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a b s t r a c t

Controlling a nonlinear system with actuator delay is a challenging problem because of the need to
develop some form of prediction of the nonlinear dynamics. Developing a predictor-based controller
for an uncertain system is especially challenging. In this paper, tracking controllers are developed for
an Euler–Lagrange system with time-delayed actuation, parametric uncertainty, and additive bounded
disturbances. The developed controllers represent the first input delayed controllers developed for
uncertain nonlinear systems that use a predictor to compensate for the delay. The results are obtained
through the development of a novel predictor-like method to address the time delay in the control
input. Lyapunov–Krasovskii functionals are used within a Lyapunov-based stability analysis to prove
semi-globally uniformly ultimately bounded tracking. Experimental results illustrate the performance
and robustness of the developed control methods.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Time delay in the control input (also known as dead time, or in-
put delay) is a pervasive problem in various control applications.
Chemical and combustion processes, telerobotic systems, vehicle
platoons, communication networks, and biological systems (Be-
quette, 1991; Evesque, Annaswamy, Niculescu, & Dowling, 2003;
Huang & Lewis, 2003; Riener & Fuhr, 1998; Yanakiev & Kanel-
lakopoulos, 2001) often encounter delays in the control input. Such
delays are often attributed to transport lags, communication de-
lays, task prioritization or slow biological response, and can lead
to poor performance and potential instability.

Motivated by performance and stability problems, various
methods have been developed for linear systems with input
delays (cf. Artstein, 1982; Bresch-Pietri & Krstic, 2009; Fiagbedzi
& Pearson, 1986; Gu, Kharitonov, & Chen, 2003; Jankovic, 2008;
Krstic, 2008; Krstic & Bresch-Pietri, 2009; Krstic & Smyshlyaev,
2008; Kwon & Pearson, 1980; Manitius & Olbrot, 1979; Mondié &
Michiels, 2003; Richard, 2003; Roh & Oh, 1999, and the references
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therein). As discussed in Gu et al. (2003) and Richard (2003),
an outcome of these results is the development and use of
prediction techniques such as Artstein model reduction (Artstein,
1982), finite spectrum assignment (Manitius & Olbrot, 1979), and
continuous pole placement (Michiels, Engelborghs, Vansevenant,
& Roose, 2002). The concept of predictive control originated from
classic Smith predictormethods (Smith, 1959). The Smith predictor
requires a plant model for output prediction and has been widely
studied and modified for control purposes (cf. Chien, Peng, & Liu,
2002; Garcia & Albertos, 2008; Majhi & Atherton, 1999, 2000;
Matausek & Micic, 1996; Nortcliffe & Love, 2004; Roca et al., 2009;
Zhang & Sun, 1996, and references therein). However, the Smith
predictor may not yield desirable closed-loop performance in the
presence of model mismatch and can only be applied for stable
plants (Gu et al., 2003; Huang & Lewis, 2003). Contrary to the
Smith predictor, finite spectrum assignment or Artstein model
reduction techniques and their extensions (cf. Artstein, 1982;
Fiagbedzi & Pearson, 1986; Jankovic, 2008; Kwon & Pearson, 1980;
Manitius &Olbrot, 1979;Mondié&Michiels, 2003; Roh&Oh, 1999;
Wang, 2009, 2008; Wang, Hu, & Zhang, 2008; Xiang, Cao, Wang, &
Lee, 2008, and references therein) can be applied to unstable or
multivariable linear plants. These predictor-based methods utilize
finite integrals over past control values to transform the delayed
system to a delay free system. Discrete predictor-based techniques
have also been developed for linear systems with time varying
input delay in Lozano, Castillo, Garcia, and Dzul (2004), where
small bounded uncertainties in the system parameters, delay, and
sampling instants are considered.
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Another approach to develop predictive controllers is based on
the fact that input delay systems can be represented by hyperbolic
partial differential equations (cf. Gu et al., 2003; Richard, 2003, and
references therein). This fact is exploited in Bresch-Pietri and
Krstic (2009), Krstic (2008), Krstic and Bresch-Pietri (2009), Krstic
and Smyshlyaev (2008) and Krstic (2010) to design controllers
for actuator delayed linear systems. These novel methods model
the time delayed system as an ordinary differential equation
(ODE)–partial differential equation (PDE) cascade where the non-
delayed input acts at the PDE boundary. The controller is then
designed by employing a backstepping type approach for PDE
control (Krstic & Smyshlyaev, 2008).

Predictor techniques have also been extended to adaptive
control of unknown linear plants in Bresch-Pietri and Krstic (2009)
Evesque et al. (2003) and Niculescu and Annaswamy (2003). In
Evesque et al. (2003) and Niculescu and Annaswamy (2003), a
modified Smith predictor type structure is used to achieve a
semi-global result. In Bresch-Pietri and Krstic (2009) (and the
companion paper Krstic & Bresch-Pietri, 2009), a global adaptive
controller is developed that compensates for uncertain plant
parameters and a possibly large unknown delay. Adaptive Posicast
Controllers have also been developed for uncertain linear systems
with delays and for automotive applications in Yildiz, Annaswamy,
Kolmanovsky, and Yanakiev (2010), Yildiz, Annaswamy, Yanakiev,
and Kolmanovsky (2010) and Yildiz, Annaswamy, Yanakiev, and
Kolmanovsky (2011).

