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SENSOR FUSION USING FUZZY LOGIC ENHANCED

KALMAN FILTER FOR AUTONOMOUS VEHICLE

GUIDANCE IN CITRUS GROVES

V. Subramanian,  T. F. Burks,  W. E. Dixon

ABSTRACT. This article discusses the development of a sensor fusion system for guiding an autonomous vehicle through citrus
grove alleyways. The sensor system for path finding consists of machine vision and laser radar. An inertial measurement unit
(IMU) is used for detecting the tilt of the vehicle, and a speed sensor is used to find the travel speed. A fuzzy logic enhanced
Kalman filter was developed to fuse the information from machine vision, laser radar, IMU, and speed sensor. The fused
information is used to guide a vehicle. The algorithm was simulated and then implemented on a tractor guidance system. The
guidance system's ability to navigate the vehicle at the middle of the path was first tested in a test path. Average errors of
1.9 cm at 3.1 m s-1 and 1.5 cm at 1.8 m s-1 were observed in the tests. A comparison was made between guiding the vehicle
using the sensors independently and using fusion. Guidance based on sensor fusion was found to be more accurate than
guidance using independent sensors. The guidance system was then tested in citrus grove alleyways, and average errors of
7.6 cm at 3.1 m s-1 and 9.1 cm at 1.8 m s-1 were observed. Visually, the navigation in the citrus grove alleyway was as good
as human driving.

Keywords. Autonomous vehicle, Fuzzy logic, Guidance, Kalman filter, Sensor fusion, Vision.

here is a current need in the Florida citrus industry
to automate citrus grove operations. This need is
due to reduction in the availability of labor, rising
labor cost, and potential immigration challenges.

Autonomous vehicles would be an important part of an auto‐
mated citrus grove. Autonomous vehicles can operate accu‐
rately for a longer duration of operation than when using a
human driver. In a scenario where an automated citrus har‐
vester is used, the operator can monitor both the harvester and
the vehicle instead of being solely the driver. Based on citrus
groves identified for testing the autonomous navigation of
the tractor used by Subramanian et al. (2006), it was esti‐
mated that the ability to navigate in the middle of the identi‐
fied citrus alleyways with an accuracy of 15 cm deviation
from the center would be acceptable. In general, this estimate
is dependent on the size of the vehicle, the alleyway width,
layout of the citrus groves, and the application for which the
autonomous vehicle is used. Numerous autonomous vehicles
for agricultural applications have been described in the litera‐
ture. The guidance systems developed by Noguchi et al.
(2002) and Chen et al. (2003) were for operation in paddy
fields for transplanting rice, whereas the guidance system de‐
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veloped by Nagasaka et al. (2004) was tested in soybean
fields. Satow et al. (2004) developed a laser based crop row
sensor for navigating a tractor through crop rows.

Machine vision is a useful sensing methodology for guid‐
ance. Its long range aids in faster decision making before a
hard turn is to be performed or for faster obstacle detection
and is quite robust to minor variations in the path boundaries.
However, it lacks the centimeter‐level accuracy of laser radar
in detecting the distance to close range path boundaries or ob‐
stacles. The accuracy of ladar is useful in keeping the vehicle
accurately positioned in the path. However, this accuracy
makes the information noisy if there are minor variations in
the path boundaries. The development of an autonomous ve‐
hicle guidance system for citrus grove navigation using ma‐
chine vision and laser radar (ladar) based guidance systems
was discussed by Subramanian et al. (2006). Both machine
vision and ladar based guidance performed with a maximum
error of 6.1 cm in test paths. The machine vision based guid‐
ance system had also guided a tractor through an alleyway of
a citrus grove, keeping the vehicle visually in the center of the
path with no collisions with the trees. It was found that ladar
based guidance was more accurate than vision based guid‐
ance in well defined paths within a speed of 3.1 m s-1, where‐
as the vision based guidance was able to keep the vehicle in
the middle of the path in several types of paths with less accu‐
racy. In the approach taken in previous research, the uneven
tree canopy in citrus grove alleyways posed problems for
guidance when using vision and ladar separately (Subrama‐
nian et al., 2006). With a vision based guidance configuration
using a forward‐facing camera, branches closer to the vehicle
than the camera's field of view are not accounted for in the
vision based guidance, and navigating near the end of the row
is not feasible as the last trees go out of the field of view of
the camera. Ladar, with a wider field of view and closer
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range, is useful for guidance in these situations. However, in
a given alleyway, it is not uncommon to find a few trees ab‐
sent. In such cases, ladar based guidance gives erroneous
paths. Variations in foliage over a short distance also posed
problems in using ladar for guidance. Fusing the complemen‐
tary information from these sensors, namely the long‐range
information from vision and the short‐range accuracy of la‐
dar, would be beneficial.

This article presents the research further undertaken to
fuse the information from these sensors to make the compos‐
ite information from them more robust and make the overall
guidance system more reliable. The development of the Kal‐
man filter for fusion is first discussed, followed by a descrip‐
tion of the fuzzy logic system to augment the filter. Finally,
the experiments conducted to test the performance of the
fused guidance system are described.

