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An attitude tracking controller is developed for control moment gyroscope (CMG)-actuated satellites, 
which is shown to achieve accurate attitude tracking in the presence of unmodeled external disturbance 
torques, parametric uncertainty, and nonlinear CMG disturbances. Since the disturbances/uncertainties do 
not all satisfy the typical linear-in-the-parameters (LP) assumption, a neural network (NN) is included 
in the control development. The innovation of the result is the development of a Lyapunov-based 
design/analysis that indicates exponential convergence to an arbitrarily small domain. The result is 
obtained despite the characteristics of the uncertainty; the nonvanishing disturbance terms; and the 
fact that the control input is premultiplied by a non-square, time-varying, nonlinear, uncertain matrix. 
In addition to the Lyapunov-based analysis, experimental results demonstrate the performance of the 
developed controller.

© 2016 Elsevier Masson SAS. All rights reserved.

0. Introduction

The design of attitude control systems (ACS) for satellites is complicated due to external disturbances, parametric uncertainty, and 
nonlinearities, which inevitably exist in the corresponding plant dynamics. ACS design for satellites can be further complicated by para-
metric uncertainty and disturbances present in the dynamics of the control actuators. Actuator disturbances can be especially significant 
in smaller satellites (small-sats), since the inertia of the control actuator (e.g., control moment gyroscopes (CMGs)) can be comparable 
to that of the satellite itself. Standard adaptive control approaches can be utilized to compensate for constant parametric uncertainty in 
the plant and actuator dynamics [1]. Sliding mode control [2], H∞ [3,4], and extended Kalman Filter-based [5] approaches have been 
shown to be effective in compensating for external disturbances in ACS. However, most standard approaches (e.g., see [2–4]) assume a 
known dynamic model for the external disturbances (e.g., solar radiation pressure, gravity gradient torque, magnetic attitude disturbance, 
atmospheric drag). To improve control flexibility, intelligent control methods can be employed to develop accurate ACS for a more general 
class of systems containing multiple sources of unknown, unmodeled nonlinear disturbances.

To achieve attitude control in the presence of parametric uncertainties, adaptive control techniques have been investigated by several 
researchers. In [6], an output feedback model reference adaptive controller is developed for spacecraft rendezvous and docking prob-
lems. The adaptive controller in [6] accommodates for inertia uncertainty in the momentum wheel actuator dynamics; however, no 
electromechanical disturbances were assumed to be present in the actuator model. A quaternion-based, full-state feedback attitude track-
ing controller was designed in [7] for a rigid satellite with unknown inertia. An adaptive control law is designed in [8], which incorporates 
a velocity-generating filter from attitude measurements. The controller in [8] is shown to achieve asymptotic convergence of the attitude 
and angular velocity tracking errors despite uncertainty in the satellite inertia, but it assumes no dynamic uncertainty in the control 
torque. The aforementioned adaptive control methods have been shown to achieve attitude control for their respective control tasks, un-
der the assumption that the parametric uncertainty is linear-in-the-parameters (i.e., LP uncertainty). For more general classes of dynamic 
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systems with ill-defined or completely unknown mathematical models, data-based approaches can be utilized [9]. Data-based approaches 
have been shown to be effective in fault diagnosis and process monitoring and control for industrial applications, for example (e.g., see 
[10]). However, intelligent control methods can offer a practical alternative in engineering applications, for which partial knowledge of the 
system dynamics can be leveraged.

To cope with disturbances and nonlinearities that do not obey the linear-in-the-parameters assumption (i.e., non-LP), fuzzy control or 
NN-based control methods are often utilized [11–17]. In [15], an approximation-based adaptive fuzzy control scheme is presented, which 
is shown to compensate for unmodeled dynamics for a class of nonlinear strict-feedback systems. The scheme in [15] utilizes fuzzy logic 
systems to approximate unknown nonlinearities, and Lyapunov–Krasovskii functionals are employed to compensate for time-delays. In 
[12], an attitude control approach based on the radial basis function neural network (RBFNN) is developed. The satellite dynamic model 
utilized in [12] includes no disturbances in the reaction wheel actuators. Another NN attitude controller is presented in [14], which 
utilizes NNs to approximate the parametric uncertainties and nonlinearities present in the system dynamics. The NN is used in [14] to 
re-optimize a Single Network Adaptive Critic, or SNAC-based optimal controller, designed a priori for the nominal system. In [11], a NN 
attitude controller is developed based on a simplified nonlinear model of the Space Station Freedom. The dynamic model for the space 
station considered in [11] is simplified by assuming small roll/yaw attitude errors and small products of inertia. The attitude controller 
in [11] demonstrates the capability of the NN to adaptively compensate for varying inertia characteristics. The NN controllers presented 
in [11] and [14] are developed under the assumption that a control torque can be directly applied to the system, and no uncertainty is 
present in the actuators. The aforementioned fuzzy logic and NN-based control methods have been shown to be an effective means to 
compensate for unmodeled nonlinearities in dynamic systems. However, the attitude control approach presented in this paper focuses on 
addressing the challenge of rejecting unmodeled disturbances while simultaneously compensating for uncertain CMG actuator dynamics. 
To achieve this, the proposed attitude control method employs an innovative amalgamation of adaptive control and online NN-based 
estimation methods.

For applications involving small-sats, the assumption that a control torque can be directly applied to the system may not be valid, 
because the control torques are generated by actuators (e.g., CMGs) which have uncertain dynamics. These actuator uncertainties can 
have a more pronounced effect for pico- and nano-class satellites, where the CMGs are of significant size in comparison to the satellite 
itself. For small-sats, the inertia of the CMGs is comparable to the overall inertia of the satellite, so the motion of the CMG actuators can 
alter the overall inertia of the satellite. The resulting time variation in the satellite inertia manifests itself as a disturbance torque in the 
dynamic model. While this source of disturbance is often assumed to be negligible in some satellite dynamic models, it can be significant 
in the dynamics for small-sats. Furthermore, the torque-producing capacity of CMGs can deteriorate over time due to bearing degradation 
and increased friction in the gimbals. Electromechanical disturbances (e.g., tachometer ripple, motor cogging, motor back electromotive 
forces (BEMF), commutation or switching errors, and other electrical errors) can also hinder CMG performance [18]. The presence of these 
mechanical and electromechanical factors in the CMG actuators causes significant challenges in designing ACS for small-sats using CMG 
actuators.

