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Abstract

In this paper, a continuous estimator strategy is utilized to asymptotically identify the six degree-of-freedom velocity of a moving object
using a single fixed camera. The design of the estimator is facilitated by the fusion of homography-based techniques with Lyapunov
design methods. Similar to the stereo vision paradigm, the proposed estimator utilizes different views of the object from a single camera
to calculate 3D information from 2D images. In contrast to some of the previous work in this area, no explicit model is used to describe
the movement of the object; rather, the estimator is constructed based on bounds on the object’s velocity, acceleration, and jerk.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Often in an engineering application, one is tempted to use
a camera to determine the velocity of a moving object. How-
ever, as stated inGhosh, Jankovic, and Wu (1994), the use
of a camera requires one to interpret the motion of a three-
dimensional (3D) object through two-dimensional (2D) im-
ages provided by the camera. That is, the primary problem
is that 3D information is compressed or nonlinearly trans-
formed into 2D information; hence, techniques or methods
must be developed to obtain 3D information despite the fact
that only 2D information is available. To address the iden-
tification of the object’s velocity (i.e., the motion parame-
ters), many researchers have developed various approaches.
For example, if a model for the object’s motion is known,
an observer can be used to estimate the object’s velocity
(Ghosh & Loucks, 1996). In Rizzi and Koditchek (1996), a
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window position predictor for object tracking was utilized.
In Hashimoto and Noritsugu (1996), an observer for esti-
mating the object velocity was utilized; however, a descrip-
tion of the object’s kinematics must be known. InGhosh,
Inaba, and Takahashi (2000), the problem of identifying the
motion and shape parameters of a planar object undergoing
Riccati motion was examined in great detail. InKoivo and
Houshangi (1991), an autoregressive discrete-time model
was used to predict the location of features of a moving ob-
ject. InAllen, Timcenko, Yoshimi, and Michelman (1992),
trajectory filtering and prediction techniques were utilized
to track a moving object. Some of the work (Tsai & Huang,
1984) involved the use of camera-centered models that com-
pute values for the motion parameters at each new frame to
produce the motion of the object. InBroida and Chellappa
(1991)andShariat and Price (1990), object-centered mod-
els were utilized to estimate the translation and the center
of rotation of the object. InWaxman and Duncan (1986),
the motion parameters of an object were determined via a
stereo vision approach.
While it is difficult to make broad statements concerning

much of the previous work on velocity identification, it
does seem that a good amount of effort has been focused on
developing system theory-based algorithms to estimate the
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object’s velocity or compensate for the object’s velocity as
part of a feedforward control scheme. For example, one
might assume that object kinematics can be described as
follows:

ẋ = Y (x)�, (1)

wherex(t), ẋ(t) denote the object’s position vector and ob-
ject’s velocity vector, respectively,Y (x) denotes a known
regression matrix, and� denotes an unknown, constant vec-
tor. As illustrated inGhosh, Xi, and Tarn (1999), the object
model of (1) can be used to describe many types of object
motion (e.g., constant-velocity, and cyclic motions). Ifx(t)
is measurable, it is easy to imagine how adaptive control
techniques (Slotine & Li, 1991) can be utilized to formu-
late an adaptive update law that could compensate for un-
known effects represented by the parameter� for a typical
control problem. In addition, ifx(t) is persistently exciting,
one might be able to also show that the unknown parameter
� could be identified asymptotically. In a similar manner,
robust control strategies or learning control strategies could
be used to compensate for unknown object kinematics un-
der the standard assumptions for these types of controllers
(Messner, Horowitz, Kao, & Boals, 1991; Qu, 1998).
While the above control techniques provide different

methods for compensating for unknown object kinemat-
ics, these methods do not seem to provide much help with
regard to identifying the object’s velocity if not much is
known about the motion of the object. That is, from a sys-
tems theory point of view, one must develop a method of
asymptotically identifying a time-varying signal with as
little information as possible. This problem is made even
more difficult because the sensor being used to gather the
information about the object is a camera, and as mentioned
before, the use of a camera requires one to interpret the
motion of a 3D object from 2D images. To attack this
double-loaded problem, we fuse homography-based tech-
niques with a Lyapunov synthesized estimator to asymptot-
ically identify the object’s unknown velocity.1 Similar to
the stereo vision paradigm, the proposed approach uses dif-
ferent views of the object from a single camera to calculate
3D information from 2D images. The homography-based
techniques are based on fixed camera work presented in
Chen, Behal, Dawson, and Fang (2003), which relies on the
camera-in-hand work presented inMalis, Chaumette, and
Bodet (1999). The continuous, Lyapunov-based estimation
strategy has its roots in an example developed inQu and
Xu (2002) and the general framework developed inXian,
De Queiroz, and Dawson (2004). The only requirements
on the object are that its velocity, acceleration, and jerk be
bounded, and that a single geometric length between two
feature points on the object be known a priori.

