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a b s t r a c t

In a typical adaptive update law, the rate of adaptation is generally a function of the state feedback error.
Ideally, the adaptive update law would also include some feedback of the parameter estimation error.
The desire to include some measurable form of the parameter estimation error in the adaptation law
resulted in the development of composite adaptive update laws that are functions of a prediction error
and the state feedback. In all previous composite adaptive controllers, the formulation of the prediction
error is predicated on the critical assumption that the system uncertainty is linear in the uncertain
parameters (LP uncertainty). The presence of additive disturbances that are not LP would destroy the
prediction error formulation and stability analysis arguments in previous results. In this paper, a new
prediction error formulation is constructed through the use of a recently developed Robust Integral of
the Sign of the Error (RISE) technique. The contribution of this design and associated stability analysis is
that the prediction error can be developed even with disturbances that do not satisfy the LP assumption
(e.g., additive bounded disturbances). A composite adaptive controller is developed for a general MIMO
Euler–Lagrange systemwithmixed structured (i.e., LP) and unstructured uncertainties. A Lyapunov-based
stability analysis is used to derive sufficient gain conditions under which the proposed controller yields
semi-global asymptotic tracking. Experimental results are presented to illustrate the approach.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Adaptive, robust adaptive, and function approximation meth-
ods typically use tracking error feedback to update the adaptive
estimates. In general, the use of the tracking error is motivated by
the need for the adaptive update law to cancel cross-terms in the
closed-loop tracking error systemwithin a Lyapunov-based analy-
sis. As the tracking error converges, the rate of the update law also
converges, but drawing conclusions about the convergent value
(if any) of the parameter update law is problematic. Ideally, the
adaptive update law would include some estimate of the param-
eter estimation error as a means to prove the parameter estimates
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converge to the actual values; however, the parameter estimate er-
ror is unknown. The desire to include some measurable form of
the parameter estimation error in the adaptation law resulted in
the development of adaptive update laws that are driven, in part,
by a prediction error (Middleton & Goodwin, 1988; Morse, 1980;
Pomet & Praly, 1988; Sastry & Isidori, 1989; Slotine & Li, 1991) and
also Q-modification techniques (Volyanskyy, Calise, & Yang, 2006;
Volyanskyy, Haddad, & Calise, 2008).
The prediction error is defined as the difference between the

predicted parameter estimate value and the actual system uncer-
tainty. Including feedback of the estimation error in the adaptive
update law enables improved parameter estimation. For example,
some classic results (Krstic, Kanellakopoulos, & Kokotovic, 1995;
Krstic & Kokotovic, 1995; Slotine & Li, 1991) have proven the pa-
rameter estimation error is square integrable and that the param-
eter estimates may converge to the actual uncertain parameters.
Since the prediction error depends on the unmeasurable system
uncertainty, the swapping lemma (Middleton & Goodwin, 1988;
Morse, 1980; Pomet & Praly, 1988; Sastry & Isidori, 1989; Slo-
tine & Li, 1991) is central to the prediction error formulation.
The swapping technique (also described as input or torque filter-
ing in some literature) transforms a dynamic parametric model
into a static formwhere standard parameter estimation techniques
can be applied. In Krstic and Kokotovic (1995) and Krstic et al.
(1995), a nonlinear extension of the swapping lemma was de-
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rived, which was used to develop the modular z-swapping and x-
swapping identifiers via an input-to-state stable (ISS) controller for
systems in parametric strict feedback form. The advantages pro-
vided by prediction error based adaptive update laws led to sev-
eral results that use either the prediction error or a composite of
the prediction error and the tracking error (cf. Abiko & Hirzinger,
2007; Christoforou, 2007; de Queiroz, Dawson, & Agarwal, 1999;
Mrad & Majdalani, 2003; Wang & Chen, 2001; Zergeroglu, Dixon,
Haste, & Dawson, 1999; Christoforou, 2001 and the references
within).
Although prediction error based adaptive update laws have

