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a b s t r a c t

A sufficient condition to solve an optimal control problem is to solve the Hamilton–Jacobi–Bellman (HJB)
equation. However, finding a value function that satisfies the HJB equation for a nonlinear system is
challenging. For an optimal control problem when a cost function is provided a priori, previous efforts
have utilized feedback linearization methods which assume exact model knowledge, or have developed
neural network (NN) approximations of the HJB value function. The result in this paper uses the implicit
learning capabilities of the RISE control structure to learn the dynamics asymptotically. Specifically, a
Lyapunov stability analysis is performed to show that the RISE feedback term asymptotically identifies
the unknown dynamics, yielding semi-global asymptotic tracking. In addition, it is shown that the system
converges to a state space system that has a quadratic performance index which has been optimized by
an additional control element. An extension is included to illustrate how a NN can be combined with the
previous results. Experimental results are given to demonstrate the proposed controllers.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control theory involves the design of controllers that
can satisfy some objective while simultaneously minimizing some
performance metric. A sufficient condition to solve an optimal
control problem is to solve the Hamilton–Jacobi–Bellman (HJB)
equation. For the special case of linear time-invariant systems,
the HJB equation reduces to an algebraic Riccati equation (ARE);
however, for nonlinear systems, finding a value function that
satisfies the HJB equation is challenging because it requires the
solution of a partial differential equation that may not have an
explicit solution. If the nonlinear dynamics are exactly known, then
the problem can be reduced to solving an ARE through feedback
linearization methods (cf. Freeman & Kokotovic, 1995; Lu, Sun, Xu,
& Mochizuki, 1996; Nevistic & Primbs, 1996; Primbs & Nevistic,
1996; Sekoguchi, Konishi, Goto, Yokoyama, & Lu, 2002).

Inverse optimal control (see Freeman & Kokotovi’c, 1996; Krstic
& Li, 1998; Krstic & Tsiotras, 1999) is an alternative method to
solve the nonlinear optimal control problem by circumventing the
need to solve the HJB equation. By finding a control Lyapunov
function, which can be shown to also be a value function, an
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optimal controller can be developed that optimizes a derived cost.
In most cases inverse optimal control requires exact knowledge of
the nonlinear dynamics, however inverse optimal adaptive control
(cf. Fausz, Chellaboina, & Haddad, 1997; Lewis, Syrmos, Li, & Krstic,
1995; Luo, Chu, & Ling, 2005) techniques have been developed for
systems with linear in the constant parameters (LP) uncertainty.

Motivated by the desire to eliminate the requirement for
exact knowledge of the dynamics for a direct optimal controller
(i.e., where the cost function is given a priori), (Johansson,
1990) developed a self-optimizing adaptive controller to yield
global asymptotic tracking despite LP uncertainty provided the
parameter estimation error could somehow converge to zero.
In the preliminary work in Dupree, Patre, Wilcox, and Dixon
(2008), we illustrated how a Robust Integral of the Sign of the
Error (RISE) feedback controller could be modified to yield a
direct optimal controller that achieves semi-global asymptotic
tracking. The result in Dupree et al. (2008) exploits the implicit
learning characteristic (Qu & Xu, 2002) of the RISE controller
to asymptotically cancel LP, non-LP uncertainties and additive
disturbances in the dynamics so that the overall control structure
converges to an optimal controller.

Researchers have also investigated the use of the universal
approximation property of neural networks (NNs) to approximate
the LP and non-LP unknown dynamics as a means to develop
direct optimal controllers. Specifically, results such as Abu-Khalaf
and Lewis (2002), Cheng, Li, and Zhang (2006), Cheng and Lewis
(2007), Cheng, Lewis, andAbu-Khalaf (2007), Kimand Lewis (2000)
and Kim, Lewis, and Dawson (2000) find an optimal controller for
a given cost function for a partially feedback linearized system,
and then modify the optimal controller with a NN to approximate
the unknown dynamics. Specifically the tracking errors for the
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NNmethods are proven to be uniformly ultimately bounded (UUB)
and the resulting state space system, for which the HJB optimal
controller is developed, is only approximated.

The contribution in this work, and our preliminary efforts
in Dupree et al. (2008), arise from incorporating optimal control
elements with an implicit learning feedback control strategy
coined the Robust Integral of the Sign of the Error (RISE) method
in Patre, MacKunis, Makkar, and Dixon (2008). The RISE method
is used to identify the system and reject disturbances, while
achieving asymptotic tracking and the convergence of a control
term to the optimal controller. Inspired by the previous work
in Abu-Khalaf and Lewis (2002), Abu-Khalaf, Huang, and Lewis
(2006), Cheng et al. (2006), Cheng and Lewis (2007), Cheng
et al. (2007), Johansson (1990), Kim and Lewis (2000), Kim
et al. (2000) and Lewis (1986) a system in which all terms
are assumed known (temporarily) is feedback linearized and
a control law is developed based on the HJB optimization
method for a given quadratic performance index. Under the
assumption that parametric uncertainty and unknown bounded
disturbances are present in the dynamics, the control law is
modified to contain the RISE feedback term which is used to
identify the uncertainty. A Lyapunov stability analysis indicates
that the RISE feedback term asymptotically identifies the unknown
dynamics (yielding semi-global asymptotic tracking) provided
upper bounds on the disturbances are known and the control
gains are selected appropriately. A distinction in this work is
that the uncertain nonlinear disturbances are asymptotically
identified (rather than UUB), allowing the developed controller to
asymptotically converge to an optimal controller for the residual
uncertain nonlinear system.

