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a b s t r a c t

An online adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal
control problem for continuous-time uncertain nonlinear systems. A novel actor–critic–identifier (ACI)
is proposed to approximate the Hamilton–Jacobi–Bellman equation using three neural network (NN)
structures—actor and critic NNs approximate the optimal control and the optimal value function,
respectively, and a robust dynamic neural network identifier asymptotically approximates the uncertain
system dynamics. An advantage of using the ACI architecture is that learning by the actor, critic,
and identifier is continuous and simultaneous, without requiring knowledge of system drift dynamics.
Convergence of the algorithm is analyzed using Lyapunov-based adaptive control methods. A persistence
of excitation condition is required to guarantee exponential convergence to a bounded region in the
neighborhood of the optimal control and uniformly ultimately bounded (UUB) stability of the closed-
loop system. Simulation results demonstrate the performance of the actor–critic–identifier method for
approximate optimal control.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Reinforcement learning (RL) uses evaluative feedback from
the environment to take appropriate actions (Sutton & Barto,
1998). One of the most widely used architectures to implement
RL algorithms is the actor–critic architecture, where an actor
performs certain actions by interacting with its environment, the
critic evaluates the actions and gives feedback to the actor, leading
to improvement in performance of subsequent actions (Barto,
Sutton, & Anderson, 1983; Sutton & Barto, 1998; Widrow, Gupta,
& Maitra, 1973). Actor–critic algorithms are pervasive in machine
learning and are used to learn the optimal policy online for finite-
space discrete-time Markov decision problems (Barto et al., 1983;
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Konda & Tsitsiklis, 2004; Prokhorov, Wunsch, & C, 1997; Sutton &
Barto, 1998; Werbos, 1990).

Similar to RL, optimal control involves selection of an optimal
policy based on some long-term performance criteria. Dynamic
Programming (DP) provides a means to solve optimal control
problems (Kirk, 2004); however, DP is implemented backward
in time, making it offline and computationally expensive for
complex systems. Owing to the similarities between optimal
control and RL (Sutton, Barto, & Williams, 1992), Werbos (1990)
introduced RL-based actor–critic methods for optimal control,
called Approximate Dynamic Programming (ADP). ADP uses neural
networks (NNs) to approximately solve DP forward-in-time, thus
avoiding the curse of dimensionality. A detailed discussion of ADP-
based designs is found in Bertsekas and Tsitsiklis (1996), Prokhorov
et al. (1997) and Si, Barto, Powell, andWunsch (2004). The success
of ADP prompted a major research effort towards designing ADP-
based optimal feedback controllers. The discrete/iterative nature of
the ADP formulation lends itself naturally to the design of discrete-
time optimal controllers (Al-Tamimi, Lewis, & Abu-Khalaf, 2008;
Balakrishnan & Biega, 1996; Dierks, Thumati, & Jagannathan, 2009;
Ferrari & Stengel, 2002; He & Jagannathan, 2007; Lendaris, Schultz,
& Shannon, 2000; Padhi, Unnikrishnan, Wang, & Balakrishnan,
2006).

Extensions of ADP-based controllers to continuous-time sys-
tems entails challenges in proving stability, and convergence, and
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ensuring the algorithm is online andmodel-free. Early solutions to
the problem consisted of using a discrete-time formulation of time
and state, and then applying an RL algorithm on the discretized
system. Discretizing the state space for high dimensional systems
requires a large memory space and a computationally prohibitive
learning process. Baird (1993) proposedAdvantageUpdating, an ex-
tension of the Q-learning algorithm which could be implemented
in continuous-time and provided faster convergence. Doya (2000)
used a Hamilton–Jacobi–Bellman (HJB) framework to derive algo-
rithms for value function approximation and policy improvement,
based on a continuous-time version of the temporal difference er-
ror. Murray, Cox, Lendaris, and Saeks (2002) also used the HJB
framework to develop a stepwise stable iterative ADP algorithm for
continuous-time input-affine systemswith an input quadratic per-
formance measure. In Beard, Saridis, and Wen (1997), Galerkin’s
spectral method is used to approximate the solution to the gen-
eralized HJB (GHJB), using which a stabilizing feedback controller
was computed offline. Similar to Beard et al. (1997), Abu-Khalaf
and Lewis (2005) proposed a least-squares successive approxima-
tion solution to the GHJB, where an NN is trained offline to learn
the GHJB solution.