existed for approximately two decades, no stability result has
been developed for systems with additive bounded disturbances
with the exception of the result in Bartolini, Ferrara, and Stotsky
(1999). However, Bartolini et al. (1999) considers a linear time
invariant system with disturbances and the prediction error is
defined only in the sliding mode while the resulting stability is
uniformly ultimately bounded (UUB). In general, the inclusion of
disturbances reduces the steady-state performance of continuous
controllers to a UUB result. In addition to a UUB result, the
inclusion of disturbances may cause unbounded growth of the
parameter estimates (Lewis, Abdallah, & Dawson, 1993) for
tracking error-based adaptive update laws without the use of
projection algorithms or other update law modifications such
as σ -modification (Reed & Ioannou, 1989). Problems associated
with the inclusion of disturbances are magnified for control
methods based on prediction error-based update laws because
the formulation of the prediction error requires the swapping
(or control filtering) method. Applying the swapping approach to
dynamics with additive disturbances is problematic because the
unknown disturbance terms also get filtered and included in the
filtered control input. This problemmotivates the question of how
can a prediction error-based adaptive update law be developed for
systems with additive disturbances.
To address this motivating question, a general Euler–Lagrange-

like MIMO system is considered with structured and unstructured
uncertainties, and a gradient-based composite adaptive update
law is developed that is driven by both the tracking error
and the prediction error. The control development is based
on the recent continuous Robust Integral of the Sign of the
Error (RISE) (Patre, MacKunis, Makkar, & Dixon, 2008) technique
that was originally developed in Qu and Xu (2002) and Xian,
Dawson, de Queiroz, and Chen (2004). The RISE architecture is
adopted since this method can accommodate for C2 disturbances
and yield asymptotic stability. For example, the RISE technique
was used in Cai, de Queiroz, and Dawson (2006) to develop
a tracking controller for nonlinear systems in the presence of
additive disturbances and parametric uncertainties. Based on
the well accepted heuristic notion that the addition of system
knowledge in the control structure yields better performance and
reduces control effort, model-based adaptive and neural network
feedforward elements were added to the RISE controller in Patre
et al. (2008) and Patre, MacKunis, Kaiser, and Dixon (2008),
respectively. In comparison to these approaches that used the
RISE method in the feedback component of the controller, the
RISE structure is used in both the feedback and feedforward
elements of the control structure to enable, for the first time,
the construction of a prediction error in the presence of additive
disturbances. Specifically, since the swapping method will result
in disturbances in the prediction error (the main obstacle that
has previously limited this development), an innovative use of
the RISE structure is also employed in the prediction error update
(i.e., the filtered control input estimate). Sufficient gain conditions
are developed under which this unique double RISE controller
guarantees semi-global asymptotic tracking. Experimental results
are presented to illustrate the performance of the proposed
approach.
The paper is organized as follows. Section 2 describes the

dynamic system and the assumptions required for the control
development. Section 3 states the control objective and the defines
the error states. Section 4 presents the control development and
introduces the new RISE-based swapping procedure that is used to
define the prediction error. A Lyapunov-based stability analysis is
shown in Section 5 while Section 6 presents experimental results
that demonstrate improved performance by the proposedmethod.
Conclusions and future work are described in Section 7.

2. Dynamic system

Consider a class of MIMO nonlinear Euler–Lagrange systems of
the following form:

x(m) = f (x, ẋ, . . . , x(m−1))+ G(x, ẋ, . . . , x(m−2))u+ h (t) (1)

where (·)(i) (t) denotes the ith derivative with respect to time,
x(i) (t) ∈ Rn, i = 0, . . . ,m − 1 are the system states, u (t) ∈ Rn
is the control input, f

(
x, ẋ, . . . , x(m−1)

)
∈ Rn and G(x, ẋ, . . . ,

x(m−2)) ∈ Rn×n are unknown nonlinear C2 functions, and h (t) ∈
Rn denotes a general nonlinear disturbance (e.g., unmodeled
effects). Throughout the paper, |·| denotes the absolute value of
the scalar argument, ‖·‖ denotes the standard Euclidean norm for
a vector or the induced infinity norm for a matrix.
The subsequent development is based on the assumption

that all the system states are measurable outputs. Moreover,
the following assumptions will be exploited in the subsequent
development.

Assumption 1. G (·) is symmetric positive definite, and satisfies
the following inequality ∀y(t) ∈ Rn:

g ‖y‖2 ≤ yTG−1y ≤ ḡ(x, ẋ, . . . , x(m−2)) ‖y‖2 (2)

where g ∈ R is a knownpositive constant, and ḡ(x, ẋ, . . . , x(m−2)) ∈
R is a known positive function.

Assumption 2. The functions G−1(·) and f (·) are second order
differentiable such that G−1, Ġ−1, G̈−1, f , ḟ , f̈ ∈ L∞ if x(i) (t) ∈
L∞, i = 0, 1, . . . ,m+ 1.