In comparison to input delayed linear systems, fewer results
are available for nonlinear systems. Approaches for input delayed
nonlinear systems such as Kravaris and Wright (1989) and
Henson and Seborg (1994) utilize a Smith predictor-based globally
linearizing control method and require a known nonlinear plant
model for time delay compensation. In Huang and Lewis (2003),
a specific technique is developed for a telerobotic system with
constant input and feedback delays where a Smith predictor
for a locally linearized subsystem is used in combination with
a neural network controller for a remotely located uncertain
nonlinear plant to drive the position coordinates of the slave
robot to a delayed trajectory. A similar type of control objective
is defined in Chopra, Spong, and Lozano (2008), where the
aim is to drive the position of the slave robot to the delayed
position of the master robot and the position of the master
robot to the delayed position of the slave robot (i.e., a different
control objective and problem formulation than considered in
the current result). Also, the control design and stability analysis
assume the system dynamics to be linearly parameterizable.
In Mazenc and Bliman (2006), an approach is provided to
construct Lyapunov–Krasovskii (LK) functionals for the input
delayed nonlinear system in feedback form. In Francisco, Mazenc,
and Mondié (2007), bounded state feedback and output-based
controllers are developed to stabilize the origin of the dynamic
system describing a PVTOL aircraft with delay in the input. The
developed control laws are extensions of approach developed
for the feedforward system with delays in the input (Mazenc
et al., 2003b,a). Although the work in Francisco et al. (2007) and
Mazenc et al. (2003b,a) provide fundamental contributions to the
input delay problem in feedforward systems, its applicability to
general uncertainmechanical systemsmodeled by Euler–Lagrange
dynamics is not clear. The dynamic model considered in Francisco
et al. (2007) is a simplified model of equations where dependency
on parameters (e.g., mass of the system, lengths, etc.) does
not exist. Development was provided in Mazenc and Bowong
(2003) to design a tracking controller for a cart-pendulum
system (a typical example of Euler–Lagrange system). After
some transformations, the Euler–Lagrange dynamics of the cart-
pendulum system are converted into a feedforward system.
These transformations require exact model knowledge, thus
the technique is not applicable when the system parameters
are unknown or dynamics are uncertain, which implies that
methods developed for feedforward systems with delay may
not be applicable to uncertain Euler–Lagrange dynamics. The
control method in Jankovic (2006) utilizes a composite Lyapunov
function containing an integral cross term and an LK functional for
stabilizing nonlinear cascade systems, where delay can enter the
system through the input or the states. The robustness of input to
state stabilizability is proven in Teel (1998) for nonlinear finite-
dimensional control systems in presence of small input delays by
utilizing a Razumikhin-type theorem. In Krstic (2008) and Krstic
(2010), the backstepping approach that utilizes the ODE–PDE
cascade transformation for input delayed systems is extended to
nonlinear control systems with an actuator delay of unrestricted
length. In Ailon, Segev, and Arogeti (2004), Ailon (2004) and
Ailon and Gil (2000), delay dependent sufficient conditions are
established to prove local exponential or asymptotic stability
of the zero/stationary solution of uncertain nonlinear systems
(linearized about a setpoint). Specifically, a velocity-free controller
is developed for attitude regulation of spacecraft in the presence of
constant feedback delay in Ailon et al. (2004), while in Ailon (2004)
and Ailon and Gil (2000), output-based controllers are developed
for uncertain flexible-joint robots with multiple input delays and
rigid robots with time delay, respectively. Unlike the current paper
that develops a predictor-based method to compensate for the
input delay in uncertain nonlinear systems (without linearization),
the results in Ailon et al. (2004), Ailon (2004) and Ailon and Gil
(2000) utilize controllers developed for delay-free systems and
prove robustness to the delay provided certain delay dependent
conditions hold true. No prior results address stabilizing an
uncertain/disturbed nonlinear system with input delays (for the
typical tracking problem without linearization).

This paper (and its preliminary version Sharma, Bhasin, Wang,
& Dixon, 2010) focuses on the development of tracking controllers
for an uncertain nonlinear Euler–Lagrange system with input
delay. The input time delay is assumed to be a known constant
and can be arbitrarily large. The dynamics are assumed to contain
parametric uncertainty and additive bounded disturbances. A
modified proportional integral derivative (PID) controller is first
developed based on the desire to include integral feedback. To
develop the controller the inertia matrix is assumed to be known.
For the purpose of eliminating the assumption of a known inertia
matrix, a second controller is developed. The second control
structure is based on the same design approach (i.e., develop a
predictor to transform the dynamics to a new system that does
not have an input delay); however, the resulting modified PD
controller has a completely different structure (i.e., the modified
PID does not simplify to the modified PD controller if the integral
is removed). For both controllers, the key contributions are the
design of a delay compensating auxiliary signal to obtain a time
delay free open-loop error system, and the construction of LK
functionals to cancel the time delayed terms. The auxiliary signal
leads to the development of a predictor-based controller that
contains a finite integral of past control values. This delayed state
to delay free transformation is analogous to the Artstein model
reduction approach, where a similar predictor-based control is
obtained. LK functionals containing finite integrals of control input
values are used in a Lyapunov-based analysis that proves that the
tracking errors are semi-globally uniformly ultimately bounded.
Experimental results are obtained for a two-link direct drive
robot. The results illustrate the robustness and added value of the
developed predictor-based controllers.
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2. Dynamic model and properties

Consider the following input delayed Euler–Lagrange dynamics
M(q)q̈ + Vm(q, q̇)q̇ + G(q) + F(q̇) + d(t) = u(t − τ). (1)
In (1), M(q) ∈ Rn×n denotes a generalized inertia matrix, Vm(q, q̇)
∈ Rn×n denotes a generalized centripetal–Coriolis matrix, G(q) ∈

Rn denotes a generalized gravity vector, F(q̇) ∈ Rn denotes gen-
eralized friction, d(t) ∈ Rn denotes an exogenous disturbance
(e.g., unmodeled effects), u(t −τ) ∈ Rn represents the generalized
delayed input control vector, where τ ∈ R is a constant time delay,
and q(t), q̇(t), q̈(t) ∈ Rn denote the generalized states. The subse-
quent development is based on the assumptions that q(t) and q̇(t)
are measurable, Vm(q, q̇),G(q), F(q̇), d(t) are unknown, the time
delay constant τ ∈ R is known,2 and the control input vector u(t)
and its past values (i.e., u(t−θ)∀θ ∈ [0 τ ]) aremeasurable. For the
controller developed in Section 3.2, M(q) is assumed to be known
to illustrate the development of a PID-like controller. In Section 3.3,
this assumption is removed and a PD-like controller is developed.
Throughout the paper, a time dependent delayed function is de-
noted as x(t−τ) (or as xτ ) and a time dependent function (without
time delay) is denoted as x(t) (or as x). The following assumptions
are used in the subsequent development.