1 The object’s six degree-of-freedom translational and rotational ve-
locity is asymptotically identified.
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Fig. 1. Coordinate frame relationships.

2. Geometric model

To facilitate the subsequent object velocity identification
problem, four target points located on an object denoted by
Oi ∀i = 1, 2, 3, 4 are considered to be coplanar2 and not
collinear. Based on this assumption, consider a fixed plane,
denoted by�∗, that is defined by a reference image of the
object. In addition, let� represent the motion of the plane
containing the object feature points (seeFig. 1). To develop
a relationship between the planes, an inertial coordinate sys-
tem, denoted byI, is defined where the origin coincides
with the center of a fixed camera. The 3D coordinates of the
target points on� and�∗ can be, respectively, expressed in
terms ofI

m̄i(t)�[xi(t) yi(t) zi(t)]
T, (2)

m̄∗
i�

[
x∗
i y∗

i z∗i
]T
, (3)

under the standard assumption that the distances from the
origin ofI to the target points remains positive (i.e.,zi(t),
z∗i > ε, whereε is an arbitrarily small positive constant).
Orthogonal coordinate systemsF andF∗ are attached to
� and�∗, respectively, where the origin of the coordinate
systems coincides with the object (seeFig. 1). To relate
the coordinate systems, letR(t), R∗ ∈ SO(3) denote the
rotation betweenF andI, andF∗ andI, respectively,
and let xf (t), x∗

f ∈ R3 denote the respective translation
vectors expressed in the coordinates ofI. As also illustrated
in Fig. 1, n∗ ∈ R3 denotes the constant normal to the plane
�∗ expressed in the coordinates ofI, si ∈ R3 denotes the

2 It should be noted that if four coplanar target points are not available
then the subsequent development can exploit the classic eight-points
algorithm (Malis & Chaumette, 2000) with no four of the eight target
points being coplanar.
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constant coordinates of the target points located on the object
reference frame, and the constant distanced∗ ∈ R from I
toF∗ along the unit normal is given by

d∗ = n∗Tm̄∗
i . (4)

The subsequent development is based on the assumption that
the constant coordinates of one target pointsi is known. For
simplicity and without loss of generality, we assume that the
coordinates1 is known (i.e., the subsequent development re-
quires a single geometric length between two feature points
on the object be known a priori).
From the geometry between the coordinate frames de-

picted inFig. 1, the following relationships can be developed

m̄i = xf + Rsi, (5)

m̄∗
i = x∗

f + R∗si . (6)

After solving (6) for si and then substituting the result-
ing expression into (5), the following relationships can be
obtained:

m̄i = x̄f + R̄m̄∗
i , (7)

whereR̄(t) ∈ SO(3) andx̄f (t) ∈ R3 are new rotational and
translational variables, respectively, defined as follows:

R̄ = R(R∗)T, x̄f = xf − R̄x∗
f . (8)

From (4), it is easy to see how the relationship in (7) can
now be expressed as follows:

m̄i =
(
R̄ + x̄f

d∗ n
∗T

)
m̄∗
i . (9)

Remark 1. The subsequent development requires that the
constant rotation matrixR∗ be known. This is considered
to be a mild assumption since the constant rotation matrix
R∗ can be obtained a priori using various methods (e.g., a
second camera, Euclidean measurements, etc.).