APPROACH
Several methods for fusion have been reported in the liter‐

ature. These include, but are not limited to, neural networks
(Davis and Stentz, 1995; Rasmussen, 2002), variations of
Kalman filter (Paul and Wan, 2005), statistical methods (Wu
et al., 2002), behavior based methods (Gage and Murphy,
2000), voting, fuzzy logic (Runkler et al., 1998), and com‐
binations of these (Mobus and Kolbe, 2004). The process of
fusion might be performed at various levels ranging from
sensor level to decision level (Klein, 1999).

In our research, the tree canopy causes the sensor mea‐
surements to be fairly noisy. Therefore, the choice of method
was narrowed down to one that could help in reducing the
noise and also aid in fusing the information from the sensors.
Methods such as neural networks, behavior based methods,
fuzzy logic, and voting are not widely used primarily for re‐
ducing noise. Kalman filtering is a widely used method for
eliminating noisy measurements from sensor data and also
for sensor fusion. Kalman filter can be considered as a subset
of statistical methods because of the use of statistical models
for noise. Paul and Wan (2005) used two Kalman filters for
accurate state estimation and for terrain mapping for navigat‐
ing a vehicle through unknown environments. The state es‐
timation process fused the information from three onboard
sensors to estimate the vehicle location. Simulated results
showed the feasibility of the method. Han et al. (2002) used
a Kalman filter to filter DGPS (Differential Global Position‐
ing System) data for improving positioning accuracy for par‐
allel tracking applications. The Kalman filter smoothed the
data and reduced the cross‐tracking error. Based on the good
results obtained in the previous research for fusion and noise
reduction, a Kalman filter was chosen for our research as the
method to perform the fusion and filter the noise in sensor
measurements.

The use of a Kalman filter with fixed parameters has draw‐
backs. Divergence of the estimates, wherein the filter contin‐
ually tries to fit a wrong process, is a problem that is
sometimes encountered with a Kalman filter. Divergence
may be attributed to system modeling errors, noise variances,
ignored bias, and computational rounding errors (Fitzgerald,
1971). Another problem in using a simple Kalman filter is
that the reliability of the information from the sensors de‐
pends on the type of path in the grove. For example, if there
is a tree missing on either side of the path while the vehicle

is navigating through a grove, the information from the ladar
is no longer useful and the guidance system has to rely on the
information from vision alone. Therefore, if a white‐noise
model is assumed for the process and measurements, the reli‐
ability factor of a sensor in the Kalman filter has to be
constantly updated. Abdelnour et al. (1993) used fuzzy logic
in detecting and correcting the divergence. Sasladek and
Wang (1999) used fuzzy logic with an extended Kalman filter
to tackle the problem of divergence for an autonomous
ground vehicle. The extended Kalman filter reduced the posi‐
tion and velocity error when the filter diverged. The use of
fuzzy logic also allowed a lower‐order state model to be used.
For our research, fuzzy logic is used in addition to Kalman
filtering to overcome divergence and to update the reliability
parameter in the filter. Sasladek and Wang (1999) used fuzzy
logic to reduce divergence in the Kalman filter, whereas in
this research, apart from using fuzzy logic to reduce diver‐
gence, fuzzy logic is also used to update the usability of sen‐
sors in different environmental conditions, as discussed in a
later section. Whereas Sasladek and Wang (1999) present
simulation results of their method, this research implements
the methods on a real‐world system for citrus grove naviga‐
tion application and presents the performance.

The main objective of this research was to fuse the infor‐
mation from machine vision and laser radar using a fuzzy log‐
ic enhanced Kalman filter to make the autonomous vehicle
guidance system more reliable in a citrus grove than when us‐
ing the sensors individually. The following specific objec‐
tives were chosen:

� Develop a fuzzy logic enhanced Kalman filter fusion
method.

� Confirm operation of the method by simulation.
� Implement the method on a tractor fitted with the re‐

quired sensors.
� Test the navigation performance on a custom‐designed

test track.
� Test the navigation performance in citrus grove alley‐

ways.

MATERIALS AND METHODS
The guidance system developed by Subramanian et al.

(2006) consisted of machine vision and laser radar as the
main guidance sensors. The camera used for machine vision
was a Sony FCB‐EX780S “block” single CCD analog color
video camera with a standard lens and resolution of 640 ×
480. The ladar used was the Sick LMS 200 (Sick, Inc., Min‐
neapolis, Minn.), which has a maximum sweep angle of 180°
and maximum range of 80 m. The ladar was operated at 1 mm
accuracy with a range of 8 m. A PC processed the information
from the sensors and sent the error to a microcontroller. The
microcontroller  controlled the steering using a PID control
system. An encoder fed back steering angle measurements to
the microcontroller. At present, a tri‐axial inertial measure‐
ment unit (IMU) (3DM, MicroStrain, Inc., Williston, Vt.) and
an ultrasonic speed sensor (Trak‐Star, Micro‐Trak Systems,
Inc., Eagle Lake, Minn.) have been added to the existing sys‐
tem to aid the guidance and sensor fusion. The IMU provided
the vehicle heading, and the speed sensor provided the ve‐
hicle speed. These helped in estimating the error using the
Kalman filter. Communication with both of these sensors was
through RS‐232 serial communication. The IMU was
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Figure 1. Fusion‐based guidance system architecture.

mounted inside the tractor cabin on the roof just below the la‐
dar and camera. The speed sensor was mounted below the
tractor. A special serial RS‐422 communication port was add‐
ed to the PC to enable a ladar refresh rate of 30 Hz. The archi‐
tecture of the major components involved in the fusion based
guidance system is shown in figure 1.