Assumption 3. The nonlinear disturbance term and its first two
time derivatives (i.e., h, ḣ, ḧ) are bounded by known constants.

Assumption 4. The unknown nonlinearities G−1(·) and f (·) are
linear in terms of unknown constant system parameters (i.e., LP).

Assumption 5. The desired trajectory xd(t) ∈ Rn is assumed to be
designed such that x(i)d (t) ∈ L∞, i = 0, 1, . . . ,m+ 2. The desired
trajectory xd(t) need not be persistently exciting and can be set to
a constant value for the regulation problem.

3. Control objective

The objective is to design a continuous composite adaptive
controllerwhich ensures that the system state x (t) tracks a desired
time-varying trajectory xd(t) despite uncertainties and bounded
disturbances in the dynamic model. To quantify this objective, a
tracking error, denoted by e1(t) ∈ Rn, is defined as

e1 , xd − x. (3)

To facilitate a compact presentation of the subsequent control
development and stability analysis, auxiliary error signals denoted
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by ei (t) ∈ Rn, i = 3, . . . ,m are defined as

e2 , ė1 + α1e1, ei , ėi−1 + αi−1ei−1 + ei−2 (4)

whereαi ∈ R, i = 1, 2, . . . ,m−1 denote constant positive control
gains. The error signals ei (t) , i = 2, 3, . . . ,m can be expressed in
terms of e1 (t) and its time derivatives as

ei =
i−1∑
j=0

bi,je
(j)
1 , bi,i−1 = 1 (5)

where the constant coefficients bi,j ∈ R can be evaluated by
substituting (5) in (4), and comparing coefficients. A filtered
tracking error (Lewis et al., 1993), denoted by r(t) ∈ Rn, is also
defined as

r , ėm + αmem (6)

where αm ∈ R is a positive, constant control gain. The filtered
tracking error r (t) is not measurable since the expression in (6)
depends on x(m).

4. Control development

To develop the open-loop tracking error system, the filtered
tracking error in (6) is premultiplied by G−1 (·), and (5) is used to
yield

G−1r = G−1
m−1∑
j=0

bm,je
(j+1)
1 + G−1αmem. (7)

By separating the last term from the summation, using the fact
that bm,m−1 = 1, and making substitutions from (1) and (3), the
expression in (7) is rewritten as

G−1r = Ydθ + S1 − G−1d h− u. (8)

In (8), the auxiliary function S1
(
x, ẋ, . . . , x(m−1), t

)
∈ Rn is defined

as

S1 , G−1
(
m−2∑
j=0

bm,je
(j+1)
1 + αmem

)
+ G−1x(m)d

−G−1d x
(m)
d − G

−1f + G−1d fd − G
−1h+ G−1d h. (9)

Also in (8), Ydθ ∈ Rn is defined as

Ydθ , G−1d x
(m)
d − G

−1
d fd (10)

where Yd(xd, ẋd, . . . , x
(m)
d ) ∈ Rn×p is a desired regression matrix,

and θ ∈ Rp contains the constant unknown system parameters.
In (10), the functions G−1d (xd, ẋd, . . . , x

(m−2)
d ) ∈ Rn×n and

fd(xd, ẋd, . . . , x
(m−1)
d ) ∈ Rn are defined as

G−1d , G−1(xd, ẋd, . . . , x
(m−2)
d )

fd , f (xd, ẋd, . . . , x
(m−1)
d ).

(11)

4.1. RISE-based swapping

A measurable form of the prediction error ε (t) ∈ Rn is defined
as the difference between the filtered control input uf (t) ∈ Rn and
the estimated filtered control input ûf (t) ∈ Rn as

ε , uf − ûf (12)

where the filtered control input uf (t) ∈ Rn is generated by Slotine
and Li (1991)

u̇f + ωuf = ωu, uf (0) = 0 (13)
where ω ∈ R is a known positive constant, and ûf (t) ∈ Rn is
subsequently designed. The differential equation in (13) can be
directly solved to yield

uf = v ∗ u, v , ωe−ωt (14)
where v (t) ∈ R, and ∗ is used to denote the standard convolution
operation. Using (1), the expression in (14) can be rewritten as

uf = v ∗
(
G−1x(m) − G−1f − G−1h

)
. (15)

Since the system dynamics in (1) include non-LP bounded
disturbances h (t), they also get filtered and included in the filtered
control input in (15). To compensate for the effects of these
disturbances, the typical prediction error formulation is modified
to include a RISE-like structure in the design of the estimated
filtered control input. With this motivation, the structure of the
open-loop prediction error system is engineered to facilitate the
RISE-based design of the estimated filtered control input.
Adding and subtracting the term G−1d x

