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Abstract

This paper presents a new di!erentiable, time-varying controller for the regulation problem for wheeled mobile robots. After the
WMR kinematics have been transformed into an advantageous form, a dynamic oscillator, in lieu of explicit cosine or sine terms, is
constructed to promulgate a global exponential regulation property for the transformed kinematic model via a Lyapunov-type
argument. In order to showcase the di!erentiable nature of the proposed kinematic control structure, we demonstrate how the
standard backstepping technique can be applied to obtain a global exponential regulator for an exact dynamic model. � 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Over the past twenty years wheeled mobile robots
(WMRs) have become increasingly important in settings
that range from shopping centers, hospitals, warehouses,
and nuclear waste facilities for applications such as secur-
ity, transportation, inspection, planetary exploration, etc.
This increased demand for WMRs has led to a greater
research interest in the areas of electromechanical design,
sensor integration techniques, path planning, and control
design. As noted in Canudas de Wit and Sordalen (1992),
and Fierro and Lewis (1997), control research for non-
holonomic systems (i.e., the family of mechanical systems
which includesWMRs as special cases) has been centered

around the tracking problem (which includes the geomet-
ric `path-planninga problem as a subset) and the stabiliz-
ation problem. It has also been noted that the tracking
problem can be solved with standard nonlinear control
techniques; however, many researchers (d'AndreH a-Novel,
Campion & Bastin, 1995; Canudas de Wit & Sordalen,
1992; Lamiraux & Laumond, 1998; Samson, 1990) have
pointed out that the problem of stabilization about
a "xed point is more challenging due to the structure of
the governing di!erential equations (i.e., the control
problem cannot be solved via a smooth, time-invariant
state feedback law due to the implications of Brockett's
(1983) condition. With this technical obstacle in mind,
researchers have proposed controllers that utilize discon-
tinuous control laws, piecewise continuous control laws,
smooth time-varying control laws, or a hybrid form of
the previous controllers to achieve setpoint regulation.
For an in-depth review of the previous work, the interest-
ed reader is referred to Kolmanovsky and McClamroch
(1995), M'Closkey and Murray (1997), Samson (1990),
and the references therein. For brevity and for illumina-
ting the motivation for this work, we con"ne our review
to a much smaller subset of papers.
In Samson (1990), a smooth time-varying feedback

controller that could be utilized to asymptotically stabil-
ize a mobile robot about a point was presented. The
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work in Samson (1990) led to the development of smooth
time-varying controllers for a more general class of sys-
tem (see e.g., Coron & Pomet, 1992; Pomet, 1992; Teel,
Murray & Walsh, 1995). In Bloch, Reyhanoglu and
McClamroch (1992), a piecewise analytic control struc-
ture for regulating nonholonomic systems to a setpoint
was developed. In Canudas de Wit and Sordalen (1992),
a piecewise smooth controller was constructed to expo-
nentially stabilize a WMR to a setpoint; however, due to
the control structure, the orientation of the WMR is not
arbitrary. More recently, in Samson (1997), globally
asymptotically stabilizing feedback controllers for a gen-
eral class of nonholonomic systems in chained form were
developed and a detailed discussion on the convergence
issue was provided. In M'Closkey and Murray (1997),
a set of su$cient conditions for generating Lipschitz
continuous �-exponential stabilizers from smooth
asymptotic stabilizers for a general class of driftless sys-
tems was developed. In Godhavn and Egeland (1997),
a local, continuous feedback control law with time-peri-
odic terms that �-exponentially stabilized nonholonomic
systems in the power form was constructed. Motivated
by the desire to remove the exact model knowledge
dependence of the aforementioned controllers, Dong and
Huo (1997) proposed an adaptive control solution for
chained nonholonomic systems with unknown constant
inertia e!ects (also see Jiang & Pomet, 1996). In Jiang
and Nijmeijer (1997), a reference robot tracking control-
ler was proposed; however, the tracking control problem
does not reduce to the regulation problem. Recently,
Escobar, Ortega and Reyhanoglu (1998) illustrated how
the "eld-oriented controller which has been derived for
induction motors can be redesigned to exponentially
stabilize a nonholonomic double integrator control
problem (e.g., Heisenberg #ywheel). Unfortunately, the
controller presented in Escobar et al. (1998) exhibited
singularities in either the double integrator state or the
output variable.
In this paper, we illustrate how the previously designed