All of the aforementioned approaches for continuous-time
nonlinear systems are offline and/or require complete knowledge
of system dynamics. One of the contributions in Vrabie and
Lewis (2009) is that only partial knowledge of the system
dynamics is required, and a hybrid continuous-time/discrete-
time sampled data controller is developed based on policy
iteration (PI), where the feedback control operation of the actor
occurs at a faster time scale than the learning process of the
critic. Vamvoudakis and Lewis (2010) extended the idea by
designing a model-based online algorithm called synchronous
PI which involved synchronous, continuous-time adaptation of
both actor and critic neural networks. Inspired by the work in
Vamvoudakis and Lewis (2010), a novel actor–critic–identifier
architecture is proposed in this paper to approximately solve
the continuous-time infinite horizon optimal control problem
for uncertain nonlinear systems; however, unlike Vamvoudakis
and Lewis (2010), the developed method does not require
knowledge of the system drift dynamics. The actor and critic NNs
approximate the optimal control and the optimal value function,
respectively, whereas the identifier dynamic neural network
(DNN) estimates the system dynamics online. The integral RL
technique in Vrabie and Lewis (2009) leads to a hybrid continuous-
time/discrete-time controller with two time-scale actor–critic
learning process, whereas the approach in Vamvoudakis and Lewis
(2010), although continuous-time, requires complete knowledge
of system dynamics. A contribution of this paper is the use
of a novel actor–critic–identifier architecture, which obviates
the need to know the system drift dynamics, and where
the learning of the actor, critic and identifier is continuous
and simultaneous. Moreover, the actor–critic–identifier method
utilizes an identification-based online learning scheme, and hence
is the first ever indirect adaptive control approach to RL. The idea
is similar to the Heuristic Dynamic Programming (HDP) algorithm
(Werbos, 1992), where Werbos suggested the use of a model
network along with the actor and critic networks. Because of the
generality of the considered system and objective function, the
solution approach in this paper can be used in a wide range of
applications in different fields, e.g., optimal control of space/air
vehicles, chemical andmanufacturing processes, robotics, financial
systems, etc.

In the developed method, the actor and critic NNs use gradient
and least-squares-based update laws, respectively, to minimize
the Bellman error, which is the difference between the exact
and the approximate HJB equation. The identifier DNN is a
combination of a Hopfield-type (Hopfield, 1984) component, in
parallel configuration with the system (Poznyak, Sanchez, & Yu,
2001), and a novel RISE (Robust Integral of Sign of the Error)
component. The Hopfield component of the DNN learns the
system dynamics based on online gradient-based weight tuning
laws, while the RISE term robustly accounts for the function
reconstruction errors, guaranteeing asymptotic estimation of the
state and the state derivative. The online estimation of the
state derivative allows the actor–critic–identifier architecture to
be implemented without knowledge of system drift dynamics;
however, knowledge of the input gain matrix is required to
implement the control policy. While the design of the actor and
critic are coupled through the HJB equation, the design of the
identifier is decoupled from actor–critic, and can be considered as
a modular component in the actor–critic–identifier architecture.
Convergence of the actor–critic–identifier-based algorithm and
stability of the closed-loop system are analyzed using Lyapunov-
based adaptive control methods, and a persistence of excitation
(PE) condition is used to guarantee exponential convergence to a
bounded region in the neighborhood of the optimal control and
uniformly ultimately bounded (UUB) stability of the closed-loop
system. The PE condition is equivalent to the exploration paradigm
in RL (Sutton & Barto, 1998) and ensures adequate sampling of the
system’s dynamics, required for convergence to the optimal policy.

2. Actor–critic–identifier architecture for HJB approximation

Consider a continuous-time nonlinear system

ẋ = F(x, u),

where x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm is the control input, F :

X × U →Rn is Lipschitz continuous onX × U containing the ori-
gin, such that the solution x(t) of the system is unique for any finite
initial condition x0 and control u ∈ U. The optimal value function
can be defined as

V ∗(x(t)) = min
u(τ )∈Ψ (X)
t≤τ<∞


∞

t
r(x(s), u(x(s))) ds, (1)

where Ψ (X) is a set of admissible policies, and r(x, u) ∈ R is the
immediate or local cost, defined as

r(x, u) = Q (x)+ uTRu, (2)

where Q (x) ∈ R is continuously differentiable and positive defi-
nite, and R ∈ Rm×m is a positive-definite symmetricmatrix. For the
local cost in (2), which is convex in the control, and control-affine
dynamics of the form

ẋ = f (x)+ g(x)u, (3)

where f (x) ∈ Rn and g(x) ∈ Rn×m, the closed-form expression for
optimal control is derived as Kirk (2004)

u∗(x) = −
1
2
R−1gT (x)

∂V ∗(x)
∂x

T

, (4)

where it is assumed that the value function V ∗(x) is continuously
differentiable and satisfies V ∗(0) = 0.