(m)
d +G

−1
d fd+G

−1
d h to the

expression in (15) and using (10) yields
uf = Ydf θ + v ∗ S − v ∗ Sd + hf (16)

where S(x, ẋ, . . . , x(m)), Sd(xd, ẋd, . . . , x
(m)
d ) ∈ Rn are defined as

S , G−1x(m) − G−1f − G−1h (17)

Sd , G−1d x
(m)
d − G

−1
d fd − G

−1
d h, (18)

the filtered regressormatrix Ydf (xd, ẋd, . . . , x
(m)
d ) ∈ Rn×p is defined

as
Ydf , v ∗ Yd, (19)
and the disturbance hf (t) ∈ Rn is defined as

hf , −v ∗ G−1d h.

The term v ∗ S(x, ẋ, . . . , x(m)) ∈ Rn in (16) depends on x(m). Using
the following property of convolution (Lewis et al., 1993):
g1 ∗ ġ2 = ġ1 ∗ g2 + g1 (0) g2 − g1g2 (0) (20)
an expression independent of x(m) can be obtained. Consider
v ∗ S = v ∗

(
G−1x(m) − G−1f − G−1h

)
which can be rewritten as

v ∗ S = v ∗
(
d
dt
(G−1x(m−1))− Ġ−1x(m−1) − G−1f − G−1h

)
. (21)

Applying the property in (20) to the first term of (21) yields
v ∗ S = Sf +W (22)
where the state-dependent terms are included in the auxiliary
function Sf (x, ẋ, . . . , x(m−1)) ∈ Rn, defined as

Sf , v̇ ∗
(
G−1x(m−1)

)
+ v (0)G−1x(m−1)

− v ∗ Ġ−1x(m−1) − v ∗ G−1f − v ∗ G−1h (23)
and the terms that depend on the initial states are included in
W (t) ∈ Rn, defined as

W , −vG−1
(
x (0) , ẋ (0) , . . . , x(m−2) (0)

)
x(m−1) (0) . (24)

Similarly, following the procedure in (21)–(24), the expression
v ∗ Sd in (16) is evaluated as
v ∗ Sd = Sdf +Wd (25)

where Sdf (xd, ẋd, . . . , x
(m−1)
d ) ∈ Rn is defined as

Sdf , v̇ ∗ (G−1d x
(m−1)
d )+ v (0)G−1d x

(m−1)
d

− v ∗ Ġ−1d x
(m−1)
d − v ∗ G−1d fd − v ∗ G

−1
d h (26)

andWd (t) ∈ Rn is defined as

Wd , −vG−1d (xd (0) , ẋd (0) , . . . , x
(m−2)
d (0))x(m−1)d (0) . (27)

Substituting (22)–(27) into (16), and then substituting the resulting
expression into (12) yields

ε = Ydf θ + Sf − Sdf +W −Wd + hf − ûf . (28)
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4.2. Composite adaptation

The composite adaptation for the adaptive estimates θ̂ (t) ∈ Rp
in (39) is given by

·

θ̂ = Γ Ẏ Td r + Γ Ẏ
T
df ε (29)

where Γ ∈ Rp×p is a positive definite, symmetric, constant gain
matrix and the filtered regressor matrix Ydf (xd, ẋd, . . . , x

(m)
d ) ∈

Rn×p is defined in (19). The update law in (29) depends on
the unmeasurable signal r (t), but the parameter estimates are
independent of r (t) as can be shown by directly solving (29) as
in Zhang, Dawson, de Queiroz, and Dixon (2000).

4.3. Closed-loop prediction error system

Based on (30) and the subsequent analysis, the filtered control
input estimate is designed as

ûf = Ydf θ̂ + µ2 (30)

where µ2 (t) ∈ Rn is a RISE-like term defined as

µ2 (t) ,
∫ t

0
[k2ε(σ )+ β2sgn(ε(σ ))]dσ (31)

where k2, β2 ∈ R denote constant positive control gains. In a
typical prediction error formulation, the estimated filtered control
input is designed to include just the first term Ydf θ̂ in (30). But as
previously discussed, the presence of non-LP disturbances in the
systemmodel results in filtered disturbances in the unmeasurable
form of the prediction error in (28). Hence, the estimated filtered
control input is augmentedwith an additional RISE-like termµ2 (t)
to cancel the effects of disturbances in the prediction error and the
subsequent design and stability analysis. Substituting (30) into (28)
yields the following closed-loop prediction error system:

ε = Ydf θ̃ + Sf − Sdf +W −Wd + hf − µ2 (32)

where θ̃ (t) ∈ Rp denotes the parameter estimate mismatch
defined as

θ̃ , θ − θ̂ . (33)

To facilitate the subsequent composite adaptive control develop-
ment and stability analysis, the time derivative of (32) is expressed
as

ε̇ = Ẏdf θ̃ − YdfΓ Ẏ Tdf ε + Ñ2 + N2B − k2ε − β2sgn(ε) (34)

where (29) is utilized. In (34), the unmeasurable/unknown
auxiliary terms Ñ2(e1, e2, . . . , em, r, t),N2B (t) ∈ Rn are defined
as

Ñ2 , Ṡf − Ṡdf − YdfΓ Ẏ Td r, N2B , Ẇ − Ẇd + ḣf . (35)

In a similar manner as in Xian et al. (2004), the Mean Value
Theorem can be used to develop the following upper bound for the
expression in (35):∥∥∥Ñ2(t)∥∥∥ ≤ ρ2 (‖z‖) ‖z‖ (36)

where the bounding function ρ2(·) ∈ R is a positive, globally
invertible, nondecreasing function, and z(t) ∈ Rn(m+1) is defined
as

z(t) ,
[
eT1 e

T
2 . . . eTm r

T ]T . (37)

Using Assumption 3, and the fact that v (t) is a linear, strictly
proper, exponentially stable transfer function, the following
inequality can be developed based on the expression in (35) with a
similar approach as in Lemma 2 ofMiddleton andGoodwin (1988):

‖N2B(t)‖ ≤ ξ (38)

where ξ ∈ R is a known positive constant.

4.4. Closed-loop tracking error system

Based on the open-loop error system in (8), the control input is
composed of an adaptive feedforward term plus the RISE feedback
term as

u , Ydθ̂ + µ1 (39)

where µ1(t) ∈ Rn denotes the RISE feedback term defined as

µ1 (t) , (k1 + 1)em(t)− (k1 + 1)em(0)

+

∫ t

0
{(k1 + 1)αmem(σ )+ β1sgn(em(σ ))}dσ (40)

where k1, β1 ∈ R are positive constant control gains, and αm ∈ R
was introduced in (6). In (39), θ̂ (t) ∈ Rp denotes a parameter
estimate vector for unknown system parameters θ ∈ Rp,
generated by a subsequently designed gradient-based composite
adaptive update law (Slotine & Li, 1987, 1989; Tang & Arteaga,
1994).
The closed-loop tracking error system can be developed by

substituting (39) into (8) as

G−1r = Ydθ̃ + S1 − G−1d h− µ1. (41)

To facilitate the subsequent composite adaptive control develop-
ment and stability analysis, the time derivative of (41) is expressed
as

G−1 ṙ = −
1
2
Ġ−1r + Ẏdθ̃ − YdΓ Ẏ Tdf ε + Ñ1 + N1B

− (k1 + 1)r − β1sgn(em)− em (42)

where (29) was utilized. In (42), the unmeasurable/unknown
auxiliary terms Ñ1(e1, e2, . . . , em, r, t) and N1B (t) ∈ Rn are
defined as

Ñ1 , −
1
2
Ġ−1r + Ṡ1 + em − YdΓ Ẏ Td r (43)

where (29) was used, and

N1B , −Ġ−1d h− G
−1
d ḣ. (44)

The structure of (42) and the introduction of the auxiliary terms in
(43) and (44) are motivated by the desire to segregate terms that
can be upper bounded by state-dependent terms and terms that
can be upper bounded by constants. In a similar fashion as in (36),
the following upper bound can be developed for the expression in
(43):∥∥∥Ñ1(t)∥∥∥ ≤ ρ1 (‖z‖) ‖z‖ (45)

where the bounding function ρ1(·) ∈ R is a positive, globally
invertible, nondecreasing function, and z(t) ∈ Rn(m+1)was defined
in (37). Using Assumptions 2 and 3, the following inequalities
can be developed based on the expression in (44) and its time
derivative:

‖N1B(t)‖ ≤ ζ1,
∥∥Ṅ1B(t)∥∥ ≤ ζ2 (46)

where ζi ∈ R, i = 1, 2 are known positive constants.
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5. Stability analysis