3. Euclidean reconstruction

The relationship given by (9) provides a means for formu-
lating a translation and rotation error betweenF andF∗.
Since the Euclidean position ofF andF∗ cannot be di-
rectly measured, a method for calculating the position and
rotational error using pixel information is developed in this
section (i.e., pixel information is the measurable quantity as
opposed tom̄i(t) andm̄∗

i ). To this end, the normalized 3D
task–space coordinates of the points on� and�∗ can be, re-
spectively, expressed in terms ofI asmi(t), m∗

i ∈ R3, as
follows:

mi�
m̄i

zi
=

[
xi

zi

yi

zi
1

]T
, (10)

m∗
i�
m̄∗
i

z∗i
=

[
x∗
i

z∗i

y∗
i

z∗i
1

]T
. (11)

The rotation and translation between the normalized coordi-
nates can now be related through a Euclidean homography,
denoted byH(t) ∈ R3×3, as follows:

mi = z∗i
zi︸︷︷︸
�i

(R̄ + x̄h(n
∗)T)︸ ︷︷ ︸

H

m∗
i , (12)

where �i (t) ∈ R denotes a depth ratio, and̄xh(t) ∈ R3

denotes a scaled translation vector that is defined as follows:

x̄h = x̄f

d∗ . (13)

In addition to having a task–space coordinate as described
previously, each target pointOi , O∗

i will also have a pro-
jected pixel coordinate expressed in terms ofI, denoted by
ui(t), vi(t), u

∗
i , v

∗
i ∈ R, that is respectively defined as an

element ofpi(t), p∗
i ∈ R3, as follows:

pi = [ui vi 1]T, p∗
i = [

u∗
i v

∗
i 1

]T
. (14)

The projected pixel coordinates of the target points are re-
lated to the normalized task-space coordinates by the fol-
lowing pin-hole lens models (Faugeras, 2001):

pi = Ami, p∗
i = Am∗

i , (15)

where A ∈ R3×3 is a known, constant, and invert-
ible intrinsic camera calibration matrix. After substi-
tuting (15) into (12), the following relationship can be
developed:

pi = �i (AHA−1)︸ ︷︷ ︸
G

p∗
i , (16)

whereG(t) = [gij (t)] ∀i, j = 1,2,3 ∈ R3×3 denotes a
projective homography. After normalizingG(t) by divid-
ing through by the elementg33(t), which is assumed to be
nonzero without loss of generality, the projective relation-
ship in (16) can be expressed as follows:

pi = �ig33Gnp
∗
i , (17)

whereGn(t) ∈ R3×3 denotes the normalized projective ho-
mography. From (17), a set of 12 linear equations given by
the 4 target point pairs(p∗

i , pi(t)) with 3 equations per tar-
get pair can be used to determineGn(t) and �i (t)g33(t).
Based on the fact that the intrinsic calibration matrixA is
assumed to be known, (16) and (17) can be used to deter-
mine the productg33(t)H(t). By utilizing various techniques
(Faugeras & Lustman, 1988; Zhang & Hanson, 1995), the
productg33(t)H(t) can be decomposed into rotational and
translational components as in (12). Specifically, the scale
factorg33(t), the rotation matrixR̄(t), the unit normal vec-
tor n∗, and the scaled translation vector denoted byx̄h(t)

can all be computed from the decomposition of the product
g33(t)H(t). Since the product�i (t)g33(t) can be computed
from (17), andg33(t) can be determined through the decom-
position of the productg33(t)H(t), the depth ratio�i (t) can
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be also be computed. Based on the assumption thatR∗ is
known and the fact that̄R(t) can be computed from the ho-
mography decomposition, (8) can be used to computeR(t).
Hence,R(t), R̄(t), x̄h(t), n∗,and the depth ratio�i (t) are all
known signals that can be used in the subsequent estimator
design.

4. Object kinematics

Based on information obtained from the Euclidean recon-
struction, the object kinematics are developed in this sec-
tion. To develop the translation kinematics for the object,
ev(t) ∈ R3 is defined to quantify the translation ofF with
respect to the fixed coordinate systemF∗ as follows:

ev = pe − p∗
e. (18)

In (18), pe(t) ∈ R3 denotes the following extended image
coordinates (Malis et al., 1999) of an image point3 on� in
terms of the inertial coordinate systemI:

pe = [u1 v1 ln (z1)]
T, (19)

where ln(·) denotes the natural logarithm, andp∗
e ∈ R3

denotes the following extended image coordinates of the
corresponding image point on�∗ in terms ofI:

p∗
e = [

u∗
1 v

∗
1 ln

(
z∗1

)]T
, (20)

The first two elements ofev(t) are directly measured from
the images. By exploiting standard properties of the natural
logarithm, it is clear that the third element ofev(t) is equiv-
alent to− ln (�1); hence,ev(t) is a known signal since�1(t)
is computed during the Euclidean reconstruction. After tak-
ing the time derivative of (18), the following translational
kinematics can be obtained (see Appendix A for further
details):

