (t) = k – k  ∈ ℜ n × n is a diagonal matrix denoting the
corresponding parameter estimation error for the param-
eter matrix k.  Based on the ensuing Lyapunov stability
analysis, we propose the following observer for the internal
friction state

   z = p – θ1
– 1M(q)q (49)

where the dynamics for the internal variable p(t) ∈ ℜ n are
given by the following expression

   
p = θ1

– 1 – θ0z + M(q)q + ( – Vm(q, q)q – G(q) – Fdq +

q + τ ) + θ0r + θ1q (50)

After taking the time derivative of (49), substituting
in (1) and (50), pre-multiplying through by the matrix θ1,
and cancelling common terms, we obtain the following
expression for the non-implementable dynamics for z (t)

   θ1z = θ0z + θ0r + θ1q – θ1k fk(q)z (51)

where the definition of (11) has been utilized.  After taking
the time derivative of the observation error of (11), pre-
multiplying by the matrix θ1, substituting in the expres-
sions of (2) and (51), and cancelling common terms, we
obtain the following expression for the closed-loop obser-
vation error dynamics for z (t) as given by

   θ1z = – θ0z – [θ0r] . (52)

Remark 5. We note that bracketed term of (52) has been
injected in the observer construction in order to cancel the
bracketed term of (48) during the ensuing stability analysis.

To analyze the stability of the proposed observer/
controller scheme, we define the following non-negative,
scalar function

   V2 = 1
2rTM(q)r + 1

2 z Tθ1z + 1
2(z – ζ k)

Tθ1kθ1(z – ζ k)

   + 1
2

1
γki

Σ
i = 1

n

k i
2 . (53)

After taking the time derivative of (53), substituting
in the dynamics of (48), (52), and (47), and simplifying the
resulting expression, we obtain the following expression
for   V2 (t)

   V2 = – rTk sr – z Tθ0z – rTθ1k fk(q) (z + ζ k)

   – (z – ζ k)
Tθ1kθ0(z – ζ k) – k iΣ

i = 1

n 1
γki

k i . (54)

We note that the bracketed term of (54) can be
rewritten as follows

   rTθ1k fk(q) (z + ζ k) = θ1iΣ
i = 1

n

k i fki(qi) (zi + ζ ki)ri (55)

where we have utilized the fact that the matrices θ1, k (t),
and fk(q) are diagonal.  After substituting (55) and (46) into
(54), we obtain the following

   V2 = – rTk sr – z Tθ0z – (z – ζ k)
Tθ1kθ0(z – ζ k) (56)

which can be upperbounded in the following manner

   V2 ≤ – rTk sr – z Tθ0z (57)

where we have utilized the fact that θ1kθ0 is a positive
definite matrix.

From the fact that ks and θ0 are positive definite,
diagonal matrices, we can see from (57) that V(t) is nega-
tive semi-definite.  Therefore, we can state that the non-
negative function V(t) is decreasing or constant; hence,
V(t) is bounded (i.e., r(t), z (t), k (t), ζk(t) ∈  L∞).  From
Remark 2 and the fact z (t) ∈  L∞, we know that the ob-
server signal z (t) ∈  L∞.  Since r(t) ∈  L∞, we can state that
q(t), q(t) ∈  L∞, since qd(t), qd(t) are assumed to be bounded.
From (48), we can state the r(t) ∈  L∞.  From the structure of
(57), we can easily show that r(t) ∈  L2.  Hence, direct
application of Barbalat’s Lemma [22] and standard linear
control arguments yield

   lim
t → ∞

r(t) = 0 ⇒ lim
t → ∞

e(t), e(t) = 0 . (58)

Standard signal chasing arguments can be used to
show that all signals in the controller/observer and the
mechanical system remain bounded during closed-loop
operation.