Theorem 1. The controller given in (39) and (40) in conjunction
with the composite adaptive update law in (29), where the prediction
error is generated from (12), (13), (30) and (31), ensures that all
system signals are bounded under a closed-loop operation and that
the position tracking error and the prediction error are regulated in
the sense that

‖e1(t)‖ → 0 and ‖ε(t)‖ → 0 as t →∞

provided the control gains k1 and k2 introduced in (40) and (31) are
selected sufficiently large based on the initial conditions of the system
(see the subsequent proof), and the following conditions are satisfied:

αm, αm−1 >
1
2
, β1 > ζ1 +

1
αm
ζ2, β2 > ξ (47)

where the gains αm−1 and αm were introduced in (4), β1 was
introduced in (40), β2 was introduced in (31), ζ1 and ζ2 were
introduced in (46), and ξ was introduced in (38).

Proof. Let D ⊂ Rn(m+2)+p+2 be a domain containing y(t) = 0,
where y(t) ∈ Rn(m+2)+p+2 is defined as

y , [ zT εT
√
P1

√
P2 θ̃ T ]

T . (48)

In (48), the auxiliary function P1(t) ∈ R is defined as

P1 (t) , β1
n∑
i=1

|emi(0)| − em(0)TN1B(0)−
∫ t

0
L1(τ )dτ (49)

where emi (0) ∈ R denotes the ith element of the vector em (0), and
the auxiliary function L1(t) ∈ R is defined as

L1 , rT (N1B − β1sgn(em)) (50)

where β1 ∈ R is a positive constant chosen according
to the sufficient condition in (47). Provided the sufficient
condition introduced in (47) is satisfied, the following inequality
is obtained (Xian et al., 2004):∫ t

0
L1(τ )dτ ≤ β1

n∑
i=1

|emi(0)| − em(0)TN1B(0). (51)

Hence, (51) can be used to conclude that P1(t) ≥ 0. Also in (48),
the auxiliary function P2(t) ∈ R is defined as

P2 (t) , −
∫ t

0
L2(τ )dτ (52)

where the auxiliary function L2(t) ∈ R is defined as

L2 , εT (N2B − β2sgn(ε)) (53)

where β2 ∈ R is a positive constant chosen according to the
sufficient condition in (47). Provided the sufficient condition
introduced in (47) is satisfied, then P2(t) ≥ 0.
Let VL(y, t) : D×[0,∞)→ R be a continuously differentiable,

positive definite function defined as

VL(y, t) ,
1
2

m∑
i=1

eTi ei +
1
2
rTG−1r +

1
2
εTε

+ P1 + P2 +
1
2
θ̃ TΓ −1θ̃ (54)

which satisfies the inequalities

U1(y) ≤ VL(y, t) ≤ U2(y) (55)
provided the sufficient conditions introduced in (47) are satis-
fied. In (55), the continuous positive definite functions U1(y),
U2(y) ∈ R are defined as U1(y) , λ1 ‖y‖2 and U2(y) ,
λ2(x, ẋ, . . . , x(m−2)) ‖y‖2, where λ1, λ2(x, ẋ, . . . , x(m−2)) ∈ R are
defined as

λ1 ,
1
2
min

{
1, g, λmin

{
Γ −1

}}
(56)

λ2 , max
{
1
2
ḡ(x, ẋ, . . . , x(m−2)),

1
2
λmax

{
Γ −1

}
, 1
}

where g , ḡ(x, ẋ, . . . , x(m−2)) are introduced in (2), and λmin {·} and
λmax {·} denote the minimum and maximum eigenvalue of the
arguments, respectively.

Remark 1. From (34), (42), (49), (50), (52) and (53), some of the
differential equations describing the closed-loop system for which
the stability analysis is being performed have discontinuous right-
hand sides as

G−1 ṙ = −
1
2
Ġ−1r + Ẏdθ̃ − YdΓ Ẏ Tdf ε + Ñ1 + N1B

− (k1 + 1)r − β1sgn(em)− em (57)

ε̇ = Ẏdf θ̃ − YdfΓ Ẏ Tdf ε + Ñ2 + N2B − k2ε
−β2sgn(ε) (58)

Ṗ1 = −L1 = −rT (N1B − β1sgn(em)) (59)

Ṗ2 = −L2 = −εT (N2B − β2sgn(ε)). (60)