Assumption 1. The inertia matrix M(q) is symmetric, positive
definite, and satisfies the following inequality ∀ξ(t) ∈ Rn:

m1‖ξ‖
2

≤ ξ TMξ ≤ m2‖ξ‖
2, (2)

where m1,m2 ∈ R+ are known constants and ‖ · ‖ denotes the
standard Euclidean norm.

Assumption 2. The desired trajectory qd(t) is designed such that
qd(t), q

(i)
d (t) ∈ L∞, where q(i)

d (t) denotes the ith time derivative
for i = 1, 2, 3.

Assumption 3. If q(t), q̇(t) ∈ L∞, then M(q), Vm(q, q̇),G(q), and
F(q̇) are bounded. Moreover, if q(t), q̇(t), q̈(t) ∈ L∞, then the
first time derivatives of M(q), Vm(q, q̇),G(q), F(q̇) exist and are
bounded. The infinity norm of M(q) and its inverse can be upper
bounded as

‖M(q)‖∞ ≤ ζ1 ‖M−1(q)‖∞ ≤ ζ2, (3)

where ζ1, ζ2 ∈ R+ are known constants.

Assumption 4. The nonlinear disturbance term and its first time
derivative are bounded, i.e., d(t), ḋ(t) ∈ L∞.

3. Control development

3.1. Objective

The objective is to develop a controller that will enable the
input delayed system in (1) to track a desired trajectory, denoted
by qd(t) ∈ Rn. To quantify the objective, a position tracking error,
denoted by e1(t) ∈ Rn, is defined as
e1 = qd(t) − q(t). (4)

3.2. Control development given a known inertia matrix

To facilitate the subsequent analysis, a filtered tracking error,
denoted by e2a(t) ∈ Rn, is defined as

e2a = ė1 + α1e1, (5)
where α1 ∈ R+ denotes a constant.

2 Experimental results (where the time delay is artificially injected in a desired
manner) illustrate the performance of the developed controllers when the time
delay has as much as 100% error between the assumed and the actual delay.
One approach to develop a delay compensating control law for
the input delayed system in (1), is to reduce the system to an input
delay free system. As an example (Artstein, 1982), consider a linear
system with input delay ẋ(t) = Ax(t) + Bu(t − τ). A simple trans-
formation z(t) = x(t) +

 t
t−τ

eA(t−θ−τ)Bu(θ) converts the linear
system to ż(t) = Az(t) + e−AτBu(t), which is a delay free system.
A state feedback law of the form Kz(t) for the transformed system
will generate a distributed delay control term for the original sys-
tem. This control approach is often described as an Artstein model
reduction predictor-like controller. Inspired from this approach, an
auxiliary signal denoted by r(t) ∈ Rn, is also defined as

r = ė2a + α2e2a + M−1(q(t))(u(t − τ) − u(t)), (6)

whereα2 ∈ R+. The auxiliary signal r(t) is only introduced to facil-
itate the subsequent analysis, and is not used in the control design
since the expression in (6) depends on the unmeasurable general-
ized state q̈(t).

After multiplying (6) by M(q) and utilizing the expressions in
(1), (4) and (5), the transformed open-loop tracking error system
can be expressed in an input delay free form as

M(q)r = M(q)q̈d + Vm(q, q̇)q̇ + G(q) + F(q̇) + d
+ α1M(q)ė1 + α2M(q)e2a − u(t). (7)

Based on (7) and the subsequent stability analysis, the control
input u(t) ∈ Rn is designed as

u = ka


e2a +

∫ t

0
α2e2a(θ) + M−1(θ)(u(θ − τ)

− u(θ))dθ


− kae2a(0), (8)

where ka ∈ R+ is a known constant that can be expanded as

ka = ka1 + ka2 + 1, (9)

to facilitate the subsequent stability analysis, where ka1 , ka2 ∈ R+

are known constants. The controller u(t) in (8) is a proportional
integral derivative (PID) controller modified by a predictor like
feedback term for time delay compensation.

Although the control input u(t) is present in the open-loop
error system in (7), an additional derivative is taken to facilitate
the subsequent stability analysis. The time derivative of (7) can be
expressed as

M(q)ṙ = −
1
2
Ṁ(q)r + N + ḋ − kar, (10)

where N(e1, e2a , r, t) ∈ Rn is an auxiliary term defined as

N = −
1
2
Ṁ(q)r + M(q)

...
qd + Ṁ(q)q̈d + V̇m(q, q̇)q̇

+ Vm(q, q̇)q̈ + Ġ(q) + Ḟ(q̇) + (α1 + α2) (M(q)r
− (uτ − u)) − α1α2M(q)e2a − α2

1M(q)(e1 + ė1)

− α2
2M(q)e2a + α1Ṁ(q)ė1 + α2Ṁ(q)e2a , (11)

and (6) is used to write the time derivative of (8) as

u̇ = kar.

After adding and subtracting the auxiliary function Nd(qd, q̇d, q̈d,...
qd, t) ∈ Rn defined as

Nd = M(qd)
...
qd + Ṁ(qd)q̈d + V̇m(qd, q̇d)q̇d + Vm(qd, q̇d)q̈d

+ Ġ(qd) + Ḟ(q̇d),

to (10), the following expression is obtained:

M(q)ṙ = −
1
2
Ṁ(q)r + Ñ + S − e2a − kar, (12)
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where the auxiliary functions Ñ(e1, e2a , r, t) ∈ Rn and S(qd, q̇d, q̈d,...
qd, t) ∈ Rn are defined as

Ñ = N − Nd + e2a , S = Nd + ḋ. (13)
Some terms in the closed-loop dynamics in (12) are segregated into
auxiliary terms in (13) because of differences in how the terms can
be upper bounded. For example, Assumptions 2–4, can be used to
upper bound S(qd, q̇d, q̈d,

...
qd, t) as

‖S‖ ≤ ε1, (14)
where ε1 ∈ R+ is a known constant, and the Mean Value Theorem
can be used to upper bound Ñ(e1, e2a , r, t) as

Ñ ≤ ρ1(‖za‖)‖za‖, (15)
where za ∈ R4n is defined as

za =

eT1 eT2a rT eTa

T
, (16)

and the bounding function ρ1(‖za‖) ∈ R is a known positive glob-
ally invertible nondecreasing function. In (16), ea ∈ Rn is defined as

ea , u − uτ =

∫ t

t−τ

u̇(θ)dθ,

based on the Leibniz–Newton formula.