The vision and ladar algorithms are described in detail by
Subramanian et al. (2006). The vision algorithm used color‐
based segmentation of trees and ground, followed by mor‐
phological operations to clean the segmented image. The
path center was determined as the center between the tree
boundaries. The error was calculated as the difference be‐
tween the center of the image and the path center identified
in the image. The error was converted to real‐world distance
using prior pixel to distance calibration. To calculate the re‐
quired heading of the vehicle, a line was fit for the path center
in the image representing the entire alleyway. The angle be‐
tween this line and the image center line was determined as
the required heading for the vehicle to navigate the alleyway
with low lateral error. The ladar algorithm used a distance
threshold to differentiate objects from the ground. An object
of a minimum width was identified as a tree. The midpoint
between the trees identified on either side was determined as
the path center. The errors measured using vision and ladar
were adjusted for tilt using the tilt information from the IMU.
The information from the sensors was used in the fusion algo‐
rithm, and the resulting error in lateral position was passed to
a PID control system, which controlled the steering angle to
reduce the error to zero.

KALMAN FILTER
A Kalman filter was used to fuse the information from the

vision, ladar, IMU, and speed sensors. The models and imple‐
mentation equations for the Kalman filter (Zarchan and Mus‐
off, 2005) are described below.

State Transition Model
The state transition model predicts the coordinates of the

state vector x at time k+1 based on information available at
time k and is given by:

 x(k+1) = Ax(k) + w(k) (1)

where
k = time instant
w = process noise, which was assumed to be Gaussian

with zero mean.

x(k) = [d(k) �(k) �R(k)v(k)]T (2)

where
d(k)�R = lateral position error of the vehicle in the

path, which is the difference between the
desired lateral position and the actual lateral
position

�(k)�R = current vehicle heading
�R(k)�R= required vehicle heading
v(k)�R = vehicle linear velocity.
It is to be noted that only the change in heading was used

for estimating the position error, which affects the overall
guidance. The absolute heading was included in the filter to
remove noise from the IMU measurements. Figure 2 shows
the vehicle in the path with the state vector variables.

The state transition matrix, A(k)�R4x4 is defined as:

Figure 2. Vehicle in the path with the state vector variables.
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where
t = time step
�� = change in heading; this value was calculated from

the filtered IMU measurements for each time step k.
The use of a variable sensor input such as �� in the state

transition matrix is consistent with the method described by
Kobayashi et al. (1998). The state estimate error covariance
matrix, P�R4x4, gives a measure of the estimated accuracy
of the state estimate x(k+1).

 P(k+1) = AP(k)AT + Q(k) (3)

where Q�R4x4 denotes the covariance matrix for process
noise w.

The estimation process is difficult to directly observe;
hence, the process noise covariance is uncertain. Therefore,
the initial variance values, which are the diagonal elements
in the matrix, were assumed as follows:

�  Variance for process position noise = 2 cm.
�  Variance for process current heading noise = 0.01°.
�  Variance for required heading noise = 0.01°.
�  Variance for process velocity noise = 10-4 m s-1.
These values were intuitively assumed to be the amount

of noise variance that the process could add. As discussed
further in this article, the process noise covariance matrix, Q,
was updated at each step of the operation of the Kalman filter.
Therefore, the initial assumptions of the matrix values do not
significantly affect the overall guidance of the vehicle. These
sensor measurements were assumed to be independent of the
other sensors. This was done for simplicity. Later it was
observed from simulations and experiments that the guidance
of the vehicle, with this assumption, was accurate enough to
keep the vehicle close to the alleyway center. Hence, the
covariance values, which are the off‐diagonal elements, are
zero:
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Measurement Model
This model defines the relationship between the state

vector, x, and the measurements processed by the filter, z:

 z(k) = Hx(k) + u(k) (4)

 z(k) = [xC(k)xL(k)�C(k)�IMU(k)v(k)]T (5)

where z(k)�R 5 denotes a state vector composed of measured
values of:

� Lateral position error of the vehicle in the path from
vision algorithm, denoted by xC(k)�R.

� Lateral position error of the vehicle in the path from
ladar algorithm, denoted by xL(k)�R.

� Required heading of the vehicle determined from
vision algorithm, denoted by �C(k)�R.

� Current heading of the vehicle measured using IMU,
denoted by �IMU(k)�R.

� Vehicle linear velocity measured using the speed
sensor, denoted by v(k)�R.