An extension is included that investigates the amalgam of
the robust RISE feedback method with NN methods to yield a
direct optimal controller. Combining a NN feedforward controller
with the RISE feedback method yields an asymptotic result (Patre,
MacKunis, Kaiser, & Dixon, 2008), that can also be proven to
converge to an optimal controller through the efforts in this paper.
Hence, a modification to the results in Abu-Khalaf and Lewis
(2002), Cheng et al. (2006), Cheng and Lewis (2007), Cheng et al.
(2007), Kim and Lewis (2000) and Kim et al. (2000) and is provided
that allows for asymptotic tracking and convergence to the optimal
controller.

2. Dynamic model

The class of considered nonlinear dynamic systems is assumed
to be modeled by the following Euler–Lagrange formulation:

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + F(q̇) + τd(t) = τ(t). (1)

In (1), M(q) ∈ Rn×n denotes the generalized inertia matrix,
Vm(q, q̇) ∈ Rn×n denotes the generalized centripetal-Coriolis ma-
trix, G(q) ∈ Rn denotes the generalized gravity vector, F(q̇) ∈ Rn

denotes generalized friction, τd(t) ∈ Rn denotes a general distur-
bance (e.g., unmodeled effects), τ(t) ∈ Rn represents the input
control vector, and q(t), q̇(t), q̈(t) ∈ Rn denote the generalized po-
sition, velocity, and acceleration vectors, respectively. The subse-
quent development is based on the assumption that q(t) and q̇(t)
are measurable and that M(q), Vm(q, q̇),G(q), F(q̇) and τd(t) are
unknown. Moreover, the following assumptions will be exploited
in the subsequent development.

Assumption 1. The inertia matrix M(q) is symmetric, positive
definite, and satisfies the following inequality ∀ξ(t) ∈ Rn:

m1‖ξ‖
2

≤ ξ TM(q)ξ ≤ m̄(q)‖ξ‖
2, (2)

where m1 ∈ R is a known positive constant, m̄(q) ∈ R is a known
positive function, and ‖ · ‖ denotes the standard Euclidean norm.

Assumption 2. The following skew-symmetric relationship is
satisfied:

ξ T (Ṁ(q) − 2Vm(q, q̇))ξ = 0 ∀ξ ∈ Rn. (3)

Assumption 3. If q(t), q̇(t) ∈ L∞, then Vm(q, q̇), F(q̇) and G(q)
are bounded. Moreover, if q(t), q̇(t) ∈ L∞, then the first and
second partial derivatives of the elements of M(q), Vm(q, q̇), G(q)
with respect to q(t) exist and are bounded, and the first and second
partial derivatives of the elements of Vm(q, q̇), F(q̇)with respect to
q̇(t) exist and are bounded.

Assumption 4. The desired trajectory is assumed to be designed
such that qd(t), q̇d(t), q̈d(t),

...
qd(t),

....
q d(t) ∈ Rn exist, and are

bounded.

Assumption 5. The nonlinear disturbance term and its first two
time derivatives, i.e. τd(t), τ̇d(t), τ̈d(t) are bounded by known
constants.

3. Control objective

The control objective is to ensure that the system tracks a
desired time-varying trajectory, denoted by qd(t) ∈ Rn, despite
uncertainties in the dynamic model, while minimizing a given
performance index. To quantify the tracking objective, a position
tracking error, denoted by e1(t) ∈ Rn, is defined as

e1 , qd − q. (4)

To facilitate the subsequent analysis, filtered tracking errors,
denoted by e2(t), r(t) ∈ Rn, are also defined as

e2 , ė1 + α1e1 (5)

r , ė2 + α2e2, (6)

where α1 ∈ Rn×n, denotes a subsequently defined positive
definite, constant, gain matrix, and α2 ∈ R is a positive constant.
The subsequent development is based on the assumption that
q(t) and q̇(t) are measurable, so the filtered tracking error r(t) is
not measurable since the expression in (6) depends on q̈(t). The
error systems are based on the assumption that the generalized
coordinates of the Euler–Lagrange dynamics allowadditive andnot
multiplicative errors.

4. Optimal control design

In this section, a state-space model is developed based on the
tracking errors in (4) and (5). Based on this model, a controller is
developed that minimizes a quadratic performance index under
the (temporary) assumption that the dynamics in (1), including
the additive disturbance, are known. The development in this
section motivates the control design in Section 5, where a robust
controller is developed to identify the unknown dynamics and
additive disturbance.

To develop a state-spacemodel for the tracking errors in (4) and
(5), the inertiamatrix is premultiplied by the time derivative of (5),
and substitutions are made from (1) and (4) to obtain

Mė2 = −Vme2 − τ + h + τd, (7)

where the nonlinear function h(q, q̇, qd, q̇d, q̈d) ∈ Rn is defined as

h , M(q̈d + α1ė1) + Vm(q̇d + α1e1) + G + F . (8)

Under the (temporary) assumption that the dynamics in (1) are
known, the control input can be designed as

τ , h + τd − u, (9)
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where u(t) ∈ Rn is an auxiliary control input that will be designed
to minimize a subsequent performance index. By substituting (9)
into (7) the closed-loop error system for e2(t) can be obtained as

Mė2 = −Vme2 + u. (10)

A time-varying state-space model for (5) and (10) can now be
developed as

ż = A(q, q̇)z + B(q)u, (11)

where A(q, q̇) ∈ R2n×2n, B(q) ∈ R2n×n, and z(t) ∈ R2n are defined
as

A(q, q̇) ,
[
−α1 In×n

0n×n −M−1Vm

]
, B(q) ,


0n×n M−1T

z(t) ,

eT1 eT2

T
where In×n and 0n×n denote an n× n identity matrix and matrix of
zeros, respectively. The quadratic performance index J(u) ∈ R to
be minimized subject to the constraints in (11) is

J(u) =

∫
∞

0


1
2
zTQz +

1
2
uTRu


dt. (12)

In (12), Q ∈ R2n×2n and R ∈ Rn×n are positive definite symmetric
matrices to weight the influence of the states and (partial) control
effort, respectively. Furthermore, the matrix Q can be broken into
blocks as:

Q =

[
Q11 Q12

Q T
12 Q22

]
.