Theorem 1. The controller given in (8) ensures semi-globally uni-
formly ultimately bounded (SUUB) tracking in the sense that

‖e1(t)‖ ≤ ϵ0 exp(−ϵ1t) + ϵ2, (17)

where ϵ0, ϵ1, ϵ2 ∈ R+ denote constants, provided the control gains
α1, α2, and ka introduced in (5), (6) and (8), respectively are selected
according to the following sufficient conditions:

α1 >
1
2
, α2 > 1 +

ζ 2
2 γ 2

4
, k2a <

1
ωτ

, ωγ 2 > 2τ , (18)

where ω, γ ∈ R+ are subsequently defined control gains.

Proof. Let ya(t) ∈ D ⊂ R3n+1 be defined as

ya(t) ,

eT1 eT2a rT


Q

T
, (19)

where Q (t) ∈ R is defined as Mazenc and Bliman (2006) and
Richard (2003)

Q = ω

∫ t

t−τ

∫ t

s
‖u̇(θ)‖2 dθ


ds, (20)

where ω ∈ R+ is a known constant. A positive definite Lyapunov
functional candidate V (ya, t) : D × [0 ∞) → R is defined as

V (ya, t) , eT1e1 +
1
2
eT2ae2a +

1
2
rTM(q)r + Q , (21)

and satisfies the following inequalities

λ1‖ya‖2
≤ V ≤ λ2‖ya‖2, (22)

where λ1, λ2 ∈ R+ are known constants defined as

λ1 =
1
2
min[m1,1], λ2 = max

[
1
2
m2,1

]
, (23)

wherem1 andm2 are defined in (2).
After utilizing (5), (6) and (12) and canceling common terms,

the time derivative of (21) is

V̇ = 2eT1e2a − 2α1eT1e1 − α2eT2ae2a − karT r + rT S

+ eT2aM
−1(q)ea + rT Ñ + ωτ‖u̇‖2

− ω

∫ t

t−τ

‖u̇(θ)‖2dθ, (24)
where the Leibniz integral rule was applied to determine the time
derivative of Q (t) in (20). The expression in (24) can be upper
bounded by using (3), (14) and (15) as

V̇ ≤ −(2α1 − 1)‖e1‖2
− (α2 − 1)‖e2a‖

2
− ka‖r‖2

+ ζ2‖e2a‖‖ea‖ + ωτ‖u̇‖2
+ ε1 ‖r‖

+ ρ1(‖za‖)‖za‖‖r‖ − ω

∫ t

t−τ

‖u̇(θ)‖2dθ. (25)

The following term in (25) can be upper bounded by using Young’s
inequality:

ζ2‖e2a‖‖ea‖ ≤
ζ 2
2 γ 2

4
‖e2a‖

2
+

1
γ 2

‖ea‖2, (26)

where γ ∈ R+ is a known constant. Further, by using the Cauchy–
Schwarz inequality, the following term in (26) can be upper
bounded as

‖ea‖2
≤ τ

∫ t

t−τ

‖u̇(θ)‖2dθ. (27)

Adding and subtracting τ

γ 2

 t
t−τ

‖u̇(θ)‖2dθ in (25) yields

V̇ ≤ −(2α1 − 1)‖e1‖2
− (α2 − 1)‖e2a‖

2
− ka‖r‖2

+ζ2‖e2a‖‖ea‖ + ωτ‖u̇‖2
+ ε1‖r‖

+ ρ1(‖za‖)‖za‖‖r‖ −


ω −

τ

γ 2

 ∫ t

t−τ

‖u̇(θ)‖2dθ

−
τ

γ 2

∫ t

t−τ

‖u̇(θ)‖2dθ. (28)

Utilizing (9) and the bounds given in (26) and (27), the inequality
in (28) can be upper bounded as

V̇ ≤ −(2α1 − 1)‖e1‖2
−


α2 − 1 −

ζ 2
2 γ 2

4


‖e2a‖

2

− (1 − ωk2aτ)‖r‖2
−

1
τ


ω −

2τ
γ 2


‖ea‖2

+ ε1‖r‖

+ρ1(‖za‖)‖za‖‖r‖ − ka2‖r‖
2
− ka1‖r‖

2

−
τ

γ 2

∫ t

t−τ

‖u̇(θ)‖2dθ. (29)

After completing the squares, the inequality in (29) can be upper
bounded as

V̇ ≤ −β1‖za‖2
−

τ

γ 2

∫ t

t−τ

‖u̇(θ)‖2dθ

+
ρ2
1 (‖za‖)
4ka1

‖za‖2
+

ε2
1

4ka2
, (30)

where β1 ∈ R+ is defined as

β1 = min
[

α2 − 1 −
ζ 2
2 γ 2

4


, (2α1 − 1), (1 − ωk2aτ),

1
τ


ω −

2τ
γ 2

]
.

Since∫ t

t−τ

∫ t

s
‖u̇(θ)‖2dθ


ds ≤ τ sup

s∈[t,t−τ ]

[∫ t

s
‖u̇(θ)‖2dθ

]
= τ

∫ t

t−τ

‖u̇(θ)‖2dθ,
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the expression in (30) can be rewritten as

V̇ ≤ −


β1 −

ρ2
1 (‖za‖)
4ka1


‖za‖2

−
1
γ 2

∫ t

t−τ

∫ t

s
‖u̇(θ)‖2dθ


+

ε2
1

4ka2
. (31)

Using the definition of za(t) in (16) and ya(t) in (19), the expression
in (31) can be expressed as

V̇ ≤ −β̄1‖ya‖2
−


β1 −

ρ2
1 (‖za‖)
4ka1


‖ea‖2

+
ε2
1

4ka2
, (32)

where β̄1(‖za‖) ∈ R+ is defined as

β̄1 = min
[

β1 −
ρ2
1 (‖za‖)
4ka1


,

1
ωγ 2

]
.