VI. ADAPTIVE COMPENSATION FOR
THE STRIBECK EFFECT

In this section, we develop an adaptive control strat-
egy which compensates for parametric uncertainty associ-
ated with the nonlinearly parameterizable Stribeck effects.
For simplicity, we only examine the one degree of freedom
problem.  Specifically, the mechanical system dynamics
are now expressed in the following manner

   Mq + Bq + TL(q, q) + χ(q)z = u , (59)

  z = q – f (q)z , (60)

where the auxiliary scalar functions χ(q ) and f(q ) are
defined as follows
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   χ(q) = θ0 – θ1 f (q) (61)

   
f (q) =

q

β 0 + β 1 exp –
q2

β 2

, (62)

q(t), q (t), q (t) represent scalar position, velocity, and
acceleration, respectively, z(t) denotes the unmeasurable
internal friction state, M denotes the constant mechanical
inertia of the system, B denotes the constant viscous fric-
tion coefficient, TL(q, q ) denotes a scalar nonlinear load
function dependent on the position and velocity, θi, βi ∈ ℜ 1

are positive constant parameters, and u(t) is the control
torque input.  With regard to the above model, we will
assume that all quantities are exactly known except for the
constants β0, β1, and β2.

Based on the structure of (62), we propose the follow-
ing linear parameterizable function   f (q) to approximate
the function f(q) as shown below

   f (q) ≡ σ 0 q + σkΣ
k = 1

m

mk(q) (63)

where the function  mk(q ) ∈ ℜ 1 is given by

  
mk(q) = q tanh

q2

k (64)

where σ0 and σk′s denote unknown positive, constant scalar
weighting constants, and m represents the number of func-
tions used to approximate f(q).  After rewriting the me-
chanical system of (1) in terms of the filtered tracking error
r(t), we obtain the following expression

   Mr = M(qd + αe) + Bq + TL(q, q) + θ0z – θ1 f (q)z

   + θ1 f (q)z – θ1 f (q)z – u (65)

where the definition of (61) has been utilized, and the term
θ1   f (q)z has been added and subtracted to the right hand
side of (65).  After simplifying the parenthetical expression
of (65), we obtain the following

   Mr = M(qd + αe) + Bq + TL(q, q) + θ0z – θ1 f (q)z

   – θ1 f (q)z – u (66)

where   f (q) = f (q) – f (q)  represents the mismatch error

associated with the function f(q).

Remark 6. The structure of (63) and (64) was motivated
from an experimentally obtained profile of (62).  We note
the expressions of (63) and (64) represent only one possible
approximating function for f(q) and that the approximating
method of (63) and (64) can be easily extended to an n-link,
serially connected, rigid link, revolute robot.  From the
structure of (62) and (63), we note that the approximation
error   f (q) can be upperbounded in the following manner

   f (q) ≤ ρ q (67)

where ρ is some positive constant.  It should be noted that
the magnitude of ρ will be smaller if we select larger values
for m in the approximating function given in (63).

Based on the structure of (66), we design the torque
input u(t) as follows

   u = k sr + M(qd + ae) + Bq + TL(q, q) + θ0z – θ1 f (q)z

   – θ1σ 0 q ζ 0 – θ1 σ kΣ
k = 1

m

mk(q)ζ k + k n(θ1q)2r (68)

where ks, kn denotes positive, scalar control gains, and   f (q)
is explicitly defined as follows

   f (q) = σ 0 q + σ kΣ
k = 1

m

mk(q) (69)

 σ 0(t),  σ k(t)denote weighting coefficient estimates that are
calculated using the following projection based update law

   

σ 0 =

0 if
σ 0 = σ 0 and –γ0θ1 q (z + ζ 0)r > 0

σ 0 = σ 0 and –γ0θ1 q (z + ζ 0)r < 0

– γ0θ1 q (z + ζ 0)r otherwise

   

σ k =

0 if σ k = σ k and –γkθ1mk(q) (z + ζ k)r > 0
σ k = σ k and –γkθ1mk(q) (z + ζ k)r < 0

– γkθ1mk(q) (z + ζ k)r otherwise

(70)

γ0, γk′s are positive, constant adaptation gains,   σ 0,   σ 0 and
  σ k,   σ k represent the known upper and lower bounds4 for