Given the performance index J(u), the control objective is to find
the auxiliary control input u(t) that minimizes (12) subject to the
differential constraints imposed by (11). The optimal control that
achieves this objective is denoted by u∗(t). As stated in Kim and
Lewis (2000) and Kim et al. (2000), the fact that the performance
index is only penalized for the auxiliary control u(t) is practical
since the gravity, Coriolis, and friction compensation terms in (8)
cannot be modified by the optimal design phase.

The controller u∗(t)minimizes (12) subject to (11) if and only if
there exists a value function V (z, t) where

−
∂V
∂t

=
1
2
zTQz +

1
2
u∗TRu∗

+
∂V
∂z

ż

that satisfies the HJB equation (Lewis, Syrmos, Li, & Krstic, 1995)

∂V
∂t

+ min
u

[
H


z, u,

∂V
∂z

, t
]

= 0 (13)

where the Hamiltonian of optimization H(z, u, ∂V
∂z , t) ∈ R is

defined as

H

z, u,

∂V
∂z

, t


=
1
2
zTQz +

1
2
uTRu +

∂V
∂z

ż.

The minimum of (12) is obtained for the optimal controller u(t) =

u∗(t) where the respective Hamiltonian is

H∗
= min

u

[
H


z, u,

∂V
∂z

, t
]

= −
∂V
∂t

. (14)

To facilitate the subsequent development, let P(q) ∈ R2n×2n be a
positive definite symmetric matrix defined as

P(q) =

[
K 0n×n

0n×n M

]
, (15)

whereK ∈ Rn×n denotes a positive definite symmetric gainmatrix.
If α1, R, and K , introduced in (5), (12) and (15), satisfy the following
algebraic relationships

K = −Q12 = −Q T
12 > 0 (16)

Q11 = αT
1K + Kα1, (17)

R−1
= Q22, (18)

then Theorem 1 of Kim and Lewis (2000) and Kim et al. (2000) can
be invoked to prove that P(q) satisfies

zT (PA + ATPT
− PBR−1BTP + Ṗ + Q )z = 0, (19)

and the value function V (z, t) ∈ R

V =
1
2
zTPz (20)

satisfies theHJB equation in (14). Lemma1 of Kim and Lewis (2000)
and Kim et al. (2000) can be used to conclude that the optimal
control u∗(t) that minimizes (12) subject to (11) is

u∗(t) = −R−1BT


∂V (z, t)
∂z

T

= −R−1e2. (21)

Remark 1. An infinite horizon optimal controller for a linear
time-invariant system can be developed by solving an ARE. The
constants that make up the ARE are a state weighting matrix Q
and a control weighting matrix R which come from the typical
quadratic cost functional and can be independently selected.
Solving the infinite horizon optimal controller for the nonlinear
time-varying system in (11) (sufficiently) involves finding the
solution to a more general HJB equation. As described in Kim
et al. (2000) and Kim and Lewis (2000), a solution to the HJB
equation in (13) involves solving the matrix equation in (19).
To solve (19), a strategic choice of P(q) is selected and (3) is
used to reduce the problem to a set of algebraic constraints/gain
conditions. The resulting gain conditions indicate that Q11 can be
selected to weight the output state e1(t), Q12 can be independently
selected to weight the state vector cross terms, and that R can
be independently selected to weight the control vector in the
cost functional. However, for this approach, the weighting matrix
Q22 for the auxiliary state e2(t) is dependent on the control vector
weight matrix (i.e., Q22 = R−1). For alternative methods to
solve the infinite horizon optimal control problem for time-varying
systems see Kirk (2004) and Lewis et al. (1995).

5. RISE feedback control development

In general, the bounded disturbance τd(t) and the nonlinear
dynamics given in (8) are unknown, so the controller given
in (9) cannot be implemented. However, if the control input
contains some method to identify and cancel these effects, then
z(t) will converge to the state space model in (11) so that u(t)
minimizes the respective performance index. As stated in the
introduction, several results have explored this strategy using
function approximation methods such as neural networks, where
the tracking control errors converge to a neighborhood near
the state space model yielding a type of approximate optimal
controller. In this section, a control input is developed that exploits
RISE feedback to identify the nonlinear effects and bounded
disturbances to enable asymptotic convergence to the state space
model.

To develop the control input, the error system in (6) is
premultiplied by M(q) and the expressions in (1), (4) and (5) are
utilized to obtain

Mr = −Vme2 + h + τd + α2Me2 − τ . (22)
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Based on the open-loop error system in (22), the control input
is composed of the optimal control developed in (21), plus a
subsequently designed auxiliary control term µ(t) ∈ Rn as

τ , µ − u. (23)

The closed-loop tracking error system can be developed by
substituting (23) into (22) as

Mr = −Vme2 + h + τd + α2Me2 + u − µ. (24)

To facilitate the subsequent stability analysis the auxiliary function
fd(qd, q̇d, q̈d) ∈ Rn, which is defined as

fd , M(qd)q̈d + Vm(qd, q̇d)q̇d + G(qd) + F(q̇d), (25)

is added and subtracted to (24) to yield

Mr = −Vme2 + h̄ + fd + τd + u − µ + α2Me2, (26)

where h̄(q, q̇, qd, q̇d, q̈d) ∈ Rn is defined as

h̄ , h − fd. (27)

The time derivative of (26) can be written as

Mṙ = −
1
2
Ṁr + Ñ + ND − e2 − R−1r − µ̇ (28)

after strategically grouping specific terms. In (28), the unmeasur-
able auxiliary terms Ñ(e1, e2, r, t), ND(t) ∈ Rn are defined as

Ñ , −V̇me2 − Vmė2 −
1
2
Ṁr +

·

h̄+α2Ṁe2

+ α2Mė2 + e2 + α2R−1e2
ND , ḟd + τ̇d.