The Hamiltonian of the system in (3) is given by

H(x, u, Vx) , VxFu + ru,

where Vx , ∂V
∂x ∈ R1×n denotes the gradient of the value function

V (x), Fu(x, u) , f (x) + g(x)u ∈ Rn denotes the system dynamics
with control u(x), and ru , r(x, u) denotes the local cost with con-
trol u(x). The optimal value function V ∗(x) in (1) and the associated
optimal policy u∗(x) in (4) satisfy the HJB equation

H(x, u∗, V ∗

x ) = V ∗

x Fu∗ + ru∗ = 0. (5)
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Fig. 1. Actor–critic–identifier architecture to approximate the HJB.

Replacing u∗(x), V ∗
x (x), and Fu∗(x, u∗) in (5) by their approxima-

tions, û(x) (actor), V̂ (x) (critic), and F̂û(x, x̂, û) (identifier), respec-
tively, the approximate HJB equation is given by

Ĥ(x, x̂, û, V̂x) = V̂xF̂û + rû, (6)

where x̂(t) is the state of the identifier, and Ĥ(·) is the approxi-
mate Hamiltonian. Using (5) and (6), the error between the actual
and the approximate HJB equation is given by the Bellman residual
error δhjb(x, x̂, û, V̂x), defined as

δhjb , Ĥ(x, x̂, û, V̂x)− H(x, u∗, V ∗

x ). (7)

Since H(x, u∗, V ∗
x ) ≡ 0, the Bellman error can be written in a mea-

surable form as

δhjb = Ĥ(x, x̂, û, V̂x) = V̂xF̂û + r(x, û). (8)

The actor and critic learn based on the Bellman error δhjb(·),
whereas the identifier estimates the system dynamics online using
the identification error x̃(t) , x(t)− x̂(t), and hence is decoupled
from the actor–critic design. The block diagram of the ACI architec-
ture is shown in Fig. 1.

The following assumptions are made about the control-affine
system in (3).

Assumption 1. The functions f (x) and g(x) are second-order
differentiable.

Assumption 2. The input gain matrix g(x) is known and bounded,
i.e. 0 < ∥g(x)∥ ≤ ḡ , where ḡ is a known positive constant.

Assuming the optimal control, the optimal value function and the
system dynamics are continuous and defined on compact sets,
NNs can be used to approximate them (Cybenko, 1989; Hornik,
Stinchcombe, & White, 1985). Some standard NN assumptions
which will be used throughout the paper are:

Assumption 3. Given a continuous function Υ : S → Rn, where S
is a compact simply connected set, there exists ideal weightsW , V
such that the function can be represented by a NN as

Υ (x) = W Tσ(V T x)+ ε(x),

where σ(·) is the nonlinear activation function, and ε(x) is the
function reconstruction error.

Assumption 4. The ideal NN weights are bounded by known
positive constants, i.e. ∥W∥ ≤ W̄ , ∥V∥ ≤ V̄ (Lewis, Selmic, &
Campos, 2002).
Assumption 5. The NN activation function σ(·) and its derivative
with respect to its arguments, σ ′(·), are bounded.

Assumption 6. Using the NN universal approximation property
(Cybenko, 1989; Hornik et al., 1985), the function reconstruction
errors and its derivativewith respect to its arguments are bounded
(Lewis et al., 2002) as ∥ε(·)∥ ≤ ε̄,

ε′(·)
 ≤ ε̄′.

3. Actor–critic design

Using Assumption 3 and (4), the optimal value function and the
optimal control can be represented by NNs as

V ∗(x) = W Tφ(x)+ εv(x),

u∗(x) = −
1
2
R−1gT (x)(φ′(x)TW + ε′

v(x)
T ), (9)

where W ∈ RN are unknown ideal NN weights, N is the num-
ber of neurons, φ(x) , [φ1(x)φ2(x) · · ·φN(x)]T ∈ RN and φ′(x) ,
∂φ

∂x ∈ RN×n, such that φi(0) = 0 and φ′

i (0) = 0 ∀i = 1 . . .N , and
εv(·) ∈ R is the function reconstruction error.

Assumption 7. The NN activation functions {φi(x) : i = 1 . . .N}

are selected so that as N → ∞, φ(x) provides a complete inde-
pendent basis for V ∗(x).