By further utilizing (22), the inequality in (32) can be upper
bounded as

V̇ ≤ −
β̄1

λ2
V +

ε2
1

4ka2
. (33)

Consider a set S defined as

S , {za(t) ∈ R4n
| ‖za‖ < ρ−1

1 (2


β1ka1)}. (34)

In S, β̄1(‖za‖) can be lower bounded by a constant δ1 ∈ R+ as

δ1 ≤ β̄1(‖za‖). (35)

Based on (35), the linear differential equation in (33) can be solved
as

V (ya, t) ≤ V (0)e−
δ1
λ2

t
+

ε2
1λ2

4ka2δ1
[1 − e−

δ1
λ2

t
], (36)

provided ‖za‖ ≤ ρ−1
1 (2


β1ka1). From (36), if za(0) ∈ S then ka can

be chosen according to the sufficient conditions in (18) (i.e. a semi-
global result) to yield the result in (17). Based on definition of ya(t),
it can be concluded that e1(t), e2a(t), r(t) ∈ L∞ in S. Given that
e1(t), e2a(t), qd(t), q̇d(t) ∈ L∞ in S, (4) and (5) indicate that q(t),
q̇(t) ∈ L∞ in S. Since r(t), e2a(t), q(t), q̇(t), q̇d(t), q̈d(t) ∈ L∞ in
S, and u(t) − u(t − τ) =

 t
t−τ

u̇(θ)dθ = ka
 t
t−τ

r(θ)dθ ∈ L∞ in
S (where the Leibniz–Newton formula was used), then (6) and
Assumption 3 indicate that q̈(t) ∈ L∞ in S. Given that r(t), e2a(t),
q(t), q̇(t), q̇d(t)q̈d(t) ∈ L∞ in S, (7) and Assumptions 3 and 4 in-
dicate that u(t) ∈ L∞ in S. �

3.3. Control development with an unknown inertia matrix

The modified PID controller in the previous section included
integral feedback provided the inertia matrix is known. The de-
velopment in this section is motivated by the desire to eliminate
knowledge of the inertia matrix. The design structures are similar
in the sense that both are based on the strategy of creating a predic-
tor based on transforming the input delayed system into an input
delay free system. However, as a result of changes in the stability
analysis to eliminate knowledge of the inertia matrix, the result-
ing controller in this section has a unique structure. Specifically,
the controller in this section is a modified PD controller, where the
modified PD controller is not a subset of themodified PID controller
in the previous section with the integral removed.

To facilitate the subsequent control design and stability analysis
for the uncertain inertia problem, the auxiliary signal, e2b(t) ∈ Rn

is redefined as

e2b(t) = ė1 + αe1 − B
∫ t

t−τ

u(θ)dθ, (37)
where α ∈ R+ is a known constant, and B ∈ Rn×n is a known
symmetric, positive definite constant gain matrix that satisfies the
following inequality

‖B‖∞ ≤ b (38)

where b ∈ R+ is a known constant.To facilitate the subsequent
stability analysis, the error between B and M−1(q) is defined by

η(q) = B − M−1(q), (39)

where η(q) ∈ Rn×n satisfies the following inequality

‖η(q)‖∞ ≤ η̄, (40)

where η̄ ∈ R+ denotes a known constant. The open-loop tracking
error system can be developed by multiplying the time derivative
of (37) byM(q) and utilizing the expressions in (1), (4) and (39) to
obtain

M(q)ė2 = M(q)q̈d + Vm(q, q̇)q̇ + G(q) + F(q̇) + d
+ αM(q)ė1 − u(t) − M(q)η[u − uτ ]. (41)

Based on (41) and the subsequent stability analysis, the control
input u(t) ∈ Rn is designed as

u = kbe2b , (42)

where kb ∈ R+ is a known control gain that can be expanded as

kb = kb1 + kb2 + kb3 , (43)

to facilitate the subsequent analysis, where kb1 , kb2 , and kb3 ∈ R+

are known constants. After adding and subtracting the auxiliary
term Nd(qd, q̇d, q̈d, t) ∈ Rn defined as

Nd = M(qd)q̈d + Vm(qd, q̇d)q̇d + G(qd) + F(q̇d),

and using (37) and (42), the expression in (41) can be rewritten as

M(q)ė2b = −
1
2
Ṁ(q)e2b + Ñ + S − e1 − kbe2b

− kbM(q)η

e2b − e2τ


, (44)

where the auxiliary terms Ñ(e1, e2b , t),N(e1, e2b , t), S(qd, q̇d, q̈d, t)
∈ Rn are defined as

Ñ = N − Nd, S = Nd + d, (45)

N =
1
2
Ṁ(q)e2b + M(q)q̈d + Vm(q, q̇)q̇ + G(q) + F(q)

+ αM(q)e2b − α2M(q)e1 + e1 + αM(q)B
∫ t

t−τ

u(θ)dθ,

where Ñ(e1, e2b , t) and S(qd, q̇d, q̈d, t) can be upper bounded as

Ñ ≤ ρ2(‖zb‖)‖zb‖, ‖S‖ ≤ ε2. (46)

In (46), ε2 ∈ R+ is a known constant, the bounding function
ρ2 (‖zb‖) ∈ R is a positive globally invertible nondecreasing func-
tion, and zb ∈ R3n is defined as

zb =

eT1 eT2b eTb

T
, (47)

where eb ∈ Rn is defined as

eb =

∫ t

t−τ

u(θ)dθ.

Theorem 2. The controller given in (42) ensures SUUB tracking in the
sense that

‖e1(t)‖ ≤ ϵ0 exp(−ϵ1t) + ϵ2, (48)

where ϵ0, ϵ1, ϵ2 ∈ R+ denote constants, provided the control gains α
and kb introduced in (37) and (42), respectively are selected according
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to the sufficient conditions:

α >
b2γ 2

4
, kb3 >

2η̄m2(kb1 + kb2) + ωk2bτ
1 − 2η̄m2

,

ωγ 2 > 2τ , (49)

where m2, b, ∈ R+, η̄ ∈ R+ are defined in (2), (38) and (40),
respectively, and γ , ω ∈ R+ are subsequently defined constants.

Remark 3. The second sufficient gain condition indicates that ω

can be selected sufficiently small and kb3 can be selected suffi-
ciently large provided1−2η̄m2 > 0. The condition that 1−2η̄m2 >

0 indicates that the constant approximation matrix B must be
chosen sufficiently close toM−1(q) so that

B − M−1(q)


∞
< 1

2m2
.