An adaptive NN-based attitude tracking controller is developed in this paper for CMG-actuated satellites, which is capable of achieving 
attitude control in the presence of unmodeled external disturbances in addition to disturbances resulting from CMG actuator dynamics. 
Since the external disturbances are assumed to be unknown and non-LP, standard adaptive control techniques cannot be applied to 
compensate for their effects. By exploiting the function approximation property of NNs, these unknown nonlinearities are estimated, 
and the NN estimate is used in the control law to compensate for their effects. While a NN could be utilized to compensate for both 
the LP and non-LP uncertainty, NN-based estimation has lower performance than adaptive estimation for structured (i.e., LP) uncertainty. 
A contribution of the control method presented here is innovative algebraic manipulation in the tracking error system development, which 
enables the design of a control law that efficiently amalgamates adaptive and NN-based estimation to reject external non-LP disturbances 
while simultaneously compensating for LP uncertainty in the CMG actuators. The controller is applicable to CMG-actuated satellites of 
any size, but the control structure is designed with an emphasis on compensating for disturbances that are characteristic to small-sats. To 
that end, the controller is designed to compensate for time-varying satellite inertia, CMG parametric uncertainty, and nonlinear, non-LP 
external disturbance torques. Electromechanical uncertainties in the gimbal servo loop (i.e., uncertain loop gains and rotor inertias) are 
also assumed to be present in the CMG actuators. Some of the challenges encountered in the control design are that the control input 
(i.e., CMG gimbal angular rate) is premultiplied by a non-square, time-varying, nonlinear, uncertain matrix due to electromechanical 
uncertainties. Furthermore, due to the small size of the satellite considered in this development, the motion of the CMGs causes significant 
time-variation in the satellite inertia characteristics. The time-variation of the satellite inertia manifests itself as a nonlinear disturbance 
torque in the satellite dynamic model, which is handled via innovative algebraic manipulation in the error system development along 
with a Lyapunov-based adaptive update law. In addition, experimental results are provided, which demonstrate the performance of the 
controller in an attitude regulation task.

1. Dynamic model and properties

The dynamics of a spacecraft modeled as a rigid body and actuated by CMGs can be expressed as [19]

J ω̇ = −ω× Jω + τcmg − J̇ω + τd. (1)

In (1), J (δ) ∈R
3×3 represents the positive definite, symmetric satellite inertia matrix that is a function of the CMG gimbal angular position 

vector δ(t) ∈ R
4. The dimension of the gimbal angle vector δ (t) is based on the assumption that the CMG cluster contains four single 

gimbal CMGs (SGCMGs); however, the control design presented here is applicable in any scenario in which the number of SGCMGs is 
greater than or equal to the number of rotational degrees of freedom (i.e., three). The inertia matrix J (δ) satisfies the inequality

λmin { J } ‖ξ‖2 ≤ ξ T Jξ ≤ λmax { J } ‖ξ‖2 ∀ ξ ∈R
n, (2)

where ‖·‖ represents the standard Euclidean norm, and λmin { J }, λmax { J } ∈ R are the minimum and maximum eigenvalues of J (δ), 
respectively. Also in (1), ω(t) ∈ R

3 denotes the angular velocity of the satellite body-fixed frame F with respect to an inertial frame I
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expressed in F , and τcmg(t) ∈ R
3 denotes the internal torque (control torque) generated via a CMG cluster consisting of four SGCMGs. 

Also in (1), the term J̇ (t)ω(t) represents the torque produced by the time variation of the satellite inertia matrix due to the motion of the 
CMGs, and the notation ζ× ∀ ζ ∈ R

3 denotes the skew-symmetric matrix equivalent to a vector cross product. In (1), τd (t) ∈ R
3 denotes 

a general, unmodeled, nonlinear disturbance torque.

Remark 1. In (1), the term τd (t) could represent external disturbances due to solar radiation pressure, gravity gradient torque, magnetic 
interactions, aerodynamic drag, mounting misalignment, and/or a general unmodeled, nonlinear external disturbance torque. While dy-
namic models have been developed for certain commonly known disturbance sources [2–4,20,21], the ACS design presented here assumes 
that the dynamic model for the external disturbance is completely unknown. The disturbance torques listed will have a more pronounced 
effect depending on the satellite, its inertia, and its orbit regime. A NN is utilized along with a Lyapunov-based adaptive law to estimate 
and compensate for the effects of the disturbance.

The control torque generated from the CMG cluster including tachometer disturbances can be modeled as [18]

τcmg = −
(

ḣcmg + ω×hcmg

)
+ ATd, (3)

where A (δ) ∈R
3×4 denotes a measurable Jacobian matrix, which relates the four SGCMG gimbal-fixed frames to the three coordinate axes 

of the satellite body-fixed frame. The Jacobian matrix is explicitly defined as

A (δ) �

⎡
⎣ − sinγ sin δ1 − cos δ2 sinγ sin δ2 cos δ4

cos δ1 − sinγ sin δ2 − cos δ2 sinγ sin δ4
− cosγ sin δ1 cosγ sin δ2 − cosγ sin δ3 − cosγ sin δ4

⎤
⎦ . (4)

Since the Jacobian matrix A (δ) contains only bounded trigonometric terms, it can be upper bounded as:

‖A (δ)‖i∞ ≤ ζ0, (5)

where ζ0 ∈ R is a known positive bounding constant, and ‖·‖i∞ denotes the induced infinity norm of a matrix. Also in (3), hcmg(t) ∈ R
3

represents the angular momentum of the CMG cluster, and ḣcmg(t) is modeled as

ḣcmg = h Aδ̇, (6)

where h ∈ R represents the constant angular momentum of each SGCMG expressed in the gimbal-fixed frame (i.e., h is the same for all 
four SGCMGs). In (6), δ̇ �

[
δ̇1 δ̇2 δ̇3 δ̇4

]T ∈ R
4 denotes the CMG gimbal angular rate control input, where δ̇i (t) ∈ R ∀ i = 1, 2, 3, 4

denotes the angular rate of the ith SGCMG gimbal. The term Td
(
δ, δ̇

) ∈ R
4 in (3) represents torques in the gimbal axes due to tachometer 

disturbances. For tachometers consisting of a stator and a rotating magnetic rotor, signal errors can result as the voltage signal produced 
by the rotating magnet passes the windings of the stator. The errors resulting from these tachometer disturbances manifest themselves 
as sinusoidal voltage disturbances that generally range from low to high frequencies. Mathematically, tachometer disturbances can be 
expressed as [18]

Td � KG Ed δ̇, (7)

where KG ∈ R
4×4 denotes a diagonal matrix of uncertain, constant forward loop gains for the four SGCMG gimbal loops, and Ed (δ) =

diag{Ed1 (δ1), Ed2 (δ2), Ed3 (δ3), Ed4 (δ4)} is a matrix of disturbance voltages in the four gimbals, where Edi (δi), for i = 1, 2, 3, 4, are 
functions of the ith gimbal angle defined as

Edi �
10∑

n=1

{
1

n
sin (nδi) + 1

n + 1
cos (nδi)

}
. (8)

The CMG torque expression in (3) does not explicitly include gimbal acceleration terms or dynamics between δ (t) and δ̇ (t), but these 
effects are assumed to be included with the other bounded uncertainties, which contribute to the ultimate bound on the tracking error.

2. Kinematic model

The rotational kinematics of the rigid-body satellite can be expressed as [7]

q̇v = 1

2

(
q×

v ω + q0ω
)
, q̇0 = −1

2
qT

v ω. (9)

In (9), qv (t) ∈ R
3 and q0 (t) ∈ R denote the vector and scalar parts, respectively, of the quaternion q (t) � {q0 (t) ,qv (t)} ∈ R × R

3 that 
describes the orientation of the body-fixed frame F with respect to I , subject to the constraint

qT
v qv + q2

0 = 1. (10)

In the subsequent analysis, qd (t) � {q0d (t) ,qvd (t)} ∈ R × R
3 denotes the unit quaternion that describes the orientation of the desired 

body-fixed frame Fd with respect to I . Rotation matrices that bring I onto F and I onto Fd , denoted by R (qv ,q0) ∈ S O  (3) and 
Rd (qvd,q0d) ∈ S O  (3), respectively, can be developed using standard quaternion kinematics (see [22] for details). The subsequent analysis 
is based on the assumption that q0d(t), qvd(t), and their first three time derivatives are bounded for all time. This assumption ensures that 
the desired angular velocity ωd(t) ∈R

3 and its first two time derivatives are bounded for all time.
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3. Control objective

The objective in this paper is to develop a gimbal velocity controller to enable the attitude of F to track the attitude of Fd . To quantify 
the objective, an attitude tracking error denoted by R̃(ev , e0) ∈R

3×3 is defined that brings Fd onto F as

R̃ � R RT
d =

(
e2

0 − eT
v ev

)
I3 + 2ev eT

v − 2e0e×
v , (11)

where e(t) � {e0(t), ev(t)} ∈ R ×R
3 denotes the quaternion tracking error, and I3 is the 3 × 3 identity matrix. Since the actual and desired 

angular velocity vectors ω(t) and ωd (t) are defined in the reference frames F and Fd , respectively, ωd (t) must be transformed to the 
frame F so that the angular velocity tracking error between ω(t) and ωd (t) can be defined in F . To this end, (11) is used to define the 
angular velocity of F with respect to Fd expressed in F , denoted by ω̃(t) ∈ R3, as

ω̃ �ω − R̃ωd. (12)

To facilitate the subsequent control design, an auxiliary control signal, denoted by r(t) ∈ R
3, is defined as

r �ω − R̃ωd + αev , (13)

where α ∈R is a positive, constant control gain. After substituting (13) into (12), the angular velocity tracking error can be expressed as

ω̃ = r − αev . (14)

Motivation for the design of r(t) is based on the subsequent Lyapunov-based stability analysis and the fact that (12) can be used to express 
the open-loop quaternion tracking error as

ėv = 1

2

(
e×

v + e0 I
)
ω̃, ė0 = −1

2
eT

v ω̃. (15)

From the definitions of the quaternion tracking error variables, the following constraint holds [7]:

eT
v ev + e2

0 = 1. (16)

Thus, (11) can be used to conclude that if ‖ev(t)‖ → 0, R̃ → I3, and the control objective will be achieved.

Assumption 1. The general disturbance τd (t) ∈ R
3 (see Equation (1)) is an unknown nonlinear function of the measurable states qv (t), 

q0 (t), q̇v (t), q̇0 (t), and ω(t). Examples of known disturbance sources satisfying this functional dependence include gravity gradient 
torque, aerodynamic drag [20], mounting misalignment [4], and solar radiation pressure [21]. In the following control development, the 
disturbance τd (t) is assumed to be an unknown, unmeasurable function, which is attenuated using a feedforward NN-based estimate.

4. Control development

The contribution of this paper is development, which shows how adaptive estimation can be amalgamated with NN-based function ap-
proximation to attenuate unmodeled external disturbances while simultaneously compensating for CMG actuator disturbances. To achieve 
the result, innovative algebraic manipulation is performed in the tracking error system development, resulting in a mathematically advan-
tageous segregation of the structured (LP) actuator uncertainty from the unstructured (non-LP) external disturbances. This strategy in the 
error system development facilitates the design of a novel control structure, which effectively combines the benefits of adaptive estimation 
with NN-based approximation to achieve accurate attitude tracking control for a general class of systems with unmodeled dynamics.