Motivation for grouping terms into Ñ(e1, e2, r, t) and ND(t) comes
from the subsequent stability analysis and the fact that the Mean
Value Theorem and Assumptions 3–5 can be used to upper bound
the auxiliary terms as

‖Ñ(t)‖ ≤ ρ(‖y‖)‖y‖, (29)

‖ND‖ ≤ ζ1, ‖ṄD‖ ≤ ζ2, (30)

where y(t) ∈ R3n is defined as

y(t) , [eT1 eT2 rT ]T , (31)

the bounding function ρ(‖y‖) ∈ R is a positive globally invertible
nondecreasing function, and ζi ∈ R (i = 1, 2) denote known
positive constants. Based on (28), the control termµ(t) is designed
based on the RISE framework (see Patre et al., 2008; Qu &Xu, 2002;
Xian, Dawson, de Queiroz, & Chen, 2004) as

µ(t) , (ks + 1)e2(t) − (ks + 1)e2(0) + ν(t) (32)

where ν(t) ∈ Rn is the generalized solution to

ν̇ = (ks + 1)α2e2 + β1sgn(e2),

ks ∈ R is a positive constant control gain, and β1 ∈ R is a
positive control gain selected according to the following sufficient
condition

β1 > ζ1 +
1
α2

ζ2. (33)

The closed loop error systems for r(t) can now be obtained by
substituting the time derivative of (32) into (28) as

Mṙ = −
1
2
Ṁr + Ñ + ND − e2 − R−1r − (ks + 1)r

− β1sgn(e2). (34)

To facilitate the subsequently stability analysis, the control gains
α1 and α2 introduced in (5) and (6), respectively, are selected
according to the sufficient conditions:

λmin(α1) >
1
2

α2 > 1, (35)

where λmin(α1) is the minimum eigenvalue of α1. The control gain
α1 cannot be arbitrarily selected, rather it is calculated using a
Lyapunov equation solver. Its value is determined based on the
value of Q and R. Therefore Q and Rmust be chosen such that (35)
is satisfied.

6. Stability and optimality analysis

Theorem 1. The controller given in (21) and (23) ensures that all
system signals are bounded under closed-loop operation, and the
tracking errors are regulated in the sense that

‖y(t)‖ → 0 as t → ∞ ∀y(0) ∈ S (36)

where the set S can be made arbitrarily large by selecting ks based
on the initial conditions of the system (i.e., a semi-global result). The
boundedness of the closed loop signals and the result in (36) can
be obtained provided the sufficient conditions in (33) and (35) are
satisfied. Furthermore, u(t) converges to an optimal controller that
minimizes (12) subject to (11) provided the gain conditions given
in (16)–(18) are satisfied.

Proof. Let D ⊂ R3n+1 be a domain containing Φ(t) = 0, where
Φ(t) ∈ R3n+1 is defined as

Φ(t) , [yT (t)

O(t)]T . (37)

In (37), the auxiliary function O(t) ∈ R is defined as

O(t) , β1

n−
i=1

|e2i(0)| − e2(0)TND(0) − L(t), (38)

where e2i(0) is equal to the ith element of e2(0) and the auxiliary
function L(t) ∈ R is the generalized solution to

L̇(t) , rT (ND(t) − β1sgn(e2)), (39)

where β1 ∈ R is a positive constant chosen according to the
sufficient conditions in (33). Provided the sufficient conditions
introduced in (33) are satisfied, the following inequality can be
obtained (Xian et al., 2004):

L(t) ≤ β1

n−
i=1

|e2i(0)| − e2(0)TND(0). (40)

Hence, (40) can be used to conclude that O(t) ≥ 0.
Let VL(Φ, t) : D×[0, ∞) → R be a continuously differentiable

positive definite function defined as

VL(Φ, t) , eT1e1 +
1
2
eT2e2 +

1
2
rTM(q)r + O, (41)

which satisfies the following inequalities:

U1(Φ) ≤ VL(Φ, t) ≤ U2(Φ). (42)

In (42), the continuous positive definite functions U1(Φ), and
U2(Φ) ∈ R are defined as U1(Φ) , λ1‖Φ‖

2, and U2(Φ) ,
λ2(q)‖Φ‖

2, where λ1, λ2(q) ∈ R are defined as

λ1 ,
1
2
min{1,m1} λ2(q) , max


1
2
m̄(q), 1


,
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where m1 and m̄(q) are introduced in (2). After taking the time
derivative of (41), and using (5), (6), (34), and substituting for the
time derivative of O(t)

V̇L(Φ, t) = −2eT1α1e1 + 2eT2e1 + rT Ñ(t)

− (ks + 1)rT r − R−1rT r − α2eT2e2. (43)