Using Assumption 7 and the Weierstrass higher-order approxi-
mation theorem, both V ∗(x) and ∂V∗(x)

∂x can be uniformly approx-
imated by NNs in (9), i.e. as N → ∞, the approximation errors
εv(x), ε′

v(x) → 0 (Abu-Khalaf & Lewis, 2005). The critic V̂ (x) and
the actor û(x) approximate the optimal value function and the op-
timal control in (9), and are given by

V̂ (x) = Ŵ T
c φ(x); û(x) = −

1
2
R−1gT (x)φ′T (x)Ŵa, (10)

where Ŵc(t) ∈ RN and Ŵa(t) ∈ RN are estimates of the ideal
weights of the critic and actor NNs, respectively. The weight esti-
mation errors for the critic and actor NNs are defined as W̃c(t) ,

W − Ŵc(t) ∈ RN and W̃a(t) , W − Ŵa(t) ∈ RN , respectively.

Remark 1. Since the optimal control is determined using the
gradient of the optimal value function in (9), the critic NN in (10)
may be used to determine the actor without using another NN for
the actor. However, for ease in deriving weight update laws and
subsequent stability analysis, separate NNs are used for the actor
and the critic (Vamvoudakis & Lewis, 2010).

The actor and critic NN weights are both updated based on the
minimization of the Bellman error δhjb(·) in (8), which can be
rewritten by substituting V̂ (x) from (10) as

δhjb = Ŵ T
c ω + r(x, û), (11)

where ω(x, x̂, û) , φ′(x)F̂û(x, x̂, û) ∈ RN is the critic NN regressor
vector.

3.1. Least-squares update for the critic

Let Ec(δhjb) ∈ R+ denote the integral squared Bellman error as

Ec =

 t

0
δ2hjb(τ )dτ . (12)

The least-squares (LS) update law for the critic is generated by
minimizing (12) as

∂Ec
∂Ŵc

= 2
 t

0
δhjb(τ )

∂δhjb(τ )

∂Ŵc(t)
dτ = 0. (13)
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Using ∂δhjb

∂Ŵc
= ωT from (11), the batch LS critic weight estimate is

determined from (13) as Sastry and Bodson (1989)

Ŵc(t) = −

 t
0 ω(τ)ω(τ)

Tdτ
−1  t

0 ω(τ)r(τ )dτ , (14)

provided the inverse
 t

0 ω(τ)ω(τ)
Tdτ

−1
exists. For online

implementation, a normalized recursive formulation of the LS
algorithm is developed by taking the time derivative (14) and
normalizing as Sastry and Bodson (1989)

˙̂W c = −ηcΓ
ω

1 + νωTΓω
δhjb, (15)

where ν, ηc ∈ R are constant positive gains, and Γ (t) ,
 t

0 ω(τ)

ω(τ)Tdτ
−1

∈ RN×N is a symmetric estimation gain matrix gen-
erated as

Γ̇ = −ηcΓ
ωωT

1 + νωTΓω
Γ ; Γ (t+r ) = Γ (0) = ϕ0I, (16)

where t+r is the resetting time at which λmin {Γ (t)} ≤ ϕ1, ϕ0 >
ϕ1 > 0. The covariance resetting ensures that Γ (t) is positive-
definite for all time and prevents its value from becoming arbitrar-
ily small in some directions, thus avoiding slow adaptation in some
directions (also called the covariance wind-up problem) (Sastry &
Bodson, 1989). From (16), it is clear that Γ̇ ≤ 0, which means that
the covariance matrix Γ (t) can be bounded as

ϕ1I ≤ Γ (t) ≤ ϕ0I. (17)

3.2. Gradient update for the actor

The actor update, like the critic update in Section 3.1, is based
on the minimization of the Bellman error δhjb(·). However, unlike
the critic weights, the actor weights appear nonlinearly in δhjb(·),
making it problematic to develop a LS update law. Hence, a
gradient update law is developed for the actor which minimizes
the squared Bellman error Ea(t) , δ2hjb, whose gradient is given by

∂Ea
∂Ŵa

= 2
∂δhjb

∂Ŵa
δhjb

= 2


Ŵ T

c φ
′
∂ F̂û
∂ û

∂ û

∂Ŵa
+ 2ûTR

∂ û

∂Ŵa


δhjb, (18)

where (11) is used, and G(x) , g(x)R−1g(x)T ∈ Rn×n is a symmet-
ric matrix. Using (18), the gradient-based update law for the actor
NN is given by