4.1. Open-loop error system

The open-loop dynamics for r(t) can be determined by taking the time derivative of (13) and premultiplying the resulting expression 
by J (δ) as

J ṙ = J ω̇ + J ω̃× R̃ωd − J R̃ω̇d + Jαėv , (17)

where the fact that 
·

R̃ = −ω̃× R̃ was utilized. After using the dynamic model given in (1) and the expression for τcmg (t) given in (3), the 
expression in (17) can be rewritten as

J ṙ = f − 
0δ̇ − h Aδ̇ + AKG Edδ̇ − ω×hcmg − 1

2
J̇ r, (18)

where (6), (7), (13), and (15) were utilized. In (18), 
0(r, ev , e0, ωd, δ, t) ∈R
3×4 denotes an uncertain auxiliary matrix, which is defined 

via the parameterization1


0δ̇ =
(

d

dt
J (δ)

)(
1

2
r + R̃ωd − αev

)
. (19)

1 A detailed derivation of the linear parameterization in (19) can be found in the appendix.
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Remark 2. The linear parameterization presented in Equation (19) is one of the salient features of the innovation presented here of the 
proposed method. This enables us to effectively segregate the LP terms from the non-LP terms in the error system development to combine 
adaptive and NN-based feedforward terms in the control law and achieve a very advantageous combination of NN and adaptive control 
techniques.

Also in (18), the unknown nonlinear function f (r, qv , q0, ev , e0, ω, ωd, ω̇d, δ, t) ∈R
3 is defined as

f � −ω× Jω + J ω̃× R̃ωd − J R̃ω̇d + 1

2
Jα

(
e×

v + e0 I
)
ω̃ + τd. (20)

Although the variable inertia in J (δ) is LP through the constant but unknown gimbal inertia, it is included in the NN here to compensate 
for a more general source of unmodeled dynamics. For example, it may be possible for the gimbals to be flexible and for the dynamic 
balance (e.g., alignment of the rotor-axis to the gimbal axis) to be influenced by such flexible effects.

To facilitate the subsequent Lyapunov-based adaptive control design, the terms in (18) containing parametric uncertainty are linearly 
parameterized as

Y1θ1 � 
0δ̇ − AKG Ed δ̇, (21)

where Y1(r, ev , e0, ωd, δ, δ̇, t) ∈ R
3×p1 is a known, measurable regression matrix, and θ1 ∈ R

p1 is a vector of p1 unknown constants. 
One of the control design challenges for the open-loop system in (18) is that the control input δ̇(t) is premultiplied by a nonsquare, 
uncertain time-varying matrix. To address this issue, an estimate of the uncertainty in (21), denoted by 
̂1(t) ∈R

3×4, is defined via


̂1δ̇ = Y1θ̂1, (22)

where θ̂1(t) ∈ R
p1 is a subsequently designed estimate for the parametric uncertainty in 
1(r, ev , e0, ωd, δ, t). Based on (21) and (22), 

(18) can be rewritten as

J ṙ = f − B δ̇ − ω×hcmg − 1

2
J̇ r − Y1θ̃1, (23)

where B (δ, t) ∈R
3×4 is defined as2

B � h A + 
̂1, (24)

and the parameter estimate mismatch θ̃1(t) ∈R
p1 is defined as

θ̃1 � θ1 − θ̂1. (25)

5. Feedforward NN estimation

The open-loop tracking error dynamics in (23) contains structured (LP) actuator uncertainty in addition to unstructured (non-LP) un-
certainty due to unmodeled external disturbances. An adaptive control method will be utilized in the subsequent control design, where we 
exploit the known structure of the actuator uncertainty. However, the uncertainty due to disturbances is unstructured, and this motivates 
the need for additional compensation. To this end, NN-based function approximation will also be incorporated in the control design.

NN-based estimation methods are well suited for dynamic models containing unstructured uncertainties as in (1). The main feature 
that empowers NN-based controllers is the universal approximation property. A NN will be utilized to approximate the unknown nonlinear 
function f defined in (20). By utilizing a feedforward NN-based estimate, the control law can be designed to achieve accurate attitude 
tracking control for a general class of systems, where multiple sources of unmodeled external disturbances might be present. The use of 
a NN can thus enable reliable attitude tracking control for a satellite over a wide range of uncertain and potentially adversarial operating 
conditions.

Let S be a compact simply connected set of RN1+1. Let Cn (S) be defined as the space where f : S → R
n is continuous. The universal 

approximation property states that there exist weights and thresholds such that the function f (x) ∈ C
n (S) can be represented by a 

three-layer NN as [23]

f (x) = W T σ
(

V T x
)

+ ε (x) . (26)

In (26), V ∈R(N1+1)×N2 and W ∈ R(N2+1)×n are bounded constant ideal weight matrices for the first-to-second and second-to-third layers, 
respectively, where N1 is the number of neurons in the input layer, N2 is the number of neurons in the hidden layer, and n is the number 
of neurons in the third layer. Based on (20), the measurable NN input vector x (t) ∈ R

N1+1 is defined as

x (t)�
[

1 rT (t) qT
v (t) qT

0 (t) eT
v (t) e0 (t) ωT (t) ωT

d (t) ω̇T
d (t) gT (δ)