ėv = ṗe = �1
z∗1
AeLv[ve − R[s1]×RT�e], (21)

where ve(t), �e(t) ∈ R3 denote theunknownlinear and
angular velocity of the object expressed inI, respectively.
In (21),Ae ∈ R3×3 is defined as follows:

Ae = A−
[0 0 u0
0 0 v0
0 0 0

]
, (22)

whereu0, v0 ∈ R denote the pixel coordinates of the princi-
pal point (i.e., the image center that is defined as the frame
buffer coordinates of the intersection of the optical axis

3Any point Oi on � can be utilized in the subsequent development;
however, to reduce the notational complexity, we have elected to select
the image pointO1, and hence, the subscript 1 is utilized in lieu ofi in
the subsequent development.

with the image plane), and the auxiliary Jacobian-like ma-
trix Lv(t) ∈ R3×3 is defined as

Lv =



1 0 −x1

z1

0 1 −y1
z1

0 0 1


 . (23)

To develop the rotation kinematics for the object,e�(t) ∈
R3 is defined using the angle axis representation (Spong &
Vidyasagar, 1989) to quantify the rotation ofF with respect
to the fixed coordinate systemF∗ as follows:

e��u(t)�(t). (24)

In (24),u(t) ∈ R3 represents a unit rotation axis, and�(t) ∈
R denotes the rotation angle aboutu(t) that is assumed to
be confined to the following region:

−�< �(t)<�. (25)

After taking the time derivative of (24), the following
expression can be obtained (see Appendix A for further
details):

ė� = L��e. (26)

In (26), the Jacobian-like matrixL�(t) ∈ R3×3 is defined as

L� = I3 − �
2
[u]× +


1− sinc(�)

sinc2
(

�
2

)

 [u]2×, (27)

where[u]× denotes the 3× 3 skew-symmetric form ofu(t)
and

sinc(�(t))�sin �(t)
�(t)

.

Remark 2. The structure of (18)–(20) is motivated by the
fact that developing the object kinematics using partial pixel
information clarifies the influence of the camera intrinsic
calibration matrix. By observing the influence of the intrin-
sic calibration parameters, future efforts might be directed
at developing an estimator strategy that is robust to these
parameters. Since the intrinsic calibration matrix is assumed
to be known in this paper, the estimator strategy could also
be developed based solely on reconstructed Euclidean infor-
mation (e.g.,x̄h(t), R̄(t)).

Remark 3. As stated inSpong and Vidyasagar (1989), the
angle axis representation in (24) is not unique, in the sense
that a rotation of−�(t) about−u(t) is equal to a rotation of
�(t) aboutu(t). A particular solution for�(t) andu(t) can
be determined as follows (Spong & Vidyasagar, 1989):

�p = cos−1
(
1

2
(tr(R̄)− 1)

)
, [up]× = R̄ − R̄T

2 sin(�p)
, (28)
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where the notation tr(·) denotes the trace of a matrix and
[up]× denotes the 3× 3 skew-symmetric form ofup(t).
From (28), it is clear that

0��p(t)��. (29)

While (29) is confined to a smaller region than�(t) in (25),
it is not more restrictive in the sense that

up�p = u�. (30)

The constraint in (29) is consistent with the computa-
tion of [u(t)]× in (28) since a clockwise rotation (i.e.,
−���(t)�0) is equivalent to a counterclockwise rotation
(i.e., 0��(t)��) with the axis of rotation reversed. Hence,
based on (30) and the functional structure of the object
kinematics, the particular solutions�p(t) andup(t) can be
used in lieu of�(t) andu(t) without loss of generality and
without confining�(t) to a smaller region. Since, we do not
distinguish between rotations that are off by multiples of
2�, all rotational possibilities are considered via the param-
eterization of (24) along with the computation of (28).

Remark 4. By exploiting the fact thatu(t) is a unit vector
(i.e.,‖u‖2 = 1), the determinant ofL�(t) can be derived as
follows (Malis & Chaumette, 2002):

detL� = 1

sinc2(�/2)
. (31)

From (31), it is clear thatL�(t) is only singular for multiples
of 2� (i.e., out of the assumed workspace).