σ0 and σk, respectively, ζ0(t), ζk(t) denote nonlinear, auxil-
iary filter variables that have the following dynamics

4 The projection algorithm given by (70) ensures that if the
adaptive estimates are initialized between the known upper and
lower bounds for the unknown parameters, then the adaptive
estimates will remain between the known upper and lower
bounds for all time.
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   ζ 0 = – θ1 q r –
θ0

θ1
r –

θ0

θ1
ζ 0

   ζ k = – θ1mk(q)r –
θ0

θ1
r –

θ0

θ1
ζ k , (71)

kn denotes a positive, constant, nonlinear damping gain,
and z (t) represents the yet to be designed estimate for
internal friction.  After substituting in the control torque of
(68) into the open-loop dynamics of (66) and simplifying
the resulting expression, we obtain

   Mr = – k sr + θ0z – σ 0θ1 q (z + ζ 0) – θ1σ 0 q (z – ζ 0)

   – θ1 σ kΣ
k = 1

m

mk(q) (z + ζ k) – θ1 σ kΣ
k = 1

m

mk(q) (z – ζ k)

   + – θ1 f (q)z – k n(θ1q)2r (72)

where  σ 0 (t) = σ0 –  σ 0  and  σ k = σk –  σ k represent the
parameter estimation error and the definitions of (63) and
(69 have been substituted into (72).

For the scalar system of (59) and (60), we construct
the following nonlinear observer for z (t) [25]

   z = p – M
θ1

q (73)

where the internal scalar signal p(t) has the following
dynamics

   p = 1
θ1

[ – θ0z – Bq – TL(q, q) + u + θ0r + θ1q] .

(74)

After taking the time derivative of (73), pre-multiply-
ing through by the system parameter θ1, substituting in (59)
and (74), and simplifying the resulting expression, we
obtain the following non-implementable dynamics for the
observer z(t)

   θ1z = θ0z + θ0r + θ1q – θ1 f (q)z (75)

where we have utilized the definition of (61).  After taking
the time derivative of z (t), pre-multiplying the result by the
parameter θ1, substituting in the expressions of (60) and
(75), and cancelling common terms, the closed-loop obser-
vation error dynamics for z (t) is given by the following
expression

   θ1z = – θ0z – θ0r . (76)

In order to analyze the overall stability of the system,
we define the following non-negative, scalar function V3(t)
as follows

   V3 = 1
2Mr2 + 1

2θ1z 2 + 1
2

1
γ0

σ 0
2 + 1

2
1
γk

Σ
k = 1

m

σ k
2

   + 1
2σ 0(z – ζ 0)

2 + 1
2 σ kΣ

k = 1

m

(z – ζ k)
2 . (77)

We note that V3(t) of (77) can be upper and lower
bounded in the following manner

    ε1 y 2
+ 1

2
1
γ0

σ 0
2 + 1

2
1
γk

Σ
k = 1

m

σ k
2 ≤ V3(t) ≤ ε2 y 2

   + 1
2

1
γ0

σ 0
2 + 1

2
1
γk

Σ
k = 1

m

σ k
2 (78)

where the composite state vector y(t) ∈ ℜ m + 3 is explicitly
defined as follows

    y = [r, z, (z – ζ 0), (z – ζ 1), …, (z – ζ m)]T (79)

and ε1, ε2 are positive scalar constants defined as follows

   ε1 = 1
2 min {M, θ1, σ 0, σ 1, …, σm}

   ε2 = 1
2 max {M, θ1, σ 0, σ 1, …, σm}

After taking the time derivative of (77), substituting
in the closed-loop dynamics of (72) and (76), the parameter
update laws of (70), and the auxiliary filter dynamics of
(71), and cancelling common terms, we obtain the follow-
ing upper bound5 for  V3(t)

   V3 ≤ – k sr
2 – θ0z 2 – ζ 0

θ0

θ1
(z – ζ 0)