]T
, (27)

where g (·) ∈ R
4 denotes a vector of bounded trigonometric functions (e.g., sin (·) or cos (·)).3 The activation function in (26) is denoted 

by σ (·) :RN1+1 →R
N2+1, and ε (x) : RN1+1 → R

n is the functional reconstruction error.4

2 The purpose of the feedforward estimate 
̂1 (t) is to compensate for parametric input uncertainty, not to add rank to the original Jacobian matrix A (δ).
3 The parallel axis theorem can be used to prove that the gimbal angle δ (t) enters into the dynamic equations of motion through direction cosine matrices, thus δ (t) only 

appears in the unknown function f (x) within bounded trigonometric functions.
4 The value for N1 is based on the size of the input vector x (t), and the number of hidden layer weights N2 is selected to yield the desired NN approximation accuracy.
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Remark 3. If ε = 0, then f (x) is in the functional range of the NN. In general, for any positive constant real number εb1 > 0, f (x) is within 
εb1 of the NN range if there exist finite hidden neurons N2 and constant weights so that for all inputs in the compact set S, the approx-
imation holds with ‖ε(x)‖ < εb1. The Stone–Weierstrass theorem indicates that any sufficiently smooth function can be approximated 
by a suitably large network. Therefore, the fact that the approximation error ε(x) is bounded follows from the Universal Approximation 
Property of NNs. Application of the Stone–Weierstrass theorem requires that x(t) ∈ S. From (13) and (27), if r(t) is a member of some 
compact set Sr ⊂ S, then x(t) ∈ S. The subsequent stability proof shows that if r(0) is bounded, then r(t) ∈ Sr .

Based on (26), the typical three-layer NN approximation for f (x) is given as [23]

f̂ (x) = Ŵ T σ
(

V̂ T x
)

, (28)

where V̂ (t) ∈ R(N1+1)×N2 and Ŵ (t) ∈ R(N2+1)×n are subsequently designed estimates of the ideal weight matrices. The estimate mismatch 
for the ideal weight matrices, denoted by Ṽ (t) ∈R(N1+1)×N2 and W̃ (t) ∈ R(N2+1)×n , are defined as

Ṽ � V − V̂ W̃ � W − Ŵ , (29)

and the mismatch for the hidden layer output error for a given x (t), denoted by σ̃ (x) ∈R(N2+1) , is defined as

σ̃ � σ − σ̂ = σ
(

V T x
)

− σ
(

V̂ T x
)

. (30)

The neural network estimate has several properties that facilitate the subsequent development. These properties are described as 
follows.

Property 1 (Taylor series approximation). The Taylor series expansion for σ
(

V T x
)

for a given x may be written as [23]

σ
(

V T x
)

= σ
(

V̂ T x
)

+ σ ′ (V̂ T x
)

Ṽ T x + o
(

Ṽ T x
)2

, (31)

where σ ′
(

V̂ T x
)

≡ dσ
(

V T x
)
/d 

(
V T x

) |V T x=V̂ T x , and o 
(

Ṽ T x
)2

denotes the higher order terms. After substituting (31) into (30), the follow-

ing expression can be obtained:

σ̃ = σ̂ ′ Ṽ T x + o
(

Ṽ T x
)2

, (32)

where σ̂ ′ � σ ′
(

V̂ T x
)

.

Assumption 2 (Boundedness of the ideal weights). The ideal weights are assumed to exist and be bounded by known positive values so that

‖V ‖2
F = tr

(
V T V

)
≤ V̄ B , ‖W ‖2

F = tr
(

W T W
)

≤ W̄ B (33)

where ‖·‖F is the Frobenius norm of a matrix, and tr (·) is the trace of a matrix.

The desired angular velocity is assumed to be bounded such that∥∥∥[
ωT

d (t) ω̇T
d (t)

]T
∥∥∥ ≤ ζd, (34)

where ζd is a known bounding constant. It follows that for each time t , x (t) can be bounded as

‖x‖ ≤ c1 + c2 ‖r‖ , (35)

where c1 and c2 are computable constants.

5.1. Closed-loop error system

Based on the open-loop dynamics in (23) and the following stability analysis, the control input is designed as

δ̇ = B#
[

f̂ − ω×hcmg + K vr + knr + ev

]
, (36)

where K v , kn ∈R denote positive control gains (i.e., kn is a nonlinear damping term). Also in (36), B# (δ, t) ∈ R
4×3 denotes a pseudoinverse 

of B (δ, t) defined as [24,25]

B# = BT
(

B BT + ζ I3

)−1
. (37)

In (37), ζ (δ, t) ∈ R denotes a singularity avoidance parameter, which is used to avoid singularities in the B matrix. For example, Nakamura 
et al. [24] designed ζ (δ, t) as

ζ (δ, t) � ε0 exp
[
−det

(
B BT

)]
, (38)
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so that ζ (δ, t) is negligible when B BT is nonsingular but increases to the constant parameter ε0 ∈ R as the singularity is approached. 
Since the matrix in Eq. (24) is not the Jacobian of the CMG array (i.e., due to the uncertainty estimate), the pseudoinverse in Eq. (37) is 
utilized to ensure control effectiveness rather than singularity avoidance. Singularities in the CMG configuration matrix A are not explicitly 
accounted for, but our preliminary results demonstrate the capability of the control law to avoid singularities by successfully maneuvering 
out of a singularity present from controller initialization. Also in (36), the feedforward NN component, denoted as f̂ (t) ∈R

n , is defined as 
in (28), where the state vector x (t) ∈R

N1+1 is defined in (27). The estimates of the NN weights in (28) are generated on-line (there is no 
off-line learning phase) as [26]

·
Ŵ � proj

(
�1

(
σ̂ rT − σ̂ ′ V̂ T xrT

))
(39)

·
V̂ � proj

(
�2xrT

(
σ̂ ′T Ŵ

)T
)

, (40)

where �1 ∈ R(N2+1)×(N2+1) , �2 ∈R(N1+1)×(N1+1) are constant, positive definite, symmetric control gain matrices.
The closed-loop tracking error system can be developed by substituting (36) into (23) as

J ṙ = −1

2
J̇ r + f̃ − Y1θ̃1 − K vr − knr − ev , (41)

where f̃ (x) ∈ R
3 represents a function estimation error vector defined as f̃ � f − f̂ . Based on (41) and the subsequent stability analysis, 

the parameter estimate θ̂1(t) is designed as

·
θ̂1 = proj(−�3Y T

1 r), (42)

where �3 ∈ R
p1×p1 denotes a constant, positive-definite, diagonal adaptation gain matrix.