5. Velocity identification

5.1. Objective

The objective in this paper is to develop an estimator
that can be used to identify the translational and rotational
velocity of an object expressed inI, denoted byv(t) =[
vTe �T

e

]T ∈ R6. To facilitate this objective, the object kine-
matics are expressed in the following compact form:

ė = Jv, (32)

where the Jacobian-like matrixJ (t) ∈ R6×6 is defined as

J =
[ �1
z∗1
AeLv −�1

z∗1
AeLvR[s1]×RT

0 L�

]
, (33)

where (21) and (26) were utilized, ande(t) = [eTv eT�]T ∈
R6. The subsequent development is based on the assump-
tion thatv(t) of (32) is bounded and is second order differ-
entiable with bounded derivatives. It is also assumed that if
v(t) is bounded, then the structure of (32) ensures thate(t)

is bounded. From (32), (33), and the previous assumptions,
it is clear that ife(t), v(t) ∈ L∞, then from (32) we can
see thaṫe(t) ∈ L∞. We can differentiate (32) to show that

ë(t),
...
e(t) ∈ L∞; hence, we can use the previous assump-

tions to show that

|ëi (t)| + |...e i(t)|��i , ∀i = 1,2, . . . ,6, (34)

where�i ∈ R are known positive constants.
Based on the error system for the object kinematics given

in (32) and the inequalities in (34), an estimator is designed
in the next section to ensure that

‖ẽ(t)‖, ‖˙̃e(t)‖ → 0 ast → ∞, (35)

where the observation error signalẽ(t) ∈ R6 is defined as
follows:

ẽ = e − ê, (36)

where ê(t) ∈ R6 denotes a subsequently designed esti-
mate fore(t). Once the result in (35) is obtained, additional
development is provided that provesv(t) can be exactly
identified.

5.2. Estimator development

To facilitate the following analysis, we define a filtered
observation error, denoted byr(t) ∈ R6, as follows (Slotine
& Li, 1991):

r = ˙̃e + ẽ. (37)

After taking the time derivative of (37), the following ex-
pression can be obtained

ṙ = ë − ¨̂e + ˙̃e. (38)

Based on subsequent analysis,ê(t) is generated from the
following differential expression:

˙̂e = �̂, (39)

where�̂(t) ∈ R6 is defined as follows4 :

�̂(t)=
∫ t

t0

(K + I6)ẽ(�)d�

+
∫ t

t0

	 sgn(ẽ(�))d� + (K + I6)ẽ(t), (40)

whereK,	 ∈ R6×6 are positive definite constant diagonal
gain matrices,I6 ∈ R6×6 denotes the 6×6 identity matrix,t0
is the initial time, and the notation sgn(ẽ) denotes the stan-
dard signum function applied to each element of the vector
ẽ(t). After taking the time derivative of (39) and substituting
the resulting expression into (38), the following expression
is obtained:

ṙ = ë − (K + I6)r − 	 sgn(ẽ)+ ˙̃e, (41)

where the time derivative of (40) was utilized.

4 The structure of the estimator is motivated by the previous work in
Xian et al. (2004)that was inspired by an example inQu and Xu (2002).
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5.3. Analysis

Theorem 1. The estimator defined in(39) and (40) can
be used to obtain the objective given in(35) provided the
elements of the estimator gain	 is selected as follows:

	i >�i , ∀i = 1,2, . . . ,6, (42)

where	i is the ith diagonal element in the gain matrix	,
and�i are introduced in(34).

Proof. To prove Theorem 1, a non-negative function, de-
noted byV (t) ∈ R, is defined as follows:

V�1
2 r

Tr + 1
2 ẽ

Tẽ + P, (43)

where the auxiliary functionP(t) ∈ R is defined as follows:

P(t)�
b −
∫ t

t0

L(�)d�, (44)

where
b, L(t) ∈ R are auxiliary terms defined as follows:


b�
6∑
i=1

	i |ẽi (t0)| − ẽT(t0)ë(t0) L�rT[ë − 	 sgn(ẽ)].