2 –
θ0

θ1
σ kΣ

k = 1

m

(z – ζ k)
2

    + – θ1 f (q)zr – k n(θ1q)2r2 (80)

which can be upperbounded in the following manner

    V3 ≤ – ε3 y 2
+ ρδ0(θ1 q )r – k n(θ1q)2r2 (81)

where the positive constant parameter ε3, is given by

   
ε3 = min k s, θ0, σ 0

θ0

θ1
, σ 1

θ0

θ1
, …, σm

θ0

θ1
,

and we have utilized (67) and the fact that the internal
friction state z(t) is bounded according to (8).  After ap-

5 The reader is referred to [6] for the explicit details which
illustrate how the update law of (70) leads to the upper bound for

 V3(t) given by (80).
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plying the nonlinear damping argument [18] to the brack-
eted terms of (81), we obtain the following upperbound
for  V3(t)

    V3 ≤ – ε3 y 2
+

(ρδo)
2

k n
(82)

which can be further upper bounded as follows

   V3 ≤ –
ε3
ε2

V3 +
ε3

2ε2

1
γ0

σ 0
2 +

ε3

2ε2

1
γk

Σ
k = 1

m

σ k
2 +

(ρδo)
2

k n
(83)

where (78) has been utilized.  Since the projection algo-
rithm of (70) guarantees  σ 0 (t),  σ k(t),  σ 0 (t),  σ k(t) ∈  L∞,
we can use (83) and the fact that V3(t) ≥ 0 to show that
V3(t) ∈  L∞; hence, from (78), we now know that y(t) ∈  L∞.
Standard signal chasing arguments can be used to show that
all signals in the controller/observer and the mechanical
system remain bounded during closed-loop operation.

After integrating both sides of (82) and rearranging
the terms in a beneficial manner, we obtain

    
y(ξ)

2

0

T

dξ ≤ V3(0) – V3(T)
ε3

+
(ρδ0)

2T
ε3k n

   ≤ V3(0)
ε3

+
(ρδ0)

2T
ε3k n

(84)

where T denotes an arbitrary limit of integration, and we
have taken advantage of the fact that V3(t) ≥ 0.  After

multiplying through by 1T  and performing a limit operation
to both sides of (84), we obtain following upperbound for
the average norm of the composite vector y(t)

   
lim

T → ∞
1
T y(ξ)

2

0

T

dξ ≤ (ρδ0)
2

ε3k n
. (85)

Hence, from the definition of (79) and (85), the
average square integral of the filtered position tracking
error r(t) can be upper bounded as

   
lim

T → ∞
1
T r2

0

T

(ξ)dξ ≤ (ρδ0)
2

ε3k n
. (86)

It is clear from (86) that the average square integral of
the filtered position tracking error can be arbitrarily small
by increasing the nonlinear damping kn or decreasing the
constant ρ (i.e., the magnitude ρ will be smaller if we select
larger values for m in the approximating function given in
(63).  Since the filtered tracking error is related to the
position tracking error through the linear relationship given
by (10), it is an easy matter to calculate an average square
integral relationship for the position tracking error similar
to that given by (86).

VII. EXPERIMENTAL RESULTS

A test-bed consisting of a 2-link, direct-drive robot
manipulator manufactured by Integrated Motion Inc.  was
used to implement the observer-based exact model knowl-
edge controller of Section IV and the adaptive controller of
Section V.  The links of the manipulator are actuated by
NSK switched-reluctance motors (39.2 Nm Model RS-
0608 and 245.0 Nm Model RS-1410) which are controlled
through custom NSK power electronics operating in torque
control mode.  Two integrally mounted resolvers provide
rotor position measurements with each resolver having a
resolution of 0.00234 degrees.  A Pentium 266 MHz PC
operating under QNX hosts the control algorithm, which
was implemented via Qmotor 2.0, an in-house graphical
user-interface, to facilitate real-time graphing, data logging,
and the ability to adjust control gains without recompiling
the program (for further information on Qmotor 2.0 the
reader is referred to [11]).  Data acquisition and control
implementation were performed at a frequency of 2.0KHz
using the Quanser MultiQ I/O board.