Based on the fact that

eT2e1 ≤
1
2
‖e1‖2

+
1
2
‖e2‖2, (44)

the expression in (43) can be upper bounded as

V̇L(Φ, t) ≤ rT Ñ(t) − (ks + 1 + λmin(R−1))‖r‖2

− (2λmin(α1) − 1)‖e1‖2
− (α2 − 1)‖e2‖2. (45)

By using (29), the expression in (45) can be rewritten as

V̇L(Φ, t) ≤ −λ3‖y‖2
− [ks‖r‖2

− ρ(‖y‖)‖r‖‖y‖], (46)

where λ3 , min{2λmin(α1)−1, α2 −1, 1+λmin(R−1)}, and α1 and
α2 are chosen according to the sufficient condition in (35). After
completing the squares for the terms inside the brackets in (46),
the following expression can be obtained

V̇L(Φ, t) ≤ −λ3‖y‖2
+

ρ2(‖y‖)‖y‖2

4ks
. (47)

The expression in (47) can be further upper bounded by a
continuous, positive semi-definite function

V̇L(Φ, t) ≤ −U(Φ) = c‖y‖2
∀Φ ∈ D

for some positive constant c , where

D , {Φ ∈ R3n+1
| ‖Φ‖ ≤ ρ−1(2


λ3ks)}.

The inequalities in (42) and (47) can be used to show that
VL(Φ, t) ∈ L∞ in D; hence, e1(t), e2(t), and r(t) ∈ L∞ in
D . Given that e1(t), e2(t), and r(t) ∈ L∞ in D , standard linear
analysis methods can be used to prove that ė1(t), ė2(t) ∈ L∞

in D from (5) and (6). Since e1(t), e2(t), r(t) ∈ L∞ in D , the
assumption that qd(t), q̇d(t), q̈d(t) exist and are bounded can be
used along with (4)–(6) to conclude that q(t), q̇(t), q̈(t) ∈ L∞

in D . Since q(t), q̇(t) ∈ L∞ in D , Assumption 3 can be used to
conclude thatM(q), Vm(q, q̇),G(q), and F(q̇) ∈ L∞ inD . Thus from
(1) and Assumption 4, we can show that τ(t) ∈ L∞ in D . Given
that r(t) ∈ L∞ in D , it can be shown that µ̇(t) ∈ L∞ in D .
Since q̇(t), q̈(t) ∈ L∞ in D , Assumption 3 can be used to show
that V̇m(q, q̇), Ġ(q), Ḟ(q) and Ṁ(q) ∈ L∞ in D; hence, (34) can be
used to show that ṙ(t) ∈ L∞ in D . Since ė1(t), ė2(t), ṙ(t) ∈ L∞ in
D , the definitions for U(y) and z(t) can be used to prove that U(y)
is uniformly continuous in D .

Let S ⊂ D denote a set defined as:

S , {Φ(t) ∈ D | U2(Φ(t)) < λ1(ρ
−1(2


λ3ks))2}. (48)

The region of attraction in (48) can be made arbitrarily large
to include any initial conditions by increasing the control gain
ks (i.e., a semi-global type of stability result) (Xian et al., 2004). The
LaSalle–Yoshizawa Theorem (see Theorem 8.4 of Khalil, 2002) can
now be invoked to state that

c‖y(t)‖2
→ 0 as t → ∞ ∀y(0) ∈ S. (49)

Based on the definition of y(t), (49) can be used to conclude the
results in (36) ∀y(0) ∈ S. From (21), u(t) → 0 as e2(t) → 0,
therefore (26) can be used to conclude that

µ → h̄ + fd + τd as r(t), e2(t) → 0. (50)

From (27), (49) and (50)

µ → h + τd as t → ∞. (51)

Using (51), and comparing (9) to (23) indicates that the dynamics
in (1) converge to the state-space system in (11). Hence,
u(t) converges to an optimal controller thatminimizes (12) subject
to (11) provided the gain conditions given in (16)–(18), (33) and
(35) are satisfied.

7. Neural network extension

The efforts in this section investigate the amalgam of the robust
RISE feedback method with NN methods to yield a direct optimal
controller. These efforts provide a modification to the results
in Abu-Khalaf and Lewis (2002), Cheng et al. (2006), Cheng and
Lewis (2007), Cheng et al. (2007), Kim and Lewis (2000) and Kim
et al. (2000) that allows for asymptotic stability and convergence
to the optimal controller rather than to approximate the optimal
controller.

7.1. Feedforward NN estimation

The universal approximation property indicates that weights
and thresholds exist such that some continuous function f (x) ∈

RN1+1 can be represented by a three-layer NN as (Ge, Hang, &
Zhang, 1999; Lewis, 1999; Lewis, Selmic, & Campos, 2002)

f (x) = W Tσ(V T x) + ε(x). (52)

In (52), V ∈ R(N1+1)×N2 and W ∈ R(N2+1)×n are bounded constant
ideal weight matrices for the first-to-second and second-to-third
layers respectively, whereN1 is the number of neurons in the input
layer, N2 is the number of neurons in the hidden layer, and n is the
number of neurons in the third layer. The activation function in
(52) is denoted by σ(·) : RN1+1

→ RN2+1, and ε(x) : RN1+1
→ Rn

is the functional reconstruction error. Based on (52), the typical
three-layer NN approximation for f (x) is given as (Ge et al., 1999;
Lewis, 1999; Lewis et al., 2002)

f̂ (x) , Ŵ Tσ(V̂ T x), (53)

where V̂ (t) ∈ R(N1+1)×N2 and Ŵ (t) ∈ R(N2+1)×n are subsequently
designed estimates of the ideal weight matrices. The estimate
mismatches for the ideal weight matrices, denoted by Ṽ (t) ∈

R(N1+1)×N2 and W̃ (t) ∈ R(N2+1)×n, are defined as

Ṽ , V − V̂ , W̃ , W − Ŵ ,

and themismatch for the hidden-layer output error for a given x(t),
denoted by σ̃ (x) ∈ RN2+1, is defined as

σ̃ , σ − σ̂ = σ(V T x) − σ(V̂ T x). (54)

Assumption 6. Idealweights are assumed to exist and be bounded
by known positive values so that

‖V‖
2
F = tr(V TV ) ≤ V̄B (55)

‖W‖
2
F = tr(W TW ) ≤ W̄B (56)

where ‖ ·‖F is the Frobenius norm of amatrix, and tr(·) is the trace
of a matrix.