(45)

In Appendix B, the auxiliary functionP(t) introduced in
(43) is proven to be non-negative (i.e.,P(t)�0) provided the
sufficient condition given in (42) is satisfied.After taking the
time derivative of (43), the following expression is obtained:

V̇ = rT[ë − (K + I6)r − 	 sgn(ẽ)+ ˙̃e] + ˙̃eTẽ − L. (46)

The expression in (46) can be rewritten as follows:

V̇ = −(K + I6)‖r‖2 + ‖r‖2 − ‖ẽ‖2, (47)

where (37) and (45) were utilized. After simplifying (47) as
follows:

V̇ � −K‖r‖2, (48)

it is clear from (43) thatr(t), ẽ(t), P(t) ∈ L∞ and that
r(t) ∈ L2 (Dixon, Behal, Dawson, & Nagarkatti, 2003).
Based on the fact thatr(t) ∈ L∞, linear analysis techniques
(Dixon et al., 2003) can be used to determine that˙̃e(t) ∈
L∞. Sinceẽ(t), ˙̃e(t) ∈ L∞, (36), (39), and the assumption
thate(t), ė(t) ∈ L∞ can be used to determine thatê(t), ˙̂e(t),
�̂(t) ∈ L∞. Also, sinceë(t), r(t), ẽ(t),˙̃e(t) ∈ L∞, (41) can
be used to determine thatṙ(t) ∈ L∞. Based on the fact that
r(t) ∈ L∞ ∩L2 andṙ(t) ∈ L∞, Barbalat’s Lemma (Slotine
& Li, 1991) can be used to prove that

‖r(t)‖ → 0 ast → ∞. (49)

Given (49), linear analysis techniques (Dixon et al.,
2003) can be used to determine that the result in (35) is
obtained. �

Remark 5. Notice from (37), (41) and (44) that the dif-
ferential equations describing the closed-loop system has a
discontinuous right-hand side:

˙̃e = −ẽ + r, (50)

ṙ = ë − (K + I6)r − 	 sgn(ẽ)+ ˙̃e, (51)

Ṗ = −rT[ë − 	 sgn(ẽ)]. (52)

Let � := [ẽTrTP ]T andg(�, t) : R6×R6×R�0 → R13 de-
note the right-hand side of (50)–(52). Since the above proof
requires that a solution exist for�̇ = g(�, t), it is important
that we comment on the existence of solutions to (50)–(52).
To this end, we follow the arguments used (Polycarpou &
Ioannou, 1993; Qu, 1998) to discuss the existence of Fil-
ippov’s generalized solution to (50)–(52). First, note that
g(�, t) is continuous except in the set{(�, t)|ẽ = 0}. Let
G(�, t) be a compact, convex, upper semicontinuous set-
valued map that embeds the differential equation�̇=g(�, t)
into the differential inclusionṡ� ∈ G(�, t). From Theorem
2.7 of Qu (1998), we then know that an absolute contin-
uous solution exists tȯ� ∈ G(�, t) that is a generalized
solution to �̇ = g(�, t). A common choice forG(�, t) that
satisfies the above conditions is the closed convex hull of
g(�, t) (Polycarpou & Ioannou, 1993; Qu, 1998). A proof
that this choice forG(�, t) is upper semicontinuous is given
in Gutman (1979).

Theorem 2. Given the results in(35), the object velocity

expressed inI (i.e., v(t) = [
vTe �T

e

]T
) can be exactly de-

termined provided the result in(35) is obtained and a sin-
gle geometric length between two feature points(i.e., s1) is
known.

Proof. Given the result in (35), the definition given in (36)
can be used to determine that

˙̂ei(t) → ėi (t) as t → ∞, ∀i = 1,2, . . . ,6. (53)

Based on (53), the definition in (39) can be used to conclude
that

�̂i (t) → ˙̂ei(t) as t → ∞, ∀i = 1,2, . . . ,6. (54)

Hence, (32) and (54) can be used to conclude that

�̂i (t) → (J v)i as t → ∞, ∀i = 1,2, . . . ,6. (55)

From the result in (55), it is clear that the object velocity can
be identified sinceJ (t) of (33) is known and is invertible.
Each element ofJ (t) is known with the possible exception
of the constant depth related parameterz∗1.
To illustrate that the constantz∗1 is known, consider the

following alternate representation forx∗
f

x∗
f = [diag(�̄1 − �̄2)+ R̄]−1[diag(�̄1 − �̄2)R

∗ − R]s1,
(56)
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where

�̄1 = [diag(m∗
1)]−1n∗T m∗

1x̄h �̄2 = [diag(m∗
1)]−1 m1

�1
(57)

and

m∗
1 = x∗

f

z∗1
+ R∗ s1

z∗1
. (58)

Sincem∗
1 andx

∗
f can be computed, andR∗ and s1 are as-

sumed to be known, (58) can be used to solve forz∗1. �

Remark 6. Given thatR∗ is assumed to be a known rotation
matrix, it is straightforward to prove that the object velocity
expressed inF can be determined from the object velocity
expressed inI.