The observation matrix, H(k) is defined as:

T
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The observation matrix relates the state vector, x, with the
measurement vector, z. The first two rows of H relate the lateral
position errors from vision and ladar, the third and fourth rows
relate the angles from vision and IMU, and the last row relates
the velocity. The measurement noise, denoted by u(k), is
assumed to be Gaussian with zero mean and standard deviations
estimated experimentally with the different sensors.

FILTER GAIN

The filter gain, G, is the factor used to minimize the
posteriori error covariance, P:

 G(k) = P(k+1) HT (HP(k+1) HT + R)-1 (6)

where R is the measurement noise covariance matrix.
To determine R, the vehicle was set stationary in the

middle of the path, each sensor (except the speed sensor)
mounted on the vehicle was turned on independently, and the
information from the sensors was collected for 30 s. For the
camera, the vision algorithm (Subramanian et al., 2006) was
run for 30 s and the path error and the heading angle
determined were recorded. For the ladar, the ladar path
segmenting algorithm (Subramanian et al., 2006) was run for
30 s and the path error measurements were recorded. For the
IMU, the sensor was run for 30 s and the heading angle
measured by the sensor was recorded. For the speed sensor,
the vehicle was run at three different constant speeds and the
speed sensor measurement was collected for 30 s. The
measurement noise covariance matrix, denoted by R, was
determined from these recorded measurements and was
found to be:
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Figure 3. Kalman filter operation.

where
�Xc = variance of the error in the lateral position of the

vehicle, as determined from vision algorithm
measurements

 Xl = variance of the error in the lateral position of the
vehicle, as determined from ladar algorithm
measurements

��c = variance of the error in heading, as determined
from the vision algorithm

��imu = variance of the error in heading, as determined
from IMU measurement

�V = variance of the error in velocity, as determined
from speed sensor measurements.

The variables xC and �C were measurements from the
same camera; however, the vision algorithm used different
regions of the image to estimate them. The variables xC, xL,
�IMU, and v were measurements from different sensors
operating independent of each other. These measurements
were assumed to be statistically independent. Hence, the
covariance values are zero. The variance of the velocity
measurements was zero. This can be attributed to the low
resolution (0.5 m s-1) of the speed sensor.

Figure 3 shows the operation of the Kalman filter. The
filter estimates the process state x at some time k+1 and
estimates the covariance P of the error in the estimate. The
filter then obtains the feedback from the measurement z.
Using the filter gain G and the measurement z, it updates the
state x and the error covariance P. This process is repeated as
new measurements come in and the error in estimation is
continuously reduced.

RELIABILITY FACTOR OF PRIMARY GUIDANCE SENSORS IN

THE KALMAN FILTER

As discussed previously, ladar is accurate at short range
for the given mounting arrangement, and machine vision is
good at providing the overall heading of the vehicle. By
experimentation  in a citrus grove, the following observations
were made: tree foliage is highly variable, trees can be absent
on either or both sides of the path, and some trees can be small
enough for ladar to not recognize them as trees. In such a
variable path condition, it is not feasible to have constant
noise values for the ladar and machine vision. For example,
when the ladar does not recognize trees on either side, the
guidance becomes more reliable if the process noise for the
ladar is increased to a high value such that vision takes over
as the only guidance sensor. When the vehicle gets to the end
of a tree row, vision is no longer useful, so ladar can be made
the sole guidance sensor to cross the last tree. A fuzzy logic
system was used to decide the reliability of the sensor. The

reliability was changed in the Kalman filter by changing the
measurement noise covariance matrix R. This is discussed in
the following section.

Fuzzy Logic Sensor Supervisor
A fuzzy logic based supervisor was used to decide which

sensor is more reliable at different locations in the grove
alleyway. The fuzzy logic algorithm was implemented in
software using C++ in the PC. The input to the fuzzy logic
supervisor was the horizontal distance of the vehicle
centerline from the trees on either side of the vehicle. Both
vision and ladar input their corresponding distance values.
Altogether, there are four input values: vision left tree
distance, vision right tree distance, ladar left tree distance,
and ladar right tree distance. These inputs were divided into
three linguistic variables: reasonable, unreasonable, and zero
(fig. 4).

A triangle‐based fuzzification method was used to fuzzify
the input values. The input membership function relates the
input x to the linguistic variables reasonable, unreasonable,
and zero (fig. 4b). The meaning of the linguistic variables is
literally whether the distance from the tree row is reasonable
or not. A zero membership for ladar indicates the presence of
an obstacle in the path and for vision, the end of the row. The
variable x takes the value of 0 to 1 m for zero, 1 to 3 m for
reasonable, and any value greater than 2 m for unreasonable.
The ranges were intuitively chosen to be the possible values.
Normalization of the linguistic variables was performed at a
scale from 0 to 1. During the presence of an obstacle, the ladar
takes precedence until the obstacle is avoided. The rule set for
the supervisor is shown in table 1. Each rule received a
corresponding normalized membership value from the input
membership function x. A rule‐based inference engine was
used to make the inferences. Rule sets were extracted using
the rule matrix shown in table 1. Based on the linguistic
variables chosen from each x, the corresponding rules are
fired. From the rules fired for a given instant, the output
membership function is chosen. The membership value was
used to find the crisp value for the output. The output
membership function decision is shown in figure 4b, which
relates the rules fired to the linguistic variables vision, ladar,
and both. These variables represent the decision made as to
whether vision or ladar is given higher priority or if both
should be given equal priority. Defuzzification was done
using the center of gravity method. The crisp value of the
decision is taken as the measurement noise covariance value
for that sensor. For example, if a decision of ladar is obtained
with a crisp value of 1, then �Xl is updated to 1 and �Xc is
chosen as 0. If a decision is made as both with a crisp value
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Figure 4. (a) Fuzzy logic structure and (b) membership functions for sensor supervisor.