controller for the induction motor control problem given
in Dawson, Hu and Vedagharba (1995) can be recon-
"gured to globally exponentially regulate a WMR to any
constant setpoint. In contrast with Escobar et al. (1998),
the proposed controller does not exhibit any singular-
ities. In contrast, with much of the previous work on
nonholonomic systems, the proposed controller does not
utilize explicit sinusoidal terms in the feedback control-
ler; rather, a dynamic oscillator with a tunable frequency
of oscillation is constructed. Roughly speaking, the fre-
quency of oscillation is used as auxiliary control input to
cancel odious terms during the Lyapunov analysis. While
the control synthesis and the error system development
are slightly more involved than some of the previously
designed controllers for the WMR problem, the stability
analysis is straightforward, which involves simple
Lyapunov arguments and yields a global exponential

result for the transformed kinematic model. Since the
proposed kinematic controller is di!erentiable, the stan-
dard backstepping technique can be directly applied to
incorporate the dynamic model into the overall control
design. It is worth noting that the exponential kinematic
controllers given in Astol" (1996), Bloch et al. (1992), and
Escobar et al. (1998) are not di!erentiable and, therefore,
it is unclear how they can also be extended to incorporate
the dynamic model via the standard backstepping pro-
cedure. The paper is organized as follows. In Section 2,
we transform the kinematic model of the WMR into
a form which resembles the induction motor model. In
Section 3, we present the di!erentiable, time-varying
control law, the corresponding closed-loop error system,
and the stability analysis for the kinematic model de-
veloped in Section 2. Concluding remarks are presented
in Section 4.

2. Kinematic problem formulation

The kinematic equations of motion of the center of
mass (COM) of a WMR under the nonholonomic con-
straint of pure rolling and nonslipping can be written as
follows:

q� "S(q)v, (1)

where q� (t)3R�, de"ned as

q� (t)"[x�
�

y�
�

�Q ]�, (2)

represents the time derivative of q(t)3R�, v(t)3R� is
a vector of linear and angular velocities of the WMR
denoted by v

�
(t)3R� and �Q (t)3R�, respectively, as

follows:

v"[v
�

v
�
]�"[v

�
�Q ]�, (3)

x�
�
(t), y�

�
(t)3R� represent the time derivative of the

Cartesian position of the COM denoted by x
�
(t),

y
�
(t)3R�, and the transformation matrix S(q)3R��� is

de"ned as

S(q)"�
cos � 0

sin � 0

0 1�. (4)

In order to express the WMR model in a form that is
more amenable to the subsequent control design and
stability analysis, we de"ne the following new variables,
denoted by z(t)"[z

�
(t) z

�
(t)]�3R� and w(t)3R�, which

are related to the Cartesian position/orientation of the
COM via the following transformation:

[z(t) w(t)]�"¹[x� (t) y� (t) �I (t)]�, (5)
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where the transformation matrix ¹3R��� is de"ned as

¹"�
0 0 1

cos � sin � 0

!�I cos �#2 sin � !�I sin �!2 cos � 0�. (6)

x� (t), y� (t), �I (t)3R� are de"ned as the di!erence between
the actual Cartesian position/orientation of the COM
and the desired constant position/orientation setpoints,
denoted by x

��
, y

��
, �

�
3R�, as follows

x� "x
�
!x

��
, y� "y

�
!y

��
, �I "�!�

�
. (7)

After taking the time derivative of (5), and using (1)}(7),
we have the following transformed kinematic equations:

�
w�

z�
�

z�
�
�"�

z
�
u
�
!z

�
u
�

u
�

u
�

�, (8)

where the new variable, denoted by u(t)"[u
�
(t),

u
�
(t)]�3R�, is de"ned as follows:

u
�
"v

�
,

u
�
"v

�
!v

�
(x� sin �!y� cos �).