To develop the control input, the error system in (6) is
premultiplied by M(q) and the expressions in (1), (4) and (5) are
utilized to obtain

Mr = −Vme2 + h̄ + fd + τd + α2Me2 − τ , (57)
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where (25) and (27) were used. The auxiliary function fd(qd, q̇d, q̈d)
∈ Rn in (25) can be represented by a three-layer NN as (Ge et al.,
1999; Lewis, 1999; Lewis et al., 2002)

fd = W Tσ(V T xd) + ε(xd). (58)

In the above equation, the input xd(t) ∈ R3n+1 is defined as
xd(t) , [ 1 qTd(t) q̇Td(t) q̈Td(t) ]

T so that N1 = 3n where N1
was introduced in (52). Based on the assumption that the desired
trajectory is bounded, the following inequalities hold

‖ε‖ ≤ εb1 , ‖ε̇‖ ≤ εb2 , ‖ε̈‖ ≤ εb3 , (59)

where εb1 , εb2 , εb3 ∈ R are known positive constants.

7.2. Closed-loop error system

Based on the open-loop error system in (57), the control input
is composed of the optimal control developed in (21), a three-layer
NN feedforward term, plus the RISE feedback term in (32) as

τ , f̂d + µ − u. (60)

The feedforward NN component in (60), denoted by f̂d(t) ∈ Rn, is
defined as

f̂d , Ŵ Tσ(V̂ T xd). (61)

The estimates for the NN weights in (61) are generated on-line
(there is no off-line learning phase) as

·

Ŵ = proj(Γ1σ̂
′

V̂ T ẋdeT2) (62)
·

V̂ = proj(Γ2ẋd(σ̂
′T Ŵe2)T )

where σ
′

(V̂ T x) ≡ dσ(V T x)/d(V T x)|V T x=V̂ T x; Γ1 ∈ R(N2+1)×(N2+1)

and Γ2 ∈ R(3n+1)×(3n+1) are constant, positive definite, symmetric
matrices. In (62), proj(·) denotes a smooth convex projection
algorithm that ensures Ŵ (t) and V̂ (t) remain bounded inside
known bounded convex regions. See Section 4.3 in Dixon, Fang,
Dawson, and Flynn (2003) for further details.

The closed-loop tracking error system is obtained by substitut-
ing (60) into (57) as

Mr = −Vme2 + α2Me2 + fd − f̂d + h̄ + τd + u − µ. (63)

Taking the time derivative of (63) and using (58) and (61) yields

Mṙ = −Ṁr − V̇me2 − Vmė2 + α2Ṁe2 + α2Mė2

+W Tσ
′

V T ẋd −

·

Ŵ T σ̂ − Ŵ T σ̂
′

·

V̂ T xd

− Ŵ T σ̂
′

V̂ T ẋd + ε̇ +

·

h̄+τ̇d + u̇ − µ̇, (64)

where the notations σ̂ and σ̃ are introduced in (54). Adding and
subtracting the termsW T σ̂

′

V̂ T ẋd + Ŵ T σ̂
′

Ṽ T ẋd to (64), yields

Mṙ = −Ṁr − V̇me2 − Vmė2 + α2Ṁe2 + α2Mė2

+ Ŵ T σ̂
′

Ṽ T ẋd + W̃ T σ̂
′

V̂ T ẋd −

·

Ŵ T σ̂

− Ŵ T σ̂
′

·

V̂ T xd + W Tσ
′

V T ẋd − W T σ̂
′

V̂ T ẋd

− Ŵ T σ̂
′

Ṽ T ẋd + ε̇ +

·

h̄+τ̇d + u̇ − µ̇. (65)

By using (21) and theNNweight tuning laws in (62), the expression
in (65) can be rewritten as

Mṙ = −
1
2
Ṁ(q)r + Ñ + N − e2 − R−1r − (ks + 1)r

− β1sgn(e2), (66)

where the unmeasurable auxiliary terms Ñ(e1, e2, r, t), N(Ŵ , V̂ ,

xd, t) ∈ Rn are defined as

Ñ , −
1
2
Ṁr +

·

h̄+e2 + α2R−1e2 − V̇me2 − Vmė2

+ α2Ṁe2 + α2Mė2 − proj(Γ1σ̂
′

V̂ T ẋdeT2)
T σ̂

− Ŵ T σ̂
′

proj(Γ2ẋd(σ̂
′T Ŵe2)T )T xd (67)

N , ND + NB. (68)

In (68), ND(t) ∈ Rn is defined as

ND = W Tσ
′

V T ẋd + ε̇ + τ̇d, (69)

while NB(Ŵ , V̂ , xd) ∈ Rn is further segregated as

NB = NB1 + NB2 , (70)

where NB1(Ŵ , V̂ , xd) ∈ Rn is defined as

NB1 = −W T σ̂
′

V̂ T ẋd − Ŵ T σ̂
′

Ṽ T ẋd, (71)

and the term NB2(Ŵ , V̂ , xd) ∈ Rn is defined as

NB2 = Ŵ T σ̂
′

Ṽ T ẋd + W̃ T σ̂
′

V̂ T ẋd. (72)

Segregating the terms as in (69)–(72) facilitates the development
of theNNweight update laws and the subsequent stability analysis.
For example, the terms in (69) are grouped together because
the terms and their time derivatives can be upper bounded by a
constant and rejected by the RISE feedback, whereas the terms
grouped in (70) can be upper bounded by a constant but their
derivatives are state dependent. The terms in (70) are further
segregated because NB1(Ŵ , V̂ , xd) will be rejected by the RISE
feedback, whereas NB2(Ŵ , V̂ , xd) will be partially rejected by the
RISE feedback and partially canceled by the adaptive update law
for the NN weight estimates.