Let f (y, t) ∈ Rn(m+2)+p+2 denote the right-hand side of (57)–(60).
Since the subsequent analysis requires that a solution exists for
ẏ = f (y, t), it is important to show the existence and uniqueness
of the solution to (57), (59) and (60). As described in Polycarpou
and Ioannou (1993) and Qu (1998), the existence of Filippov’s
generalized solution can be established for (57)–(60). First, note
that f (y, t) is continuous except in the set {(y, t) |em = 0}. Let
F (y, t) be a compact, convex, upper semicontinuous set-valued
map that embeds the differential equation ẏ = f (y, t) into the
differential inclusions ẏ ∈ F (y, t). FromTheorem2.7 ofQu (1998),
an absolute continuous solution exists to ẏ ∈ F (y, t) that is a
generalized solution to ẏ = f (y, t). A common choice for F (y, t)
that satisfies the above conditions is the closed convex hull of
f (y, t) (Polycarpou & Ioannou, 1993; Qu, 1998). A proof that this
choice for F (y, t) is upper semicontinuous is given in Gutman
(1979).Moreover, note that the differential equationdescribing the
original closed-loop system (i.e., after substituting (39) into (1))
has a continuous right-hand side; thus, satisfying the condition for
existence of classical solutions.

After using (4), (6), (29), (34), (42), (49), (50), (52) and (53), the
time derivative of (54) can be expressed as

V̇L(y, t) = −
m∑
i=1

αieTi ei + e
T
m−1em − r

T r − k1rT r

+ rT Ẏdθ̃ + rT Ñ1 + rTN1B − rTYdΓ Ẏ Tdf ε

−β1rT sgn(em)+ εT Ẏdf θ̃ + εT Ñ2 + εTN2B
−k2εTε − εTYdfΓ Ẏ Tdf ε − β2ε

T sgn(ε)

− rT (N1B − β1sgn(em))− εTN2B

+ εTβ2sgn(ε)− θ̃ TΓ −1(Γ Ẏ Td r + Γ Ẏ
T
df ε). (61)

After canceling similar terms, using the fact that aTb ≤ 1
2 (‖a‖

2
+

‖b‖2) for some a, b ∈ Rn, and using the following upper bounds∥∥YdΓ Ẏ Tdf ∥∥ ≤ c1, ∥∥YdfΓ Ẏ Tdf ∥∥ ≤ c2
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where c1, c2 ∈ R are positive constants, V̇L(y, t) is upper bounded
using the squares of the components of z(t) as

V̇L(y, t) ≤ −λ3 ‖z‖2 − k1 ‖r‖2 + ‖r‖
∥∥∥Ñ1∥∥∥+ c1 ‖ε‖ ‖r‖

+ ‖ε‖

∥∥∥Ñ2∥∥∥− (k2 − c2) ‖ε‖2 , (62)

where

λ3 , min
{
α1, α2, . . . , αm−2, αm−1 −

1
2
, αm −

1
2
, 1
}
.

Letting k2 = k2a + k2b where k2a, k2b ∈ R are positive constants,
using the inequalities in (36) and (45), and completing the squares,
the expression in (62) is upper bounded as

V̇L(y, t) ≤ −λ3 ‖z‖2 +
ρ2(‖z‖) ‖z‖2

4k
− k2b ‖ε‖2 (63)

where k ∈ R is defined as

k ,
k1 (k2a − c2)

max {k1, (k2a − c2)}
, k2a > c2 (64)

and ρ(·) ∈ R is a positive, globally invertible, nondecreasing
function defined as

ρ2(‖z‖) , ρ21 (‖z‖)+ (ρ2(‖z‖)+ c1)
2 .

The expression in (63) can be further upper bounded by a
continuous, positive semi-definite function

V̇L(y, t) ≤ −U(y) = c
∥∥∥[zT εT ]T∥∥∥2 ∀y ⊂ D (65)

for some positive constant c , where

D ,
{
y (t) ∈ Rn(m+2)+p+2 | ‖y‖ ≤ ρ−1

(
2
√
λ3k

)}
.