The dynamics for the IMI robot manipulator operat-
ing in nonlinear dynamic friction effects are given as
follows [16]

   τ 1
τ 2

=
m1 + 2m3 cos (q2) m2 + m3cos (q2)
m2 + m3 cos (q2) m2

q1

q2

M(q)q

  
+

– m3 sin (q2)q2 – m3 sin (q2) (q1 + q2)
m3 sin (q2)q1 0

Vm(q, q)q

+Fτ (87)

where m1 = 3.31 kg⋅m2, m2 = 0.116 kg⋅m2, m13 = 0.16 kg⋅m2,
and the friction torque Fτ(t) ∈ ℜ 2 × 1 is explicitly given as

   
Fτ =

fd1 0
0 fd2

q1

q2
+

θ01 0
0 θ02

z1
z2

   

–
θ11 0
0 θ12

q1

β 01 + β 11 exp –
q1

2

β 21

0

0
q2

β 02 + β 12 exp –
q2

2

β 22

z1
z2

(88)
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with fd1 = 2.0 Nm⋅sec, fd2 = 0.5 Nm⋅sec, θ01 = 12.0 Nm,
θ02 = 5.0 Nm, θ11 = 0.2 Nm⋅sec, θ12 = 0.2 Nm⋅sec, β01 =
0.84, β11 = 0.125, β21 = 0.001, β02 =0.54, β12 = 0.06, and
β22 = 0.002.

Remark 7. The system parameters associated with (88)
were calculated using the following procedure: First, a
sinusoidal torque input with the peak amplitude selected to
be more than the static friction torque was applied to each
actuator.  The actuator acceleration for each link was
computed by applying a backwards difference algorithm to
the corresponding measured velocity signal and then filter-
ing the resulting signal.  The experimentally obtained
frictional torque Fτ(t) was then calculated by subtracting
the inertial torque M(q)q  and the torque associated with the
centripetal-Coriolis terms Vm(q, q)q  from the applied torque
τ(t)of (87).  The various parameters of (88) were then
adjusted to fit the experimentally obtained profile of the
friction torque.

1. Experiment 1

In this experiment, the desired link trajectories (see
Fig. 1 and Fig. 2) were selected as follows

  
qd1
qd2

=
45.0 tan– 1(3.0 sin (0.5t)) (1 – exp ( – 0.01t3))
45.0 tan– 1(3.0 sin (0.4t)) (1 – exp ( – 0.01t3))

(deg ) .

(89)

The observer/controller scheme of (15), (17), and
(18) was implemented with the following control gain
values (note: the control gains were selected in a trial and
error fashion to minimize the link position tracking error)

ks11 = 19.0   ks22 = 4.0  α11 = 125.5   α22 = 158.0  (90)

The position tracking error for each link is shown in
Fig. 1 and Fig. 2.

Remark 8.  In the above implementation, the rotor velocity
signal is obtained by applying a standard backwards differ-
ence algorithm to the position signal with the resulting
signal being filtered by a second-order digital filter.  In
addition, the integral structure of the observer schemes, the
adaptation laws, and the nonlinear filters were computed
on-line via a standard trapezoidal algorithm.  The control
gains of (90) were determined through a trial and error
procedure to minimize the position tracking error.

2. Experiment 2

For this experiment, the desired link trajectories of
(89) were again utilized (see Fig. 1 and Fig. 2).  The
observer/controller scheme of (31), (32), (33), and (35) was
implemented with the following gain values (note: the

control/adaptive gains are selected in a trial and error
manner to achieve the best link position tracking error)

ks11 = 84.0   ks22 = 36.5   α11 = 70.0   α22 = 46.0

γ01 = 0.3   γ02 = 0.65   γ11 = 0.001   γ12 = 0.005

Γm = diag {0.95, 0.3, 0.5, 12.75, 6.5}. (91)

All parameter estimates and auxiliary filter states are
initialized to zero.  The corresponding link position track-
ing error is shown in Fig. 3.  The various adaptive estimates
are shown in Figs. 4, 5, 6 and 7.