In a similar manner as in Xian et al. (2004), the Mean Value
Theorem can be used to develop the following upper bound

‖Ñ(t)‖ ≤ ρ(‖y‖)‖y‖, (73)

where y(t) ∈ R3n was defined in (31), and the bounding function
ρ(‖y‖) ∈ R is a positive globally invertible nondecreasing
function. The following inequalities can be developed based on
Assumption 5, (55), (56), (59), (62) and (70)–(72):

‖ND‖ ≤ ζ1 ‖NB‖ ≤ ζ2 ‖ṄD‖ ≤ ζ3 (74)

‖ṄB‖ ≤ ζ4 + ζ5‖e2‖, (75)

where ζi ∈ R (i = 1, 2, . . . , 5) are known positive constants. To
facilitate the subsequent stability analysis, the control gainsα1 and
α2 introduced in (5) and (6), respectively, are selected according to
the sufficient conditions:

λmin(α1) >
1
2

α2 > ζ5 + 1, (76)

and β1 is selected according to the following sufficient conditions:

β1 > ζ1 + ζ2 +
1
α2

ζ3 +
1
α2

ζ4, (77)

where ζi ∈ R, i = 1, 2, . . . , 5 are introduced in (74) and (75), and
β1 was introduced in (32).
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7.3. Stability and optimality analysis

Theorem 2. The nonlinear optimal controller given in (60)–(62) en-
sures that all system signals are bounded under closed-loop operation
and that the position tracking error is regulated in the sense that

‖y(t)‖ → 0 as t → ∞ ∀y(0) ∈ S (78)

where the set S can be made arbitrarily large by selecting ks based
on the initial conditions of the system (i.e., a semi-global result). The
boundedness of the closed loop signals and the result in (78) can
be obtained provided the sufficient conditions in (76) and (77) are
satisfied. Furthermore, u(t) converges to an optimal controller that
minimizes (12) subject to (11) provided the gain conditions given
in (16)–(18) are satisfied.

Proof. Let D ⊂ R3n+2 be a domain containing Φ(t) = 0, where
Φ(t) ∈ R3n+2 is defined as

Φ(t) , [yT (t)

P(t)


G(t)]T . (79)

In (79), the auxiliary function P(t) ∈ R is defined as

P(t) , β1

n−
i=1

|e2i(0)| − e2(0)TN(0) − L(t), (80)

where e2i(0) is equal to the ith element of e2(0) and the auxiliary
function L(t) ∈ R is the generalized solution to

L̇(t) , rT (NB1(t) + ND(t) − β1sgn(e2))

+ ėT2(t)NB2(t) − ζ5‖e2(t)‖2. (81)

Provided the sufficient conditions introduced in (77) are satis-
fied (Xian et al., 2004)

L(t) ≤ β1

n−
i=1

|e2i(0)| − e2(0)TNB(0). (82)

Hence, (82) can be used to conclude that P(t) ≥ 0. The auxiliary
function G(t) ∈ R in (79) is defined as

G(t) =
α2

2
tr(W̃ TΓ −1

1 W̃ ) +
α2

2
tr(Ṽ TΓ −1

2 Ṽ ). (83)

Since Γ1 and Γ2 are constant, symmetric, and positive definite
matrices and α2 > 0, it is straightforward that G(t) ≥ 0.

Let VL(Φ, t) : D×[0, ∞) → R be a continuously differentiable
positive definite function defined as

VL(Φ, t) , eT1e1 +
1
2
eT2e2 +

1
2
rTM(q)r + P + G, (84)

provided the sufficient conditions introduced in (77) are satisfied.
After taking the time derivative of (84), utilizing (5), (6) and (66),
and substituting for the time derivative of P(t) and G(t), V̇L(Φ, t)
can be simplified as

V̇L(Φ, t) = −2eT1α1e1 − (ks + 1)‖r‖2
− rTR−1r2eT2e1

+ rT Ñ(t) − α2‖e2‖2
+ ζ5‖e2(t)‖2

+ α2eT2[Ŵ
T σ̂

′

Ṽ T ẋd + W̃ T σ̂
′

V̂ T ẋd]

+ tr(α2W̃ TΓ −1
1

·

W̃ ) + tr(α2Ṽ TΓ −1
2

·

Ṽ ). (85)

Based on (44) and (62), the expression in (85) can be simplified as

V̇L(Φ, t) ≤ rT Ñ(t) − (ks + 1 + λmin(R−1))‖r‖2

− (2λmin(α1) − 1)‖e1‖2
− (α2 − 1 − ζ5)‖e2‖2. (86)