Table 1. Fuzzy logic rule set for sensor supervisor.
Vision Left/Right Ladar Left/Right Decision

Reasonable Reasonable Both
Reasonable/zero Ladar higher

Zero Stop
Unreasonable Vision

Unreasonable/zero Ladar
Reasonable/unreasonable Vision higher

Unreasonable Reasonable Ladar
Reasonable/zero Ladar higher

Zero Ladar
Unreasonable/zero Ladar

Reasonable/unreasonable Both

of -0.5, then �Xc is chosen as 0.5 and �Xl is chosen as
(-0.5/-1)×0.2 = 0.1. The positive or negative values only
indicate whether the decision is vision or ladar. Only the

absolute values are used to update R. The range of crisp
values for the decision was chosen by performing simulations
and determining which values provide good results. The
details of the simulation are provided later in the Simulation
section.

DIVERGENCE DETECTION AND FUZZY LOGIC CORRECTION
The innovation vector z'(k) (Klein, 1999) is defined as the

difference between the measured vector and the estimation of
the measurement vector:

 z'(k) = z(k) - Hx(k) (7)

For an optimum Kalman filter, an innovation vector of
zero mean Gaussian white noise (Abdelnour et al., 1993).
Therefore, the performance of the Kalman filter can be
monitored using the value of the innovation vector. Deviation
of z' from zero by more than 5% was taken as the indication

Figure 5. (a) Fuzzy logic structure and (b) membership functions for updating Q.
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Table 2. Fuzzy logic rule set for divergence correction.
z'X z'θc qX qθR

Negative Negative Zero Zero
Negative Positive Zero Positive
Positive Negative Positive Zero
Positive Positive Positive Positive

of reduction in performance of the filter leading towards
divergence.

Divergence could be corrected by updating the process
noise covariance matrix Q, depending on the innovation
sequence. Fuzzy logic (Passino and Yurkovich, 1998;
Subramanian et al., 2005) was used to perform this for two
parameters,  qX and q�R. The fuzzy logic architecture and
membership functions are shown in figure 5.

The xc, xL, and �c parameters of the innovation vector z'
are the input to the fuzzy logic system. The ranges of the input
are from -15% to 15%. These values were chosen by trial and
error by performing simulation. Normalization of the
linguistic variables was performed at a scale from 0 to 1.
Based on the above argument for correction, a set of if‐then
rules was developed by experimentation. Each rule received
a corresponding normalized membership value from the
input membership function z'. Based on the linguistic
variables chosen from each z', the corresponding rules are
fired. The rule set is shown in table 2. For example, consider
the second row in the table, where z'X is negative and z'�C is
positive. This indicates that the error in position has
decreased compared to the previous time step, but the vehicle
is heading in the wrong direction. The process noise for
position, qX, is zero, and the process noise for heading, q�R,
is positive. In the rule set, a single measurement value for
position, z'X, is given instead of the two different values, z'XC
and z'XL. This is because the sensor supervisor described
earlier picks one of the sensors for use in the filter when the
other is unreasonable. When one sensor is given higher
priority, the position measurement of that sensor alone is used
in the rule set; when both sensors are selected by the
supervisor, the position measurement of ladar alone is used,
as it has lower measurement noise. This was done to reduce
the complexity of the rule set.

From the rules fired for a given instant, the output
membership function was chosen. The membership value

was used to find the crisp value for the output.
Defuzzification  was done using the center of gravity method
(Passino and Yurkovich, 1998). The crisp values of the
process noise covariance are then updated in the process
noise covariance matrix Q. The range of crisp values was
chosen by trial and error by performing simulations and
determining which values provide good results.

For the parameters, q�C and qV, a linear relationship was
followed such that q�C and qV were increased proportional to
| z'  -  z | of �C and v, respectively. The speed of the vehicle
obtained from the speed sensor was used to scale the output
to the steering control. The implementation of the steering
mechanism and control was described by Subramanian et al.
(2006). From the past research conducted on this vehicle, it
was observed that for a given steering angle, higher speed
resulted in larger lateral displacement. The transfer function
between the required lateral displacement of the vehicle to
reduce the error to zero, as determined from the fusion
algorithm, and the steering angle is given by equation 8, and
the gains were determined experimentally for speeds of 1.8,
3.1, and 4.4 m s-1 (Subramanian et al., 2006):

 ( )
2s

k
sG =  (8)

To determine the steering angle at different speeds, the
steering angle at 4.4 m s-1 was scaled using equation 9. The
scaling of the gain, G(s), for 4.4 m s-1 produced the least error
at different speeds compared to the gains for 1.8 and 3.1 m
s-1:

Steering angle = gain × steering angle at 4.4 m s-1 (9)

where gain = (current speed/4.4 m s-1).