Remark 9. The observer-based adaptive controller of (31),
(32), (33), and (35) was initially tuned with all adaptation
gains set to zero (note that the parameter estimates are zero

Fig. 1. (a) Desired position trajectory for link 1 (b) Position tracking error
for link 1.

Fig. 2. (a) Desired position trajectory for link 2 (b) Position tracking error
for link 2.
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during this procedure).  That is, the control gains were
adjusted to minimize the position tracking error.  At some
point, significant improvement in the position tracking
error could not be attained by adjustments of only the
control gains.  The adaptation gains were then adjusted to
allow the parameter estimation to reduce the position error
to that shown in Fig. 3.

3. Experiment 3

To test the performance of the observer/controller
algorithm of Section VI, a one degree of freedom experi-
mental test-bed was utilized (see Fig. 8).  It consisted of a
88 Nm switched reluctance motor (NSK Corp., Model RS-
0810) operating in torque control mode.  A metal disk

Fig. 3. (a) Position tracking error for link 1 (b) Position tracking error for
link 2.

Fig. 4.  (a) m1(t) (b) m2(t) (c) m3(t).

Fig. 5.  (a)  fd1(t) (b)  fd2(t).

Fig. 6.  (a) θ 01(t) (b) θ 02(t).

Fig. 7.  (a) θ 11(t) (b) θ 12(t).
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weighing 11 lbs. is attached to the rotor concentrically.
Friction is introduced via a block of TeflonR held against
the disk as shown in the Fig. 8.  The amount of friction can
be varied by adjusting a vice arrangement.  An integrally
mounted resolver provides rotor position measurements
with a resolution of 0.00234 degrees.  A QNX based real-
time Photon environment developed in-house serves as the
user-interface required to implement the control algorithm.
The control algorithm was computed on a 200 MHz Pentium
processor.  The sampling frequency was selected to be
3000 Hz.  The MultiQ board (8 A/D, 8 D/A, and 6 encoder
channels) manufactured by Quanser Consulting was used
to output the desired torque signal and read in the quadra-
ture position related signal.

For the model given by (59) and (60), the numerical
values of the system parameters were determined to be6

M = 0.125 kg ⋅ m2 B = 0.5 Nm ⋅ sec θ0 = 8.0 Nm

θ1 = 0.1 Nm ⋅ sec β0 = 1.06 β1 = 0.06

β2 = 2.24 (92)

For this experiment, the desired position trajectory qd

(t) was selected as

qd = 90.0 tan–1(4.0 sin(0.5t)) (1 – exp(–0.01t3)) (deg).
(93)

The selected number of approximating functions and
the values for the adaptation/damping/control gains7 achiev-
ing the best link position tracking performance are given as
follows

m = 21   α = 45.0   ks = 10.0  γ = 10.0  kn = 1.0  (94)

where we have substituted the positive scalar constant γ for
all adaptation gain values (i.e., γ0 = γk′s = γ).  All initial
parameter estimates and initial filter states are set to zero.
The resulting position tracking error is shown in Fig. 9.  The
parameter estimates for three of the selected weighting
coefficients are shown in Fig. 10.

Remark 10. From the selection of m in (94), the implemen-
tation of the controller requires the on-line calculation of 22
dynamic weighting coefficient estimates, 22 auxiliary
filter variables, in addition to the calculation of the observer
variable z (t); hence, the maximum value for m is con-
strained by the selected sampling frequency.

6 The system parameters of (92) were determined in a similar
manner as outlined in Remark 7.

7 The adaptation/control gains of (94) were determined through an
identical strategy as given in Remark 9.

Fig. 8.  Schematic of experimental setup.

Fig. 9.  (a) Desired position trajectory (b) Position tracking error.