By using (73), the expression in (86) can be rewritten as

V̇L(Φ, t) ≤ −λ3‖y‖2
− [ks‖r‖2

− ρ(‖y‖)‖r‖‖y‖], (87)

where λ3 , min{2λmin(α1)−1, α2−1−ζ5, 1+λmin(R−1)}; hence,
α1, and α2 must be chosen according to the sufficient condition in
(76). After completing the squares for the terms inside the brackets
in (87), the following expression can be obtained:

V̇L(Φ, t) ≤ −λ3‖y‖2
+

ρ2(‖y‖)‖y‖2

4ks
. (88)

Based on (84) and (88), the same stability arguments from
Theorem 1 can be used to conclude the result in (78). Furthermore,
the result in (78) can be used along with (63) to indicate that

f̂d + µ = h + τd as t → ∞. (89)

Using (89), and comparing (9) to (60) indicates that the dynamics
in (7) converge to the state-space system in (11). Hence,
u(t) converges to an optimal controller thatminimizes (12) subject
to (11) provided the gain conditions given in (16)–(18), (76) and
(77) are satisfied.

8. Experimental results

To examine the performance of the controllers developed in
(23) and (60) an experiment was performed on a two-link robot
testbed. The testbed is composed of a two-link direct drive revolute
robot consisting of two aluminum links, mounted on a 240.0 [Nm]
(base joint) and 20.0 [Nm] (second joint) switched reluctance
motors. The control objective is to track the desired time-varying
trajectory

qd1 = qd2 = 60 sin(2t)(1 − exp(−0.01t3)). (90)

To achieve the control objective, the control gains α2, ks, and β1
defined as scalars in (6) and (32), were implemented (with non-
consequential implications to the stability result) as diagonal gain
matrices. The weighting matrixes for the controllers were chosen
as

Q11 =

[
40 2
2 40

]
, Q12 =

[
−4 4
4 −6

]
Q22 = diag


4, 4


,

which using (16)–(18) yielded the following values for K , α1, and
R

K =

[
4 −4

−4 6

]
, α1 =

[
15.6 10.6
10.6 10.4

]
R = diag


0.25, 0.25


.

The remaining control gains for both controllers were selected as

α2 = diag

60, 35


, β1 = diag


5, 0.1


ks = diag


140, 20


.

The neural network update law weights were selected as

Γ1 = 25I11 Γ2 = 25I7.

For all experiments, the rotor’s velocity signal is obtained by
applying a standard backwards difference algorithm to the position
signal. The integral structure for the RISE term in (32) was
computed on-line via a standard trapezoidal algorithm. In addition,
all the states were initialized to zero. Each experiment was
performed ten times, and data from the experiments is displayed
in Table 1. Figs. 1 and 2 depict the tracking errors and control
torques for one experimental trial for the optimal RISE controller.
Figs. 3 and 4 depict the tracking errors and control torques for one
experimental trial for the optimal NN+RISE controller.
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Fig. 1. Tracking errors for the optimal RISE controller.

Fig. 2. Torques for the optimal RISE controller.

Fig. 3. Tracking errors for the optimal NN+RISE controller.

Table 1
Tabulated values for the 10 runs for the developed controllers.

RISE NN+RISE

Avg. Max SS Error (deg)— Link 1 0.0416 0.0416
Avg. Max SS Error (deg)— Link 2 0.0573 0.0550
Avg. RMS Error (deg) — Link 1 0.0128 0.0139
Avg. RMS Error (deg) — Link 2 0.0139 0.0143
Avg. RMS Torque (Nm) — Link 1 9.4217 9.4000
Avg. RMS Torque (Nm) — Link 2 1.7375 1.6825
Error std dev (deg) — Link 1 0.0016 0.0011
Error std dev (deg) — Link 2 0.0019 0.0015
Torque std dev (Nm) — Link 1 0.2775 0.3092
Torque std dev (Nm) — Link 2 0.0734 0.1746

Fig. 4. Torques for the optimal NN+RISE controller.

8.1. Discussion

The experiments show that both controllers stabilize the
system. Both controllers keep the average maximum steady state
(defined as the last 5 s of the experiment) error under 0.05 degrees
for the first link and under 0.06 degrees for the second link. The
data in Table 1 indicates that the NN+RISE controller resulted in
slightly more RMS error for each link, although a reduced or equal
maximum steady state error, with a slightly reduced torque. The
reduced standard deviation of the NN+RISE controller show that
the results from each run were more alike then the RISE controller
alone, but there was greater variance in the torque.

9. Conclusion

A control scheme is developed for a class of nonlinear
Euler–Lagrange systems that enables the generalized coordinates
to asymptotically track a desired time-varying trajectory despite
general uncertainty in the dynamics such as additive bounded
disturbances and parametric uncertainty that do not have to satisfy
a LP assumption. Themain contribution of thiswork is that the RISE
feedback method is augmented with and without a feedforward
NN and an auxiliary control term that minimizes a quadratic
performance index based on a HJB optimization scheme. Like the
influential work in Abu-Khalaf and Lewis (2002), Abu-Khalaf et al.
(2006), Cheng et al. (2006), Cheng and Lewis (2007), Cheng et al.
(2007), Johansson (1990), Kim and Lewis (2000), Kim et al. (2000)
and Lewis (1986) the result in this effort initially develops an
optimal controller based on a partially feedback linearized state-
space model assuming exact knowledge of the dynamics. The
optimal controller is then combined with a feedforward NN and
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RISE feedback. A Lyapunov stability analysis is included to show
that the NN and RISE identify the uncertainties, therefore the
dynamics asymptotically converge to the state-space system that
the HJB optimization scheme is based on. Experiments show that
both controllers stabilize the system and the optimal NN+RISE
controller yields similar steady state error compared to the optimal
RISE controller while requiring slightly reduced torque.
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