SIMULATION
The developed fuzzy‐Kalman filter algorithm was

simulated in MATLAB (version 7.0) to check the
functionality and accuracy. The code used for simulation was
custom written in MATLAB. The input data required for
simulation were obtained by manually driving the vehicle
through a citrus grove alleyway and collecting all the sensor
information. The input data were the values measured by the
sensors, the time between measurements, and errors from the
machine vision and ladar algorithms. The data from runs on

Figure 6. Simulation result of fusion of error obtained from vision and ladar algorithms.
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three different grove alleyways were used for three different
simulation runs. These data were from approximately 360 s
of vehicle run time. The output is the resultant error obtained
after passing the input data to the fusion algorithm. The aim
of the simulation was to check that the algorithm was
operating as required, i.e., the suitable sensor is chosen by the
sensor supervisor, divergence does not occur, and large
variations reported by the sensors are dampened.

Figure 6 shows the simulated result of fusing the error
obtained from the vision and ladar algorithms. The figure
shows both the input and output data. The error from vision
and ladar are the input (dashed lines). The output is the error
after fusion (solid line). The error is the distance between the
center of the vehicle in the path and the path center. For
clarity, the result is shown for a section of the path from 16.2
to 16.8 m of travel. It is observed that from 16.2 to 16.35 m,
only vision provides reasonable error and ladar does not. This
may be attributed to the fact that ladar sweep at that location
might have been in a gap between two consecutive trees.
Hence, for the first 15 cm distance, the fused data seems to
have relied mainly on vision. For the 16.35 to 16.55 m
section, errors from both vision and ladar algorithms seem
reasonable; hence, fusion takes both data into account.
However, the fused data rely more on ladar information, as
the process noise is less for ladar. For the last 25 cm of the
section from 16.55 to 16.8 m, both vision and ladar determine
the same amount of error. The simulation results verify that
the aim of the simulation was met.

EXPERIMENTAL PROCEDURE
Because citrus grove alleyways are typically straight

rows, it was felt that testing the vehicle on curved paths at
different speeds would be a more rigorous test of the guidance
system's performance than directly testing in straight grove
alleyways. This test would represent the ability of the
guidance system to navigate more difficult conditions than
the ones likely to be encountered in the grove. For this
purpose, a flexible wall track was constructed using hay bales
to form an S‐shaped test path. This shape provided both
straight and curved conditions. The path width varied from
3 to 4.5 m, and the total path length was approximately 53 m.
A gap of approximately 1 m was left between successive hay
bales. The gaps mimicked missing trees in a citrus grove
alleyway. The profile of the hay bale track is shown in
figure�7. The hay bales provided a physically measurable
barrier, which aided in operating the ladar guidance system,
and color contrast with grass, which is useful for vision based
guidance. In addition, when testing a large tractor, only minor

3.5m 15m

15m

20m

110
o

110
o

(a)

(b)

Figure 7. Hay bale track profile: (a) dimensions and (b) photo.

losses would occur if the tractor were to run over a barrier of
hay bales.

Experiments were conducted to check the robustness and
accuracy of the fused guidance system in the test path at 1.8
and 3.1 m s-1. The vehicle was manually navigated to the
starting position at one end of the test path. Once positioned,
the vehicle was started in autonomous control and allowed to
navigate down the path to the other end, thereby navigating
a distance of 53 m. Three repetitions were performed for each
vehicle speed to ensure replication, resulting in a total of six
trial runs. The path traveled was marked on the soil by a
marking wheel attached to the rear of the tractor. The error
measurements were taken manually using a tape measure at
regular intervals of 1 m. This interval was chosen to get
enough samples to correctly estimate the path error.
Measurements at smaller intervals were redundant.

After achieving satisfactory performance, wherein the
vehicle stayed close to the center of the test path without
hitting the hay bales, tests were conducted in orange grove
alleyways at the Pine Acres experimental station of the
University of Florida. The average alleyway path width was
approximately  3.5 m, and the length of the alleyway was
approximately  110 m with about 30 trees on either side. A

          
Figure 8. Citrus grove alleyways.
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Figure 9. Field of view (FOV) of camera and ladar: (a) side view and (b)
top/front view when the vehicle is located in a grove alleyway.

typical alleyway is shown in figure 8, where the approximate
tree height is 1.5 to 2 m. Figure 9 shows the field of view of
the camera and the ladar when navigating the citrus grove
alleyway.