Experimental results illustrate the performance/robustness of the
developed controller with respect to the mismatch between B and
M−1(q). Specifically, results indicate an insignificant amount of
variation in the performance even when each element of M−1(q)
is overestimated by as much as 100%. Different results may be ob-
tained for different systems, but these results indicate that the gain
condition is reasonable.

Proof. Let yb(t) ∈ D ⊂ R2n+2 be defined as

yb(t) ,

eT1 eT2b

√
P

√
R
T

, (50)

where P(t), R(t) ∈ R denote LK functionals defined as Richard
(2003)

P = ω

∫ t

t−τ

∫ t

s
‖u(θ)‖2 dθ


ds,

R =
η̄m2kb

2

∫ t

t−τ

‖e2b(θ)‖2dθ,

where ω ∈ R+ is a known constant. A positive definite Lyapunov
functional candidate V (yb, t) : D × [0 ∞) → R is defined as

V (yb, t) ,
1
2
eT1e1 +

1
2
eT2bM(q)e2b + P + R, (51)

and satisfies the following inequalities

λ1‖yb‖2
≤ V ≤ λ2‖yb‖2, (52)

where λ1, λ2 ∈ R+ are defined in (23).
Taking the time derivative of (51) and using (37) and (44) yields

V̇ = −αeT1e1 + eT1Beb + ωτ ‖u‖2
+ eT2b [S + Ñ

− kbe2 − kbM(q)η

e2b − e2bτ


]

+
η̄m2kb

2
[‖e2b‖

2
− ‖e2bτ ‖

2
] − ω

∫ t

t−τ

‖u(θ)‖2dθ, (53)

where the Leibniz integral rule was applied to determine the time
derivative of P(t) and R(t). Using (2), (38) and (46), the terms in
(53) can be upper bounded as

V̇ ≤ −α‖e1‖2
− kb

e2b2
+ η̄m2kb‖e2b‖

2
+ ωτ ‖u‖2

+ ‖e2b‖ε2 + ‖e2b‖ρ2(‖zb‖)‖zb‖ + b‖e1‖‖eb‖

+ η̄m2kb‖e2bτ ‖‖e2b‖ +
η̄m2kb

2
[‖e2b‖

2
− ‖e2bτ ‖

2
]

− ω

∫ t

t−τ

‖u(θ)‖2dθ. (54)
The following terms in (54) can be upper bounded by utilizing
Young’s inequality:

b‖e1‖‖eb‖ ≤
b2γ 2

4
‖e1‖2

+
1
γ 2

‖eb‖2, (55)

η̄m2kb‖e2bτ ‖‖e2b‖ ≤
η̄m2kb

2
‖e2b‖

2
+

η̄m2kb
2

‖e2bτ ‖
2

where γ ∈ R+ is a known constant. Further, by using the Cauchy–
Schwarz inequality, the following term in (55) can be upper
bounded as

‖eb‖2
≤ τ

∫ t

t−τ

‖u(θ)‖2dθ. (56)

After adding and subtracting τ

γ 2

 t
t−τ

‖u(θ)‖2dθ to (54), and utiliz-
ing (42), (43), (55) and (56), the following expression is obtained:

V̇ ≤ −


α −

b2γ 2

4


‖e1‖2

− (kb3 − ωk2bτ − 2η̄m2kb)‖e2b‖
2

−
1
τ


ω −

2τ
γ 2


‖eb‖2

− kb1‖e2b‖
2
+ ρ2(‖zb‖)‖zb‖‖e2b‖

− kb2‖e2‖
2
+ ‖e2‖ε2 −

τ

γ 2

∫ t

t−τ

‖u(θ)‖2dθ. (57)

By completing the squares, the inequality in (57) can be upper
bounded as

V̇ ≤ −


β2 −

ρ2
2 (‖zb‖)
4kb1


‖zb‖2

−
τ

γ 2

∫ t

t−τ

‖u(θ)‖2dθ

+
ε2
2

4kb2
, (58)

where β2 ∈ R+ is denoted as

β2 = min
[

α −
b2γ 2

4


, (kb3 − 2η̄m2kb − ωk2bτ) ,

1
τ


ω −

2τ
γ 2

]
.

Since∫ t

t−τ

∫ t

s
‖u(θ)‖2dθ


ds ≤ τ sup

s∈[t,t−τ ]

[∫ t

s
‖u(θ)‖2dθ

]
= τ

∫ t

t−τ

‖u(θ)‖2dθ,

the expression in (58) can be rewritten as

V̇ ≤ −


β2 −

ρ2
2 (‖zb‖)
4kb1


‖zb‖2

−
τ

2γ 2

∫ t

t−τ

‖u(θ)‖2dθ

−
1

2γ 2

∫ t

t−τ

∫ t

s
‖u(θ)‖2dθ


+

ε2
2

4kb2
. (59)

Using the definitions of zb(t) in (47), yb(t) in (50), and u(t) in (42),
the expression in (59) can be expressed as

V̇ ≤ −β̄2‖yb‖2
−


β2 −

ρ2
2 (‖zb‖)
4kb1


‖eb‖2

+
ε2
2

4kb2
, (60)

where β̄2(‖zb‖) ∈ R+ is defined as

β̄2 = min
[

β2 −
ρ2
2 (‖zb‖)
4kb1


,

kbτ
γ 2η̄m2

,
1

2ωγ 2

]
.
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Fig. 1. Experimental testbed consisting of a two-link robot. The input delay in the
system was artificially inserted in the control software.