Fig. 10.  (a) σ 0(t) (b) σ 10(t) (c) σ 21(t)
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4. Discussion

In Experiment 1, we observe approximately ±0.05
degrees of tracking error for link 1 and ±0.08 degrees of
tracking error for link 2 from Figs. 1 and 2, respectively, for
identical desired position trajectories in (89).  From Fig. 1,
we see that the maximum magnitude of position tracking
error for link 1 occurs at large link velocities (i.e., during
the transition period of the sinusoidal trajectory).  This
phenomenon could indicate a possible miscalculation of
the viscous friction parameter fd1 in (88) from the procedure
outlined in Remark 7; hence, the inaccuracy in fd1 is then
relayed to the feed-forward cancellation term Fdq  of (14) in
the exact model knowledge controller of Section IV which
may attribute to the relatively minor degradation in track-
ing performance.  In contrast, we see that the maximum
magnitude of the tracking error for link 2 coincides with the
peaks of the sinusoidally shaped position profiles (i.e.,
when the link velocity is close to zero).  Such aspects as link
velocity measurements and parameter mismatch may con-
tribute to the somewhat small peaks observed in Fig. 2.
Experiment 2 illustrates the attractiveness of the adaptive
controller of Section 5.1 by obtaining approximately the
same order of magnitude of position tracking error (±0.08
degrees and ±0.09 degrees for links 1 and 2, respectively)
as the exact model knowledge controller of Section IV
without a priori knowledge of selected system parameters.
Specifically, the adaptive controller implemented in Ex-
periment 2 requires only the knowledge of the parameters
associated with the Stribeck function f(q) (i.e, the β0i′s and
β1i′s of (88)).  With the construction of the scalar mechanical
system shown in Fig. 8, we were able to introduce exagger-
ated friction levels as compared to the assembled IMI robot
manipulator in Experiment 3.  That is, in order to better
observe the level of performance of the proposed adaptive
controller of Section VI, the vice arrangement was adjusted
in a manner to create relatively high friction effects.  From
Fig. 9, an approximate steady state position tracking error
of ±0.09 degrees is obtained.  As commented in Remark 10,
the level of the position tracking error achieved is depen-
dent on the selection of the number of approximating
functions m of (63).  However, we note that increasing the
value of m increases the order of the overall control
algorithm (i.e., the increase in the value of m by one
introduces an additional parameter estimate accompanied
with an additional filter state).  Hence, with the increase in
the value of m, the computational burden/complexity of
implementing the control algorithm is consequently
increased.  We note that the value of m in (94) was selected
through a trial and error procedure.  Specifically, the
function f(q ) of (62) was first simulated utilizing the
parameter values of (92) over a range over a range of
velocities q(t).  The approximated function   f (q) was then
plotted over the same range of velocities for various values
m and weighting parameters σi′s until a suitable curve-fit
was obtained (i.e., the value of m determined was then used

in Experiment 3 and the determined values for weighting
parameters were discarded).  Currently, there do not exist
established guidelines for the selection of m.  Typically, a
trial and error procedure will be employed to determine the
value of m based on the tracking error performance under
the constraint of sampling frequency (i.e., the control
routine must be able to calculate the parameter estimates of
(70) in addition to the filter variables of (71) within the
given sampling interval).

For the sake of brevity, a detailed comparison be-
tween various friction models was not performed.  For a
comparison between the standard (static) friction model
[12] and the Lu-Gre model (dynamic) of friction [7], we
refer the reader to the previous work of Vedagarbha et al.
[25].

VIII. CONCLUSIONS

In this paper, we have illustrated how the previously
published observer/controller schemes of [25] can be
extended to the n-link, serially connected, direct drive,
rigid-link, revolute robot.  Specifically, we developed a
partial-state feedback observer/controller scheme to achieve
global exponential link position tracking.  In addition, we
have developed two adaptive controllers that compensated
for selected parametric uncertainty and achieved global
asymptotic link position tracking.  We have also presented
a new adaptive control technique that compensated for the
nonlinear parameterizable Stribeck effects and forced the
average square integral of the position tracking error to an
arbitrarily small value.  Experimental results were pre-
sented to illustrate the ability of the controllers to compen-
sate for friction effects.  Future work will involve the
development of a control strategy that can adaptively
compensate for parametric uncertainty throughout the en-
tire mechanical model.
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