(9)

Finally, we rewrite the expression given in (8) in the
following compact form:

w� "u�J�z,

z� "u,
(10)

where J3R��� is a constant, skew-symmetric matrix
de"ned as follows:

J"�
0 !1

1 0�. (11)

3. Kinematic control development

Our control objective is to design an exponentially
regulating controller for the WMR kinematic model
given by (10). To this end, we de"ne an auxiliary error
signal z� (t)3R� as the di!erence between the subsequently
designed auxiliary signal z

�
(t)3R� and the transformed

variable z(t) de"ned in (5) as follows:

z� "z
�
!z. (12)

3.1. Control formulation

Based on the kinematic equations given in (10) and the
subsequent stability analysis, we design u(t) given in (10)

as follows:

u"u
�
!kz, (13)

where k'0 is a design parameter and the control term
u
�
(t)3R� is de"ned as

u
�
"�

kw

��
�
�Jz

�
#�

�
z
�
. (14)

The oscillator-like signal z
�
(t) in (12) and (14) is generated

by the following initial-value di!erential equation:

z�
�
"�Q

�
�
�

z
�
#�

kw

��
�

#w�
��Jz

�
, (15)

z�
�
(0)z

�
(0)"��

�
(0)

and the auxiliary terms �
�
(t), �

�
(t)3R� in (14) and (15)

are de"ned as

�
�
"k#�Q

�
�
�

#kw�

��
�

, (16)

�
�
"�

�
exp(!�

�
t) (17)

where �
�
, �

�
'0 are design parameters.

Remark 1. Based on the de"nition of �
�
(t) in (17), there

appear to be potential singularities in the auxiliary terms
given by (14), (15), and (16). That is, since �

�
(t) goes to

zero exponentially fast, the terms contained in (14)}(16),

kw

��
�

Jz
�
,

kw�

��
�

z
�
,

kw�

��
�

Jz
�
, (18)

appear to be unbounded as tPR. However, in the
subsequent stability analysis we demonstrate that the
potential singularities are always avoided provided
certain gain conditions are met.

Remark 2. Motivation for the structure of (15) is
obtained by taking the time derivative of z�

�
(t)z

�
(t) as

follows:

d

dt
(z�

�
z
�
)"2z�

��
�Q
�

�
�

z
�
#�

kw

��
�

#w�
��Jz

��, (19)

where (15) has been utilized. After noting that the matrix
J of (11) is skew symmetric, we can rewrite (19) as follows

d

dt
(z�

�
z
�
)"2

�Q
�

�
�

z�
�
z
�
. (20)

As a result of the selection of the initial conditions given
in (15), the unique solution to (20) must be ��

�
(t), i.e.,

z�
�
(t)z

�
(t)"��z

�
(t)���"��

�
(t) ∀ t50, (21)

where �� ) �� stands for the standard Euclidean norm.
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3.2. Error system development

We begin the closed-loop error system formulation
by substituting (13) for u(t) in the open-loop expression
for w(t) given in (10) and then adding/subtracting u�

�
Jz

�
to the right-hand side of the resulting expression
to obtain

w� "!u�
�
Jz

�
#u�

�
Jz� , (22)

where (12) and the skew symmetry of J de"ned in (11)
have been used. After substituting (14) for only the "rst
occurrence of u

�
(t) in (22), we obtain the "nal closed-loop

expression for w(t) as follows:

w� "!kw#u�
�
Jz� , (23)

where (21), the skew symmetry of J de"ned in (11), and
the fact that J�J"I

�
have been used. (Note that

I
�
denotes the two by two identity matrix.) To determine

the closed-loop error system for z� (t), we take the time
derivative of (12) and then substitute (10) and (15) to
obtain

z�� "�Q
�

�
�

z
�
#�

kw

��
�

#w�
��Jz

�
!u. (24)