By further utilizing (52), the inequality in (60) can be written as

V̇ ≤ −
β̄2

λ2
V +

ε2
2

4kb2
. (61)

Consider a set S defined as

S ,

zb(t) ∈ R3n

| ‖zb‖ < ρ−1
2 (2


β2kb1)


. (62)

In S, β̄2(‖zb‖) can be lower bounded by a constant δ2 ∈ R+ as

δ2 ≤ β̄2(‖zb‖). (63)

Based on (63), the linear differential equation in (61) can be solved
as

V ≤ V (0)e−
δ2
λ2 t +

ε2
2λ2

4kb2δ2
[1 − e−

δ2
λ2

t
], (64)

provided ‖zb‖ < ρ−1
2


2


β2kb1

. From (64), if zb(0) ∈ S then kb

can be chosen according to the sufficient conditions in (49) (i.e. a
semi-global result) to yield result in (48). Based on the definition of
yb(t), it can be concluded that e1(t), e2b(t) ∈ L∞ in S. Given that
e1(t), e2b(t), qd(t), q̇d(t) ∈ L∞ in S, (4), (37) and (42) indicate that
q(t), q̇(t), u ∈ L∞ in S. �

4. Experimental results

Experiments for the developed controllers were conducted on
a two-link robot shown in Fig. 1. Each robot link is mounted
on an NSK direct drive switched reluctance motor (240.0 Nm
Model YS5240-GN001, and 20.0 Nm Model YS2020-GN001,
respectively). The NSK motors are controlled through power
electronics operating in torque control mode. Rotor positions are
measured through motor resolver with a resolution of 614400
pulses/revolution. The control algorithms were executed on a
Pentium 2.8 GHz PC operating under QNX. Data acquisition and
control implementation were performed at a frequency of 1.0 kHz
using the ServoToGo I/O board. The input delay was artificially
inserted in the system through the control software (i.e., the
control commands to the motors were delayed by a value set by
the user). The developed controllers were tested for various values
of input delay ranging from 1 ms to 200 ms. The desired link
trajectories for link 1 (qd1(t)) and link 2 (qd2(t)) were selected as
(in degrees):
qd1(t) = qd2(t) = 20.0 sin(1.5t)(1 − exp(−0.01t3)).
The controller developed in (8) (PID controller with delay compen-
sation) and the controller developed in (42) (PD controller with
delay compensation) were compared with traditional PID and PD
controllers, respectively, in the presence of input delay in the
system. The input delayed two link robot dynamics are modeled
as[
u1τ
u2τ

]
=

[
p1 + 2p3 cos(q2) p2 + p3 cos(q2)
p2 + p3 cos(q2) p2

] [
q̈1
q̈2

]
+

[
−p3 sin(q2)q̇2 −p3 sin(q2)(q̇1 + q̇2)
p3 sin(q2)q̇1 0

] [
q̇1
q̇2

]
+

[
fd1 0
0 fd2

] [
q̇1
q̇2

]
+

[
fs1 0
0 fs2

] [
tanh(q̇1)
tanh(q̇2)

]
,

where p1, p2, p3, fd1 , fd2 , fs1 , fs2 ∈ R+ are unknown constants,
and τ ∈ R+ is the user-defined time delay value. However, the
following values: p1 = 3.473 kg.m2, p2 = 0.196 kg.m2, and p3 =

0.242 kg.m2 were used to calculate the inverse inertia matrix for
implementing the PID controller with delay compensation but were
not used to implement the PD controller with delay compensation.

The control gains for the experiments were obtained by choos-
ing gains and then adjusting based on performance (in partic-
ular, torque saturation). If the response exhibited a prolonged
transient response (compared with the response obtained with
other gains), the proportional gains were adjusted. If the response
exhibited overshoot, derivative gainswere adjusted. At a particular
input delay value, the control gains were first tuned for the PID/PD
controllers with delay compensation and then compared with tradi-
tional PID/PD controllers. Using the same control gains values as in
the PID/PD controllers with delay compensation, the control torques
for the traditional PID/PD controllers reached pre-set torque lim-
its, leading to an incomplete experimental trial (e.g., if the con-
trol torque reaches 20 Nm, which is the set torque limit for the
link-2 motor, the control software aborts the experimental trial3).
Therefore, for each case of input delay (except at 1 ms), control
gains for the traditional PID/PD controllers were retuned (i.e., low-
ered) to avoid torque saturation. In contrast to the above approach,
the control gains could potentially have been adjusted using more
methodical approaches. For example, the nonlinear system in Ste-
fanovic, Ding, and Pavel (2007) was linearized at several operating
points and a linear controller was designed for each point, and the
gains were chosen by interpolating, or scheduling the linear con-
trollers. In Fujinaka, Kishida, Yoshioka, and Omatu (2000), a neural
network is used to tune the gains of a PID controller. In Nagata,
Kuribayashi, Kiguchi, and Watanabe (2007) a genetic algorithm
was used to fine tune the gains after initial guess weremade by the
controller designer. The authors in Killingsworth and Krstic (2006)
provide an extensive discussion on the use of extremum seeking
for tuning the gains of a PID controller. Additionally, in Kelly, San-
tibanez, and Loria (2005), the tuning of a PID controller for robot
manipulators is discussed.

The experimental results are summarized in Table 1. The
error and torque plots for the case when the input delay is 50 ms
(as a representative example) are shown in Figs. 2 and 3. The PD
controller with delay compensation was also tested to observe the
sensitivity of the B gain matrix, defined in (37), where the input
delay was selected as 100 ms. Each element of the B gain ma-
trix was incremented/decremented by a certain percentage from
the inverse inertia matrix (see Table 2). The purpose of this set
of experiments was to show that the gain condition discussed in
Remark 3 is a sufficient but not a necessary condition, and to ex-
plore the performance/robustness of the controller in (42) given
inexact approximations of the inertia matrix. The controller ex-
hibited no significant degradation, even when each element of

3 Instead of aborting the experimental trial, the experiments could have also
been performed by utilizing the saturation torque as the control torque in case the
computed torque reaches or exceeds the torque limit; but for comparison purposes,
the aforementioned criterion was chosen.
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Table 1
Summarized experimental results of traditional PID/PD controllers and the PID/PD controllers with delay compensation. The controllers
were tested for different input delay values ranging from 1 ms to 200 ms.