Experiments were conducted at speeds of 1.8 and 3.1 m s-1

along an alleyway. Three repetitions were conducted for each
speed. For measuring the error, markers were laid on the
ground at the path center at approximately 4 m intervals
along the alleyway. To locate each marker, the path center
was determined as the center point between tree edges on
either side of the alleyway and measured manually using a
tape measure. The test path with harder turns required a
sampling interval of 1 m, whereas the grove alleyway was a
relatively straight path and therefore a sampling interval of
4 m was sufficient. A rear‐facing camera was mounted on top
of the tractor cab at the center of the vehicles' width. The
camera's field of view included the area of ground just behind
the rear of the tractor. Pixel to horizontal distance
information was calibrated by correlating the field of view of
the camera with the corresponding real‐world distance.
While conducting the experiments, video of the ground
behind the tractor was collected using this camera. The error
in traversing the alleyway was determined based on the
position of the markers at different instances in the video. The
boundary of the path for determining the path center in both
the test track and in the grove was delimited manually by
visual approximation. The method employed in the test track

of marking the path on the ground followed by measuring
with a tape measure was not a viable option, as the marking
instrument did not provide good marks on the ground in the
alleyway. Further, manual measurement using a tape
measure for a long path such as a grove alleyway was labor
intensive. It was recognized that the pitch and roll of the
vehicle would affect the measurements made using this
video‐based measurement, but the effect was assumed to be
negligible compared to the width of the path.

RESULTS AND DISCUSSION
From the experiments, RMS error, average error,

maximum error, and standard deviation of error were
calculated over the entire path by averaging the data over the
three repetitions at each speed. The path error, which was the
deviation from the center line of the alleyway, was plotted
over the length of the test path for the different speeds. The
positive and negative values of the error in the plot are only
an indication of the error being on the right side or left side
of the path center. For calculating the performance measures,
the absolute values of the error were used. Performance
measures obtained from the experiments conducted in the
test track are shown in table 3, and the corresponding path
error is shown in figure 10. In figure 10, actual points
collected are shown as solid dots, and dotted lines indicate the
vehicle's path. Visually, the vehicle navigated in the middle
of the path as well as a human driver would. The average error
in both cases was less than 2 cm from the path center. The
measures were lower for the lower speed of 1.8 m s-1 than at
3.1 m s-1. The maximum error at both speeds was less than
4 cm in the path width of at least 3 m. This was an error of only
1% of the path width. From figure 10a, it can be observed that
the error was less than 2 cm most of the time, and only in a
few instances did the maximum error exceed 2 cm.

The results of running vision and ladar based guidance
separately on similar but not identical test tracks were
reported by Subramanian et al. (2006). However, the path
used in the present research was more complex. At speeds of
3.1 m s-1, an average error of 2.5 cm was reported while using
ladar based guidance, whereas guidance based on fusion had
an average error of 1.9 cm at the same speed. The maximum
error was also reduced from 5 cm reported for vision based
guidance at 3.1 m s-1 to 4 cm using fusion based guidance.
Compared to those methods of individual sensor guidance,
navigation using sensor fusion resulted in better performance
in staying closer to the path center. It should be noted that the
tests of individual vision and ladar based sensors were
conducted on similar but different test tracks as compared
with the fusion based tests. Although the improvements in
using fusion may not be statistically significant from using
individual sensor based guidance on test tracks, a significant
benefit of using fusion was observed in grove conditions. For
example, in cases where a tree is missing in the alleyway,
ladar based guidance is expected to provide bad results while
navigating close to headlands, and vision based guidance is
expected to perform poorly due to the limited field of view
of the mount configuration, as described earlier in the
Approach section. Therefore, the significant advantage of
fusion is in versatility and reliability rather than in accuracy.

As directly observed from the simulations, the reduction
of noise also played a significant role in the improvement of
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Figure 10. Path navigation error of the vehicle in the test track at (a) 1.8�m
s-1 and (b) 3.1 m s-1.

performance. This was in agreement with results reported by
Han et al. (2002) that use of a Kalman filter reduced the noise
and improved the tracking performance for DGPS based
parallel tracking. Kobayashi et al. (1998) reported high
accuracy by using a fuzzy logic Kalman filter based fusion
method using DGPS, in accordance with the results reported
in this article. Sasladek and Wong (1999) used fuzzy logic for
tuning the Kalman filter with DGPS as the primary sensor and
reported that the simulation results showed prevention of
divergence and improved accuracy in position and velocity.
Comparatively, this research used vision and ladar as sensors
and prevented divergence using fuzzy logic for tuning. In
addition, fuzzy logic was also used for picking the more
accurate sensor, and improved performance was

Table 3. Performance measures obtained from
the experiments conducted in test track.

Speed
(m s-1)

Average
Error
(cm)

Standard
Deviation

(cm)

Maximum
Error
(cm)

RMS
Error
(cm)

1.8 1.5 0.7 3 1.6
3.1 1.9 1 4 2.1

experimentally  verified for a citrus grove application. This
research demonstrates significant improvements and
differences compared to previous research on autonomous
vehicles for agricultural applications. Whereas DGPS has
been the primary guidance sensor for many research studies
reported in the literature, this research uses machine vision
and ladar as the primary sensors for guidance. Secondly, most
previous research used fuzzy logic exclusively for tuning or
divergence detection. This research used fuzzy logic for
tuning or divergence correction as well as for adaptively
choosing which sensor was to be relied upon for fusion at
different locations in the path. This method allowed for
switching between important sensors that are useful in
specific areas. Further, previous research in agriculture
mainly focused on crop applications, whereas this research
focuses on citrus grove applications.