After substituting (13) for u(t) and then substituting (14)
into the resulting expression, we have

z�� "�Q
�

�
�

z
�
#�

kw

��
�

#w�
��Jz

�

!�
kw

��
�
�Jz

�
!�

�
z
�
#kz. (25)

After substituting (16) for only the second occurrence of
�

�
(t), cancelling common terms, and then rearranging

the resulting expression, we have

z�� "!kz� #wJ��
kw

��
�
�Jz

�
#�

�
z
��, (26)

where (12) and the fact that JJ"!I
�
have been used.

Since the bracketed term in (26) is equal to u
�
(t) de"ned in

(14), we can now obtain the closed-loop error system for
z� (t) as follows:

z�� "!kz� #wJu
�
. (27)

3.3. Stability analysis

Theorem 1. Given the closed-loop system of (23) and (27),
the position/orientation setpoint error dexned in (7) is
globally exponentially regulated in the sense that

�x� (t)�, �y� (t)�, ��I (t)�4	
�
exp(!	

�
t) (28)

provided the control parameters �
�
and k are selected as

follows:

k'�
�
, (29)

where 	
�
3R� is a positive constant that depends on the

initial conditions of the system, and 	
�
3R� is a positive

constant that is independent of the initial conditions of the
system.

Proof. To prove Theorem 1, we de"ne the following
nonnegative and radially unbounded function:

<(w(t), z� (t))"�
�
w�#�

�
z� �z� . (30)

After taking the time derivative of (30), making substitu-
tions for (23) and (27) and then cancelling common terms,
we obtain

<Q (w(t), z� (t))"!kw�!kz� �z� #u�
�
Jz� w#z� �Ju

�
w. (31)

After noting that J�"!J (see (11)), we can rewrite
<Q (w(t), z� (t)) of (31) as follows:

<Q (w(t), z� (t))"!2k<(w(t), z� (t)). (32)

Based on (30) and (32), it is evident that standard
Lyapunov arguments (Slotine & Li, 1991) can be utilized
to conclude that

<(w(t), z� (t))"<(w(0), z� (0)) exp(!2kt) (33)

and thus,

��
(w(t), z� (t))��"��
(w(0), z� (0))�� exp(!kt), (34)

where 
(w(t), z� (t))3R� is de"ned as


"[w(t), z� (t)]�. (35)

In view of (12), (21), (34), and (35), we can conclude that
w(t), z� (t), z(t), z

�
(t)3L

�
. Since w(t) is driven to zero

within the exponential envelope given in (34), it can be
clearly seen that if the su$cient condition given in (29)
holds then the potential singularities discussed in
Remark 1 are always avoided. Speci"cally, if the condi-
tion given in (29) is satis"ed then the terms given in (18)
can be upper bounded by the following exponentially
decaying bounds:

k�
�
exp(!(k!�

�
)t),

k��
�
exp(!(2k!�

�
)t), (36)

k��
�
exp(!(3k!�

�
)t),

respectively. Based on this fact, we can now use standard
signal chasing arguments to show that u(t), u

�
(t), z�

�
(t),

�
�
(t)3L

�
.

To show that the Cartesian position/orientation of the
COMde"ned in (1) are bounded, we note that it is easy to
show that the inverse transformation for (5) is given by

�
x�

y�

�I �"�
0 �

�
(�I sin �#2 cos �) �

�
sin �

0 !�
�
(�I cos �!2 sin �) !�

�
cos �

1 0 0 ��
z
�

z
�
w�. (37)
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Since z(t)3L
�
, we can see from (37) that �I (t)3L

�
(and

hence �(t)3L
�
). Since w(t), z(t), �I (t)3L

�
, we can see

from (37) that x� (t), y� (t)3L
�
(and hence x

�
(t), y

�
(t)3L

�
).