6. Simulation results

A software-based simulator was developed in order to test
the performance of the velocity observer. A planar object
with four markers for feature points was chosen as the body
undergoing motion. The velocity of the object along each of
its six degrees of freedom was set to the following:

vi = 0.2 sin(t) ∀i = 1,2, . . . ,6. (59)

The coordinates of the feature points1 in the object’s coor-
dinate frameF∗ was[−0.1 0.1 0.01]T. The object’s refer-
ence positionx∗

f and orientationR∗ relative to the camera
were selected as follows:

x∗
f = [0 0 2]T, (60)

R∗ =
[1 0 0
0 −1 0
0 0 −1

]
. (61)

Note that in a practical implementation of this algorithm
only R∗ needs to be known andx∗

f is not required. Based
on calibration parameters from an existing CCD camera, the
camera intrinsic calibration matrixA was chosen to be the
following:

A=
[1268.16 0 257.49

0 1267.50 253.10
0 0 1

]
. (62)

The simulator operated at the sampling frequency of 1 kHz.
The algorithm performed best with estimator gains selected
through trial and error as follows:

K = diag(300,300,200,15,15,15),

	 = diag(100,100,10,1,1,1). (63)

Fig. 2depicts the velocity error along each of the six degrees
of freedom as obtained fromJ−1�̂ for the chosen estima-
tor gains. Four feature points were used in this simulation
to estimate the normalized homography matrixGn and the
scale factor�ig33.
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Fig. 2. Velocity estimation error along each of the six degrees of freedom.

6.1. Simulation discussion

While the numerical simulation provides an example of
the performance of the velocity estimator, several issues
must be considered for a practical implementation. The per-
formance of the algorithm depends on the accuracy of esti-
mation of the homography matrix since the Euclidean space
information utilized in the object kinematics is obtained from
decomposition of this matrix. Therefore inaccuracies in de-
termining the location of a feature from one frame to the
next frame (i.e., feature tracking) will lead to errors in the
construction and decomposition of the homography matrix,
leading to errors in the velocity estimation. Inaccuracies in
determining the feature point coordinates in an image is a
similar problem faced in numerous sensor-based feedback
applications (e.g., noise associated with a force/torque sen-
sor). Practically, errors related to sensor inaccuracies can
often be addressed with an ad hoc filter scheme or other
mechanisms (e.g., an intelligent image processing and fea-
ture tracking algorithm, redundant feature points and an op-
timal homography computation algorithm such asKanatani,
Ohta, & Kanazawa, 2000). Despite the discrete nature of the
sensor feedback in this and other applications, the algorithm
design and analysis is often performed in the continuous
time domain. Motivation for this simplification is due to the
problematic and open issues related to the development of
discrete Lyapunov analysis methods.
For this estimation strategy, the type of feature point used

is only relevant to the specific application. For example,
artificial markers such as skin tags typically employed in
the animation and biomechanics literature could be used,
or natural features (doorway frame, corners of an object,
etc.) could be used when coupled with an appropriate im-
age processing algorithm. In essence, the performance of the
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proposed velocity estimator will be improved by using an
advanced feature tracking algorithm (i.e., the ability to ac-
curately identify the image–space coordinates of an object
feature in a single and in successive frames).

7. Conclusions

In this paper, we presented a continuous estimator strat-
egy that can be utilized to asymptotically identify the six
degree-of-freedom velocity of a moving object using a sin-
gle fixed camera. The design of the estimator is based on
a novel fusion of homography-based vision techniques and
Lyapunov control design tools. The only requirements on
the object are that its velocity and first two time deriva-
tives be bounded, and that a single geometric length between
two feature points on the object be known a priori. Some
of the practical applications of this technique are measure-
ment of vibrations in flexible structures and estimation of
motion in free-form bodies. It provides all the advantages
non-contact measurement techniques can offer, most impor-
tantly the ability to work with hostile or delicate structures
in a variety of environments. Future work will concentrate
on the ramifications of the proposed estimator for other vi-
sion based applications.
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Appendix A. Rotational and translational kinematics

Based on the previous definitions for�e(t) andR(t), the
following property can be determined (Spong &Vidyasagar,
1989):

[�e]× = ṘRT. (A.1)