Remark 4. The function proj (·) in (39), (40), and (42) denotes a standard algorithm, which ensures that the following inequalities are 
satisfied (for further details, see [27,28]):

V ij ≤ V̂ i j ≤ V̄ i j, W kl ≤ Ŵkl ≤ W̄kl, (43)

θ1m ≤ θ̂1m ≤ θ̄1m,

where V ij , V̄ i j , W kl , W̄kl , θ1m , θ̄1m ∈ R denote known, constant lower and upper bounds of V̂ i j (t) ∀ i = 1, ..., (N1 + 1), ∀ j = 1, ..., N2; 
Ŵkl (t) ∀ k = 1, ..., (N2 + 1), ∀ l = 1, ..., n; and θ̂1m (t) ∀ m = 1, ..., p1, respectively.

Remark 5. To determine Ŵ (t), V̂ (t), and θ̂1 (t), the adaptation laws in (39), (40), and (42) assume the availability of angular position and 
velocity measurements only.

After using (26), (28), and the Taylor series approximation described in (31) and (32), the closed-loop error system in (41) can be 
expressed as

J ṙ = −1

2
J̇ r + w − K vr − knr − ev − Y1θ̃1 + W̃ T

(
σ̂ + σ̂ ′ V̂ T x

)
+ Ŵ T σ̂ ′ Ṽ T x, (44)

where (30) was used, and w(t) ∈ R
3 is defined as

w = W̃ T σ̂ ′V T x + W T o
(

Ṽ T x
)2 + ε (x) . (45)

For notational convenience, let the matrix containing all NN weights be defined as Z � diag {W , V }.
Based on the assumption that the NN approximation property holds for all x (t) in a compact set (the subsequent stability proof 

illustrates that x (t) remains in a compact set), the NN reconstruction error ε (x) can be upper bounded as ‖ε (x)‖ ≤ εb1. Therefore, ε (x)
and the higher order terms in the Taylor series expansion of f (x) can be treated as disturbances in the error system. Moreover, these 
disturbances can be upper bounded as

‖w (t)‖ ≤ c3 + c4 Z M ‖r‖ , (46)

where c3, c4 ∈ R are known positive constants. Also in (46), Z M ∈ R is a bounding constant that satisfies ‖Z‖F ≤ Z M . To facilitate the 
subsequent analysis, the control gain K v in (36) is selected as

K v > c4 Z M . (47)

6. Stability analysis

Theorem 1. The adaptive controller of (22), (24), (28), (36)–(40), and (42) ensures bounded attitude tracking in the sense that

‖ev(t)‖ ≤ ε0 exp {−ε1t} + ε2, (48)

where ε0 , ε1 , ε2 ∈ R denote positive bounding constants.
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Proof. Let V L

(
e0, ev , r, Ŵ , V̂ , θ̂ , t

)
∈R be defined as the nonnegative function

V L(t) � eT
v ev + (1 − e0)

2 + 1

2
rT Jr + 1

2
tr

(
W̃ T �−1

1 W̃
)

+ 1

2
tr

(
Ṽ T �−1

2 Ṽ
)

+ 1

2
θ̃ T

1 �−1
3 θ̃1. (49)

Based on (2), (25), (39), (40), and (43), the Lyapunov function candidate (49) can be upper and lower bounded as

λ1 ‖y‖2 + c7 ≤ V L (t) ≤ λ2 ‖y‖2 + c8, (50)

where y(t) ∈ R6 is defined as

y �
[

eT
v rT

]T
, (51)

and λ1, λ2, c7, c8 ∈ R are known positive bounding constants. After using (14), (15), (44), and the tuning rules given in (39), (40), and 
(42), the time derivative of V L(t) can be expressed as

V̇ L = −αeT
v ev + rT (w − K vr − knr) , (52)

where the fact that eT
v e×

v ω̃ = 0 was utilized. After substituting the upper bound for ‖w‖ given in (46) and utilizing the inequality in (47), 
the expression in (52) can be upper bounded as

V̇ L(t) ≤ −λ3 ‖y‖2 − kn ‖r‖2 + c3 ‖r‖ , (53)

where λ3 ∈R is a positive bounding constant. Completing the squares in (53) yields

V̇ L(t) ≤ −λ3 ‖y‖2 + c2
3

4kn
. (54)

Based on (50), (54) can be expressed as

V̇ L(t) ≤ −λ3

λ2
V L (t) + ε0, (55)

where ε0 �
c2

3
4kn

+ λ3c8
λ2

. The linear differential inequality in (55) can be solved as

V L(t) ≤ exp

{
−λ3

λ2
t

}
V L(0) + ε0

λ2

λ3

(
1 − exp

{
−λ3

λ2
t

})
. (56)

The expressions in (49), (50), and (56) can be used to conclude that r(t) ∈ L∞ . Thus, from (14) and (51), ω̃(t), y(t) ∈L∞ , and (13) can be 
used to conclude that ω(t) ∈ L∞ . The open-loop quaternion tracking error in (15) can be used to show that ėv (t), ė0(t) ∈L∞ . Hence, (24), 
(28), (36), (39), and (40) can be used to prove that the control input δ̇(t) ∈ L∞ . Standard signal chasing arguments can then be utilized 
to prove that all remaining signals remain bounded during closed-loop operation. The inequalities in (50) can be used along with (56) to 
conclude that

‖y‖2 ≤
(

λ2 ‖y(0)‖2 + c8

λ1

)
exp

{
−λ3

λ2
t

}
+

(
λ2c2

3

4knλ3λ1
+ c8 − c7

λ1

)
< ε3(y(0)), (57)

where ε3 is a positive constant. The result in (48) can now be directly obtained from (51) and (57). Also, from (51), r(t) is contained 
for all times t ≥ 0 in a compact set Sr = { y(t)| ‖y(t)‖ < ε3(y(0))}. According to the Weierstrass approximation theorem, given any NN 
approximation error bound there exist some number of neurons such that supy∈Sr

‖ε(x)‖ < εb1. �
7. Experiment

To test the validity of the controller developed in (36), (39), (40), and (42), an experiment was performed using the University of 
Florida Spacecraft Orientation Buoyancy Experimental Kiosk (SOBEK) CMG test bed.