To show that the linear and angular velocities de"ned in
(3) are bounded, it is easy to show that the inverse
transformation for (9) is given by

v
�
"u

�
,

v
�
"u

�
#u

�
(x� sin �!y� cos �).

(38)

Since u(t), x� (t), y� (t)3L
�
, we can see from (38) that

v(t)3L
�
; therefore, it follows from (1)}(4) that �Q (t), x�

�
(t),

y�
�
(t)3L

�
. Standard signal chasing arguments can now

be used to show that all of the remaining signals in the
control and the system are bounded during closed-loop
operation.
In order to prove (28), we apply the triangle inequality

to (12) to obtain the following exponential bound for z(t):

��z(t)��4��z� (t)��#��z
�
(t)��

4��
(w(0),z� (0))��exp(!kt)#�
�
exp(!�

�
t), (39)

where (17), (21), and (34) have been utilized. The main
result given by (28) now directly follows from (34), (37),
and (39). �

Remark 3. Given (13)}(18), (21), (36) and (39), it is a triv-
ial matter to explicitly upper bound the control input u(t)
by the following inequality:

��u(t)��4�
�
(k#�

�
)exp(!�

�
t)

#k��
(w(0), z� (0))��
�
�

exp(!(k!�
�
)t)

#k��
(w(0), z� (0))��
�
�

exp(!(2k!�
�
)t)

#k��
(w(0), z� (0))��exp(!kt)

#k�
�
exp(!�

�
t). (40)

Remark 4. Note that the stability result given in (28)
depends on the states of the system approaching zero
exponentially fast. However, in practice the states will
not equal zero due to measurement errors, noise, etc. In
order to provide for robustness, the proposed controller
is modi"ed in Dixon, Dawson, Zergeroglu and Zhang,
(2000): however, the modi"ed controller forces the regu-
lation errors to an arbitrarily small neighborhood about
the origin (i.e., globally uniformly ultimately bounded)
rather than exponentially forcing the regulation errors to
zero as illustrated in (28).

Remark 5. Note that based on the di!erentiable nature
of the proposed kinematic controller, it is straightfor-

ward to utilize standard backstepping techniques to in-
corporate the e!ects of the dynamic model (see Dixon,
Dawson, Zhang & Zergeroglu, 1999 for explicit details).
In addition, we note that to employ the standard back-
stepping technique the kinematic control input u(t) de-
"ned in (9) is required to be di!erentiable, and hence, it is
not clear how the non-di!erentiable controllers present-
ed in Astol" 1996), Bloch and Drakunov (1996) and
Escobar et al. (1998) can be extended via standard back-
stepping techniques to incorporate the e!ects of the dy-
namic model in the control design.

Remark 6. A discussion and simulation results regarding
a comparative analysis between the proposed kinematic
controller and the kinematic controllers given in
M'Closkey and Murray (1997), Samson (1997), and Teel
et al. (1995) are given in Dixon et al. (1999).

4. Conclusion

In this paper, we utilized our previous experience in the
"eld of induction motor control to design a new di!eren-
tiable time-varying controller for the stabilization prob-
lem for the wheeled mobile robot. Through the use of
a dynamic oscillator and a Lyapunov stability analysis,
we prove that the controller exponentially regulates the
WMR to any "xed setpoint. It should be noted that in
addition to the WMR problem, the kinematic portion of
the proposed controller can be applied to other non-
holonomic systems (for several other examples of kin-
ematic systems the proposed controller can exponentially
stabilize about a point see, Bloch et al. (1992)). It should
also be pointed out that the exponential result presented
in this paper allows one to utilize existing Lyapunov
control design tools to provide enhancements to the
proposed control structure. Speci"cally, in Dixon et al.
(2000), we illustrate how the controller can be redesigned
to provide for robustness against uncertainty in the dy-
namic model.
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