Larger values of k will expand the size of the domain D . The
inequalities in (55) and (63) can be used to show that VL(y, t) ∈
L∞ inD; hence, ei(t) ∈ L∞ and ε (t) , r(t), θ̃ (t) ∈ L∞ inD . The
closed-loop error systems can now be used to conclude that all the
remaining signals are bounded in D , and the definitions for U(y)
and z(t) can be used to prove that U(y) is uniformly continuous in
D . Let S ⊂ D denote a set defined as

S ,

{
y(t) ∈ D | U2(y(t)) < λ1

(
ρ−1

(
2
√
λ3k

))2}
. (66)

The region of attraction in (66) can be made arbitrarily large to
include any initial conditions by increasing the control gain k (i.e., a
semi-global stability result). Theorem 8.4 of Khalil (2002) can now
be invoked to state that

c
∥∥∥[zT εT ]T∥∥∥2 → 0 as t →∞ ∀y(0) ∈ S. (67)

Based on the definition of z(t), (67) can be used to show that

‖e1(t)‖ , ‖ε(t)‖ → 0 as t →∞ ∀y(0) ∈ S. � (68)

6. Experiment

A testbed was used to implement the developed controller. The
testbed consists of a circular disc of unknown inertiamounted on a
direct-drive switched reluctance motor. A rectangular nylon block
was mounted on a pneumatic linear thruster to apply an external
friction load to the rotating disk. A pneumatic regulatormaintained
a constant pressure of 20 psi on the circular disk. The dynamics for
the testbed are given as follows:

J q̈+ f (q̇)+ τd(t) = τ(t) (69)
Fig. 1. Tracking error for the proposed composite adaptive control law (RISE + CFF).

Fig. 2. Control torque for the proposed composite adaptive control law (RISE + CFF).

where J ∈ R denotes the combined inertia of the circular disk and
rotor assembly, f (q̇) ∈ R is the nonlinear friction, and τd (t) ∈ R
denotes a general nonlinear disturbance (e.g., unmodeled effects).
The nonlinear friction term f (q̇) is assumed to be modeled as a
continuously differentiable function as described in Makkar, Hu,
Sawyer, and Dixon (2007), Patre et al. (2008). The desired link
trajectory is selected as follows (in degrees):

qd(t) = 60.0 sin(1.2t)(1− exp(−0.01t3)). (70)

Three different experiments were conducted to demonstrate
the efficacy of the proposed controller. For each controller, the
gains were not retuned (i.e., the common control gains remain
the same for all controllers). First, no adaptation was used and
the controller with only the RISE feedback was implemented. For
the second experiment, the prediction error component of the
update law in (29) was removed, resulting in a standard gradient-
based update law (hereinafter denoted as RISE + FF). For the
third experiment, the proposed composite adaptive controller in
(39)–(40) (hereinafter denoted as RISE + CFF) was implemented.
The tracking error is shown in Fig. 1. The control torque is shown
in Fig. 2 and the adaptive estimates are depicted in Fig. 3. Each
experiment was performed five times and the average RMS error
and torque values were calculated. The average RMS tracking error
(in deg) for the RISE controller is 0.219, compared to 0.138 and
0.102 for the RISE + FF and RISE + CFF (proposed), respectively.
The average RMS torques (in Nm) for the respective controllers is
31.75, 32.99, and 32.49,which indicate that the proposedRISE+CFF
controller yields the lowest RMS errorwith a similar control effort.
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Fig. 3. Adaptive estimates for the proposed composite adaptive control law (RISE
+ CFF).

7. Conclusion

A model-based feedforward adaptive component was used in
conjunction with the RISE feedback, where the adaptive estimates
were generated using a composite update law driven by both the
tracking and prediction error with the motivation of using more
information in the adaptive update law. To account for the effects
of non-LP disturbances, the typical prediction error formulation
was modified to include a second RISE-like term in the estimated
filtered control input design. Using a Lyapunov stability analysis,
sufficient gain conditions were derived under which the proposed
controller yields semi-global asymptotic stability. Experiments on
a rotating disk with externally applied friction indicate that the
proposedmethod yields better tracking performancewith a similar
control effort when compared to a typical RISE controller and a
RISE controller with a typical gradient-based feedforward term.
The asymptotic stability for the proposed RISE-based composite

adaptive controller comes at the expense of achieving semi-
global stability which requires the initial condition to be within
a specified region of attraction that can be made larger by
increasing certain gains as subsequently discussed in Section 5.
Development is also provided that proves the prediction error
is square integrable; yet, no conclusion can be drawn about the
convergence of the parameter estimation error due to the presence
of filtered additive disturbances in the prediction error. The current
development, as well as all previous RISE controllers, require full-
state feedback. The development of an output feedback result
remains an open problem. The proposed method uses a gradient-
based composite adaptive lawwith a fixed adaptation gain. Future
efforts could also focus on designing a composite law with least-
squares estimation with time-varying adaptation gain for the
considered class of systems.
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