The test bed uses four single gimbal CMGs in an orthogonal pyramid configuration. The inclination of the pyramid walls is γ = 54.74◦ . 
The numerical values of the dynamic parameters for the SOBEK test bed (i.e., h, J0, ri , gi J gi ∀ i = 1, ..., 4) are readily available. The CMG 
electromechanical disturbances are assumed to be modeled as in (7), and the gimbal servo loop gains KGi ∀ i = 1, ..., 4 are assumed to be 
unknown and are not used in the control law.

A Phasespace motion capture system takes range measurements from LEDs located on the SOBEK ACS and calculates the quaternion 
position of the ACS. Due to the test bed setup, it was impractical to use onboard gyros for angular velocity measurements. Instead, 
the angular rates of the ACS were estimated via differentiation of the quaternion position measurements. The experimental results were 
achieved using estimates of δ (t) that were obtained by numerically integrating the commanded gimbal rate. In the absence of angular 
velocity measurements, the experiment tests attitude regulation instead of tracking.
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Fig. 1. Quaternion tracking error during closed-loop controller operation of experimental test bed [dimensionless].

Fig. 2. Control input gimbal angular rates [deg/sec] used in experiment during closed-loop controller operation.

7.1. Summary of results

The goal of the experiment was to perform an attitude maneuver from an initial quaternion orientation of q (0) = [−0.15, 0.01, 0.98,

0.15]T to a desired quaternion orientation of qd = [0, 0, 0, 1]T . The initial gimbal angles were set to a singular configuration of δ (0) =
[0, 0, 0, 0]T deg. The initialization of the gimbal configuration to a singularity tests a worst-case scenario because maneuvering out 
of a singularity present from controller initialization is more difficult than it would be if the singularity were encountered within the 
maneuver. Figs. 1–2 summarize the experimental results achieved by implementing the controller in (36), (37)–(40), and (42) with control 
gains selected as follows:

K v = 0.2 kn = 0.7 K Z = 0.05
κ = 2.5 α = 2 ε0 = 0.2

�1 = 10.2I21 �2 = 5I21 �3 = 0.1I6

and the adaptive and NN weight estimates were initialized as

θ̂ (0) = 06×1 Ŵ (0) = 021×3 (58)

V̂ i j (0) = 0.1 sin (rand) ∀ i = 1, ...,25, ∀ j = 1, ...,10.

Fig. 1 shows the quaternion attitude error e (t) versus time. Fig. 2 shows the control input gimbal rates.
The experimental results are based on the gimbal rate control law defined in Equations (28) and (36)–(40). The control law includes a 

nonlinear damping feedback term and feedforward adaptive estimates of uncertain parameters and of the ideal neural network weights. 
The uncertain parameters are initialized either randomly or as zeros (see Equation (58)) to test the capability of the control law to compen-
sate for the parametric uncertainty. The neural network estimate is included in the control law to compensate for external disturbances, 
which could be present under time-varying and uncertain operating conditions. Although the operating conditions of the experimental 
setup did not exhibit significant external disturbances, the results illustrate the capability to compensate for an inherent weight imbalance 
in the CMG test bed. The weight imbalance can be observed in the nonzero initial condition of the quaternion error ev1 (0) = −0.15. This 
imbalance can be interpreted as an unmodeled, non-vanishing external (gravitational) force. The closed-loop tracking error plots in Fig. 1
demonstrate that the control law significantly reduces the effects of the imbalance by reducing the regulation error ev1 (t).
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The tracking error plots in Fig. 1 exhibit a slow convergence time, and future work will focus on extending the proposed attitude control 
law to formally address this issue. The results presented here are intended to demonstrate the ultimate convergence of the quaternion 
regulation error as proven in the Lyapunov stability analysis (i.e., as mathematically expressed in Inequality (57)).

The neural network utilized to generate these experimental results was designed to adapt online, without the requirement of an offline 
training phase. The use of online NN adaptation in the control law as opposed to offline training is a primary focus of the NN application 
here. The NN complexity, as described in terms of the number of hidden-layer neurons (see Equation (58)), was selected based on the 
desire to achieve the best possible performance in the control task. The NN structure in this result was not optimized to minimize the NN 
complexity in the proposed attitude control method; this issue will be formally addressed in future research.

8. Conclusions

A robust and adaptive NN-based attitude controller is developed for a rigid body satellite. The controller adapts for time-varying satel-
lite inertia properties, parametric uncertainty in the inertia matrix, and input torque uncertainty due to electromechanical disturbances 
in the CMG gimbal loops. In addition, the NN controller compensates for unmodeled, non-LP external disturbances. In addition, since a 
singularity robust steering law is incorporated in the control design, the proposed approach avoids the singular torque directions inherent 
in the dynamics of the four single gimbal CMG cluster. The experimental results demonstrate the capability of the proposed control law 
to regulate a satellite to a desired pose using gimbal angular velocity commands that are within practical limits. The experiment could be 
improved by using onboard gyroscopes for angular velocity measurements. Future work will focus on output feedback attitude control of 
a satellite in the presence of CMG anomalies and other uncertain dynamics.
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Appendix A

Lemma 1. The matrix-vector product in Equation (19) can be linearly parameterized as(
d

dt
J (δ)

)(
1

2
r + R̃ωd − αev

)
= 
0δ̇, (59)

where 
0 (t) ∈R
3×4 denotes a state-dependent matrix containing parametric uncertainty.