Performance measures obtained from the experiments
conducted in the citrus grove alleyway are shown in table 4,
and the error plot is shown in figure 11. In figure 11, actual
points collected are shown as solid dots, and dotted lines
indicate the vehicle's path. The average error at the two
speeds was less than 10 cm, and the maximum error was less
than 22 cm. This was about 6% of the path width. The
standard deviation of error was 4.1 cm for 1.8 m s-1 and
4.4�cm for 3.1 m s-1. The standard deviation was larger
compared to the standard deviation observed in the test path.
The root mean squared (RMS) error was 8.6 cm at 1.8 m s-1

and 10.3 cm at 3.1 m s-1. Tsubota et al. (2004) reported an
RMS error of 10 cm in navigating an orchard at a speed of 1�m
s-1 using an all‐terrain vehicle. In comparison, this research
used a tractor, which was a much larger vehicle and achieved
an accuracy of 8.6 cm RMS error at a speed of 1.8 m s-1. This
shows the better performance of fusion based guidance in
navigating an alleyway. Moreover, Tsubota et al. (2004)
reported mounting the ladar at a low level on the vehicle such
that scanning only detected the trunk of the trees. Such a
method does not take into account the variation in canopy,
whereas the method used in this research accounted for the
variation in tree canopy, and navigation was based on the
canopy variation. Cho and Ki (1999) used machine vision and
ultrasonic sensor with fuzzy logic control to steer a sprayer
through an orchard. They reported an error of 25.29 cm
(RMS) using machine vision. The error of 10.3 cm (RMS) at
3.1 m s-1 observed in this research was much lower. These
results emphasize the role of fusion based guidance in
navigating through orchards.

From the error plots, it seems like there are error spikes at
a few locations. However, it should be noted that the distance
over which the error plot is made was more than 100 m.
Therefore, the errors vary over a large distance and should not
be seen as spikes. It should also be observed that there was
variation in the lateral position of the vehicle at the starting
location of the alleyway. This is shown from the initial errors
observed in the plots. From the error plot, it can be observed
that the error was less than 15 cm most of the time. Based on

Table 4. Performance measures obtained from
the experiments conducted in grove alleyway.

Speed
(m s-1)

Average
Error
(cm)

Standard
Deviation

(cm)

Maximum
Error
(cm)

RMS
Error
(cm)

1.8 7.6 4.1 18 8.6
3.1 9.4 4.4 22 10.3
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Figure 11. Path navigation error of the vehicle in the grove alleyway at (a)
1.8 m s-1 and (b) 3.1 m s-1.

the performance measures, the guidance seems less accurate
in the relatively straight grove than in the complex test path.
However, it should be noted that the path boundary
conditions in the grove are much more variable than in the
test path. In the test track, the path boundary was relatively
even without much variation in the location between
successive hay bales. In the citrus grove, the tree canopy size
varied significantly from one tree to the next, from as low as
5 cm to as high as 50 cm. The path boundary used for error
measurement,  which was the tree canopy edge, was delimited
by the person conducting the experiment, and it was not
practical to accurately quantify a tree canopy boundary. The
larger errors in the citrus grove can be largely attributed to
this boundary variability rather than the navigation
performance of the vehicle. These high errors were still
acceptable  to navigate sufficiently in the middle of the
alleyway without hitting any tree branches. Visually, the
navigation in the alleyway was as good as human driving and
as good as navigation in the test track. Overall, assuming a
human driver as a reference of performance, navigation in the
citrus grove was as good as human driving with reasonable

errors and confirms the good performance of fusion based
guidance.

CONCLUSION
A sensor fusion system using a fuzzy logic enhanced

Kalman filter was designed to fuse the information from
machine vision, ladar, IMU, and speedometer. Simulations
were performed to confirm the operation of the method. The
method was then implemented on a commercial tractor. The
fusion based guidance system was first tested on custom‐
designed test tracks. Tests were conducted for two different
speeds of 1.8 and 3.1 m s-1. Average errors of 1.9 cm at 3.1�m
s-1 and 1.5 cm at 1.8 m s-1 were observed in the tests. The
maximum error was not more than 4 cm at both speeds. Tests
were then conducted at the same speeds in a citrus grove
alleyway. The average error was less than 10 cm for both
speeds. The guidance system's ability to navigate was
verified in citrus grove alleyways, and the system was found
to perform well, with the vehicle remaining close to the
center of the alleyway at all times. The developed fusion
based guidance system was found to be more accurate than
individual sensor based guidance systems on test paths. The
fusion based guidance system enables accurate navigation in
alleyways with missing trees and end‐of‐alleyway
navigation, where individual sensor based guidance cannot
be relied upon. The present system is able to accurately
traverse an alleyway of a citrus grove.

Additional work is necessary before the system can be
ready for production. Some of the future work includes
adding the ability to navigate the headlands and the ability to
optimally navigate the entire grove. Future tests should also
consider other vehicle speeds.
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