RMS error

Controller PID PID + CTRa PD PD + CTR
Time delay Link 1 (°) Link 2 (°) Link 1 (°) Link 2 (°) Link 1 (°) Link 2 (°) Link 1 (°) Link 2 (°)

1 ms 0.106 0.089 0.109 0.087 0.077 0.083 0.077 0.076
2 ms 0.107 0.125 0.113 0.092 0.065 0.151 0.069 0.065
5 ms 0.129 0.370 0.115 0.077 0.061 0.291 0.076 0.082
10 ms 0.089 0.285 0.131 0.091 0.057 0.505 0.089 0.088
50 ms 1.954 1.272 0.370 0.335 1.037 1.602 0.407 0.336
100 ms 3.137 6.605 1.078 0.726 3.182 5.595 1.159 0.729
200 ms 7.629 6.778 3.118 3.626 14.532 17.586 3.625 2.375

Maximum absolute peak error

1 ms 0.164 0.173 0.169 0.178 0.124 0.158 0.127 0.150
2 ms 0.172 0.230 0.179 0.18 0.105 0.275 0.114 0.125
5 ms 0.204 0.642 0.179 0.161 0.108 0.509 0.127 0.150

10 ms 0.149 0.512 0.207 0.211 0.107 0.707 0.147 0.200
50 ms 3.430 2.068 0.671 1.196 1.776 2.998 0.774 1.193

100 ms 6.484 11.603 1.964 2.415 5.930 11.551 1.915 2.333
200 ms 14.960 12.569 6.600 10.466 24.629 32.726 5.520 6.878
a CTR stands for compensator.
Fig. 2. The top-left and bottom-left plots show the errors of Link 1 and Link 2, respectively, obtained from the PID controller with delay compensation and a traditional PID
controller. The top-right and bottom-right plots show the errors of Link 1 and Link 2, respectively, obtained from the PD controller with delay compensation and a traditional
PD controller. Errors obtained from the PID/PD + delay compensator are shown as solid lines and the errors obtained from the traditional PID/PD controller are shown as
dash–dot lines. The input delay was chosen to be 50 ms.
Table 2
Results compare performance of the PD controller with delay compensation, when the
B gain matrix is varied from the known inverse inertia matrix. The input delay value
was chosen to be 100 ms. The results indicate that large variations in the gain matrix
may be possible.

Elementwise percentage change in inverse inertia matrix RMS error
Link 1 (°) Link 2 (°)

0 1.172 1.005
+10 1.246 1.168
−10 1.078 0.955
−50 1.583 1.491
+50 1.540 1.249
+100 1.191 1.086
−75 2.948 1.331
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Fig. 3. The top-left and bottom-left plots show the torques of Link 1 and Link 2, respectively, obtained from the PID controller with delay compensation. The top-right and
bottom-right plots show the torques of Link 1 and Link 2, respectively, obtained from the PD controller with delay compensation. The input delay was chosen to be 50 ms.
Table 3
Experimental results when the input delay has uncertainty. The input delay value was selected as
100 ms.

Uncertainty in input delay (%) RMS error
PD + CTR PID + CTRa

Link 1 (°) Link 2 (°) Link 1 (°) Link 2 (°)

0 1.159 0.730 1.078 0.726
(+)10 1.234 0.966 0.937 0.910
(−)10 1.079 1.215 0.756 0.410
(+)20 1.338 1.548 1.304 1.810
(−)20 1.192 1.773 0.782 0.617
(+)30 1.451 1.761 1.498 0.659
(−)30 1.452 1.322 0.768 0.609
(+)50 1.629 2.513 2.242 1.181
(−)50 1.186 1.450 0.987 0.907
(+)80 3.528 6.819 3.092 1.510
(−)80 1.229 5.408 0.915 2.053
(+)90 4.099 12.020 3.322 1.836
(−)90 3.260 6.041 0.874 2.461
(+)100 4.331 12.445 4.219 3.101
(−)100 3.182 5.595 3.137 6.605
a CTR stands for compensator.
the inertia matrix is over-approximated by 100%. However, un-
derestimating the inverse inertia matrix (particularly when devia-
tion from the inverse inertia matrix was 75%), yielded increased
tracking errors. Different results may be obtained for different
systems. The third set of experiments, given in Table 3 were
conducted to show that promising results can be obtained even
when the input delay value is not exactly known; however, the
tracking error performance degradeswith increasing inaccuracy in
delay value approximation (e.g., in the case of PD + compensator,
the tracking error increases significantly when the delay value is
overestimated by 80% or greater). For this set of experiments the
input delay was chosen to be 100 ms.

A comparison of the two controllers indicates approximately
equal performance. Specifically, Table 1 indicates that at smaller
time delays the modified PID controller yielded slightly improved
results in Link 1 RMS tracking error, whereas the modified PD
controller exhibited slightly improved results for the Link 2 RMS
tracking error. For delays of greater than 50 ms, the modified PID
controller exhibits an overall improved trend over themodified PD
controller, but not a statistically significant difference. Likewise, in
terms of maximum absolute error, the modified PID controller has
a consistent trend of better performance for Link 1, whereas the
modified PD controller has a trend of better performance for Link
2. When comparing the two controllers with regard to robustness
to uncertainty in the time delay parameter, the modified PID
controller exhibits a favorable trend.

5. Conclusion

Control methods are developed for a class of unknown
Euler–Lagrange systemswith input delay. The designed controllers
have a predictor-based structure to compensate for delays in the
input. LK functionals are constructed to aid the stability analysis
which yields a semi-global uniformly ultimately bounded result.
The experimental results show that the developed controllers
have improved performance when compared to traditional PID/PD
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controllers in the presence of input delay. A key contribution is
the development of the first ever controllers to address delay in
the input of an uncertain nonlinear system. The result has been
heretofore an open challenge because of the need to develop a
stabilizing predictor for the dynamic response of an uncertain
nonlinear system. To develop the controllers, the time delay was
required to be a known constant. While some applications have
known delays (e.g., teleoperation Anderson & Spong, 1989, some
network delays Liu, Mu, Rees, & Chai, 2006, time constants in
biological systems Riener & Fuhr, 1998; Schauer et al., 2005),
the development of more generalized results (which have been
developed for some linear systems) with unknown time delays
remains an open challenge. However, the experimental results
illustrated some robustness with regard to the uncertainty in the
time delay. The experiments also illustrated that the traditional
PI and PID controllers led to control saturation, a problem that
is exacerbated by the input delay resulting in a build-up of
errors. The proposed controllers did not exhibit control saturation
for the considered delay values; however, saturation could
potentially occur for longer delays. Future studies will consider
the development of predictor-based controllers for uncertain
nonlinear systems under the additional constraint of actuator
saturation.
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