Proof. The general form for the symmetric inertia matrix J (δ (t)) can be expressed as

J (δ) =
⎡
⎣ J1 (δ) J2 (δ) J3 (δ)

J2 (δ) J4 (δ) J5 (δ)

J3 (δ) J5 (δ) J6 (δ)

⎤
⎦ (60)

Since the inertia matrix is a function of δ (t) ∈ R
4, the time derivative of the kth element of J (δ (t)) for k = 1, ..., 6 can be obtained as

d

dt
Jk (δ) =

4∑
i=1

∂ Jk (δ)

∂δi
δ̇i . (61)

After using the expressions in (59), (60), and (61), one obtains

(
d

dt
J (δ)

)(
1

2
r + R̃ωd − αev

)
=

⎡
⎢⎢⎣

∑4
i=1

∂ J1(δ)
∂δi

δ̇i
∑4

i=1
∂ J2(δ)

∂δi
δ̇i

∑4
i=1

∂ J3(δ)
∂δi

δ̇i∑4
i=1

∂ J2(δ)
∂δi

δ̇i
∑4

i=1
∂ J4(δ)

∂δi
δ̇i

∑4
i=1

∂ J5(δ)
∂δi

δ̇i∑4
i=1

∂ J3(δ)
∂δi

δ̇i
∑4

i=1
∂ J5(δ)

∂δi
δ̇i

∑4
i=1

∂ J6(δ)
∂δi

δ̇i

⎤
⎥⎥⎦

⎡
⎣ g1 (t)

g2 (t)
g3 (t)

⎤
⎦ (62)

where gi (t) ∈R, for i = 1, 2, 3, is the ith element of 
(

1
2 r + R̃ωd − αev

)
∈R

3. The expression in (62) can be rewritten as

(
d

dt
J (δ)

)(
1

2
r + R̃ωd − αev

)
= (63)⎡

⎢⎢⎢⎣
(

g1 (t) ∂ J1(δ)
∂δ1

δ̇1 + g2 (t) ∂ J2(δ)
∂δ1

δ̇1 + g3
∂ J3(δ)

∂δ1
δ̇1

)
+ · · · +

(
g1 (t) ∂ J1(δ)

∂δ4
δ̇4 + g2 (t) ∂ J2(δ)

∂δ4
δ̇4 + g3

∂ J3(δ)
∂δ4

δ̇4

)
(

g1 (t) ∂ J2(δ)
∂δ1

δ̇1 + g2 (t) ∂ J4(δ)
∂δ1

δ̇1 + g3
∂ J5(δ)

∂δ1
δ̇1

)
+ · · · +

(
g1 (t) ∂ J2(δ)

∂δ4
δ̇4 + g2 (t) ∂ J4(δ)

∂δ4
δ̇4 + g3

∂ J5(δ)
∂δ4

δ̇4

)
(

g1 (t) ∂ J3(δ)
∂δ1

δ̇1 + g2 (t) ∂ J5(δ)
∂δ1

δ̇1 + g3
∂ J6(δ)

∂δ1
δ̇1

)
+ · · · +

(
g1 (t) ∂ J3(δ)

∂δ4
δ̇4 + g2 (t) ∂ J5(δ)

∂δ4
δ̇4 + g3

∂ J6(δ)
∂δ4

δ̇4

)
⎤
⎥⎥⎥⎦ .

After factoring out the terms δ̇i (t), for i = 1, ..., 4, the expression in (63) can be rewritten as(
d

J (δ)

)(
1

r + R̃ωd − αev

)
= (64)
dt 2
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⎡
⎢⎢⎢⎣

(
g1 (t) ∂ J1(δ)

∂δ1
+ g2 (t) ∂ J2(δ)

∂δ1
+ g3

∂ J3(δ)
∂δ1

)
δ̇1 + · · · +

(
g1 (t) ∂ J1(δ)

∂δ4
+ g2 (t) ∂ J2(δ)

∂δ4
+ g3

∂ J3(δ)
∂δ4

)
δ̇4(

g1 (t) ∂ J2(δ)
∂δ1

+ g2 (t) ∂ J4(δ)
∂δ1

+ g3
∂ J5(δ)

∂δ1

)
δ̇1 + · · · +

(
g1 (t) ∂ J2(δ)

∂δ4
+ g2 (t) ∂ J4(δ)

∂δ4
+ g3

∂ J5(δ)
∂δ4

)
δ̇4(

g1 (t) ∂ J3(δ)
∂δ1

+ g2 (t) ∂ J5(δ)
∂δ1

+ g3
∂ J6(δ)

∂δ1

)
δ̇1 + · · · +

(
g1 (t) ∂ J3(δ)

∂δ4
+ g2 (t) ∂ J5(δ)

∂δ4
+ g3

∂ J6(δ)
∂δ4

)
δ̇4

⎤
⎥⎥⎥⎦ .

Clearly, the expression in (64) can be rewritten as the matrix vector product

(
d

dt
J (δ)

)(
1

2
r + R̃ωd − αev

)
=

⎡
⎣ 
0(1,1) 
0(1,2) 
0(1,3) 
0(1,4)


0(2,1) 
0(2,2) 
0(2,3) 
0(2,4)


0(3,1) 
0(3,2) 
0(3,3) 
0(3,4)

⎤
⎦

⎡
⎢⎢⎣

δ̇1

δ̇2

δ̇3

δ̇4

⎤
⎥⎥⎦ = 
0δ̇. (65)

In (65), the parallel axis theorem can be used to prove that the elements 
0(i, j) , for i = 1, 2, 3 and j = 1, 2, 3, 4, of the matrix 
0 (t)
contain linear combinations of uncertain constant gimbal inertia parameters and the measurable signals ev (t), e0 (t), ωd (t), ω(t), and 
δ (t). That proof is a straightforward application of the parallel axis theorem and is omitted here for brevity. �
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