From (8) and (A.1), the following relationship can be
determined

[�e]× = ˙̄RR̄T. (A.2)

While several parameterizations can be used to expressR̄(t)

in terms ofu(t) and �(t), the open-loop error system for
e�(t) is derived based on the following exponential param-
eterization (Spong & Vidyasagar, 1989):

R̄ = I3 + sin �[u]× + 2 sin2
�
2
[u]2×, (A.3)

where the notationIi denotes ani × i identity matrix, and
the notation[u]× denotes the skew–symmetric matrix form

of u(t). To facilitate the development of the open-loop dy-
namics fore�(t), the expression developed in (A.2) can be
used along with (A.3) and the time derivative of (A.3), to
obtain the following expression:

[�e]× = sin �[u̇]× + [u]×�̇ + (1− cos�)[[u]×u̇]×, (A.4)

where the following properties were utilized (Felippa, 2000;
Malis, 1998)

[u]×
 = −[


]
×u, (A.5)

[u]2× = uuT − I3, (A.6)

[u]×uuT = 0 (A.7)

[u]×[u̇]×[u]× = 0, (A.8)

[[u]×u̇]× = [u]×[u̇]× − [u̇]×[u]×. (A.9)

To facilitate further development, the time derivative of (24)
is determined as follows:

ė� = u̇� + u�̇. (A.10)

By multiplying (A.10) by (I3 + [u]2×), the following
expression can be obtained:

(I3 + [u]2×)ė� = u�̇, (A.11)

where (A.6) and the following properties were utilized:

uTu= 1, uTu̇= 0. (A.12)

Likewise, by multiplying (A.10) by−[u]2× and then utilizing
(A.12) the following expression is obtained

−[u]2×ė� = u̇�. (A.13)

From the expression in (A.4), the properties given in
(A.5), (A.10), (A.11), (A.13), and the fact that sin2 � =
1
2(1− cos 2�), we can obtain the following expression:

�e = L−1
� ė�, (A.14)

whereL�(t) is defined in (27). After multiplying both sides
of (A.14) byL�(t), the object kinematics given in (26) can
be obtained.
To develop the open-loop error system forev(t), the time

derivative of (18) is obtained as follows:

ėv = ṗe − ṗ∗
e = 1

z1
AeLv ˙̄m1. (A.15)

After taking the time derivative of (5),̇̄m1(t) can be deter-
mined as follows:

˙̄m1 = ve + [�e]×Rs1. (A.16)

After utilizing (A.5) and the following property (Felippa,
2000):

[Rs1]× = R[s1]×RT, (A.17)
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the expression in (A.16) can be expressed as follows:

˙̄m1 = ve − R[s1]×RT�e. (A.18)

After substituting (A.18) into (A.15), the object kinematics
given in (21) can be obtained.

Appendix B. Proof of non-negativity of auxiliary function
P(t)

In (43), the functionP(t) is required to be non-negative.
To prove thatP(t)�0, the definition ofr(t) given in (37)
is substituted into the definition ofL(t) given in (45), and
the result is integrated to obtain the following expression:∫ t

t0

L()d =
∫ t

t0

˙̃eT()ë()d

−
∫ t

t0

˙̃eT()	 sgn(ẽ())d

+
∫ t

t0

ẽT()(ë()− 	 sgn(ẽ()))d.

(B.1)

After integrating the first integral of (B.1) by parts and eval-
uating the second integral, the following expression can be
obtained:∫ t

t0

L()d = ẽT(t)ë(t)− ẽT(t0)ë(t0)−
6∑
i=1

	i |ẽi (t)|

+
6∑
i=1

	i |ẽi (t0)| +
∫ t

t0

ẽT () ë () d

−
∫ t

t0

ẽT()(
...
e()+ 	 sgn(ẽ()))d.

(B.2)

The expression in (B.2) can be upper bounded as follows:∫ t

t0

L()d�
6∑
i=1

	i |ẽi (t0)| − ẽT(t0)ë(t0)

+
6∑
i=1

(|ëi (t)| − 	i )|ẽi (t)|

+
∫ t

t0

6∑
i=1

|ẽi ()||ëi ()|d

+
∫ t

t0

6∑
i=1

|ẽi ()|(|...e i()| − 	i )d. (B.3)

If 	 is chosen according to (42), then (B.3) can be upper
bounded by
b of (45); henceP(t)�0.
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