˙̂W a = proj

−
2ηa1

√
1 + ωTω


Ŵ T

c φ
′
∂ F̂û
∂ û

∂ û

∂Ŵa

T

δhjb

−
4ηa1

√
1 + ωTω

∂ û

∂Ŵa

T

Rûδhjb − ηa2(Ŵa − Ŵc)

 (19)

where proj{·} is a smooth projection operator used to bound
the weight estimates (Dixon, Behal, Dawson, & Nagarkatti, 2003;
Krstic, Kokotovic, & Kanellakopoulos, 1995), ηa1, ηa2 ∈ R are pos-
itive adaptation gains, 1√

1+ωTω
is the normalization term, and the

last term in (19) is added for stability (based on the subsequent
stability analysis).
Remark 2. A recursive least-squares update law with covariance
resetting is developed for the critic in (15), which exploits the
fact that the critic weights appear linearly in the Bellman error
δhjb(·). This is in contrast to the modified Levenberg–Marquardt
algorithm in Vamvoudakis and Lewis (2010) which is similar to
the normalized gradient update law. The actor update law in (19)
also differs in the sense that the update law in Vamvoudakis and
Lewis (2010) is purely motivated by the stability analysis whereas
the proposed actor update law is based on the minimization of the
Bellman error with an additional term for stability. Heuristically,
these differences in the update law development could lead to
improved performance in terms of faster convergence of the actor
and critic weights, as seen from the simulation results in Section 6.

4. Identifier design

The following assumption is made for the identifier design:

Assumption 8. The control input is bounded, i.e. u(t) ∈ L∞. Using
Assumptions 2 and 5 and the projection algorithm in (19), this
assumption holds for the control design u(t) = û(x) in (10).

Using Assumption 3, the dynamic system in (3), with control û(x),
can be represented using a multi-layer NN as

ẋ = Fû(x, û) = W T
f σ(V

T
f x)+ εf (x)+ g(x)û, (20)

where Wf ∈ RLf +1×n, Vf ∈ Rn×Lf are the unknown ideal NN
weights, σf , σ(V T

f x) ∈ RLf +1 is the NN activation function,
and εf (x) ∈ Rn is the function reconstruction error. The following
multi-layer dynamic neural network (MLDNN) identifier is used to
approximate the system in (20)

˙̂x = F̂û(x, x̂, û) = Ŵ T
f σ̂f + g(x)û + µ, (21)

where x̂(t) ∈ Rn is the DNN state, σ̂f , σ(V̂ T
f x̂) ∈ RLf +1, Ŵf (t) ∈

RLf +1×n and V̂f (t) ∈ Rn×Lf are weight estimates, and µ(t) ∈ Rn

denotes the RISE feedback term defined as Patre, MacKunis, Kaiser,
and Dixon (2008) and Xian, Dawson, de Queiroz, and Chen (2004)

µ , kx̃(t)− kx̃(0)+ v, (22)

where x̃(t) , x(t) − x̂(t) ∈ Rn is the identification error, and
v(t) ∈ Rn is the Filippov generalized solution (Filippov, 1988) to
the differential equation

v̇ = (kα + γ )x̃ + β1sgn(x̃); v (0) = 0,

where k, α, γ , β1 ∈ R are positive constant control gains, and
sgn (·) denotes a vector signum function. The identification error
dynamics can be written as

˙̃x = F̃u(x, x̂, u) = W T
f σf − Ŵ T

f σ̂f + εf (x)− µ, (23)

where F̃û(x, x̂, û) , Fû(x, û) − F̂û(x, x̂, û) ∈ Rn. A filtered identifi-
cation error is defined as

ef , ˙̃x + αx̃. (24)

Taking the time derivative of (24) and using (23) yields

ėf = W T
f σ

′

f V
T
f ẋ −

˙̂W
T

f σ̂f − Ŵ T
f σ̂

′

f
˙̂V
T

f x̂ − Ŵ T
f σ̂

′

f V̂
T
f
˙̂x

+ ε̇f (x)− kef − γ x̃ − β1sgn(x̃)+ α ˙̃x. (25)

Based on (25) and the subsequent stability analysis, theweight up-
date laws for the DNN are designed as
˙̂W f = proj(Γwf σ̂

′

f V̂
T
f
˙̂xx̃T ),

˙̂V f = proj(Γvf ˙̂xx̃T Ŵ T
f σ̂

′

f ), (26)
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where Γwf ∈ RLf +1×Lf +1,Γvf ∈ Rn×n are positive constant adap-
tation gain matrices. The expression in (25) can be rewritten as

ėf = Ñ + NB1 + N̂B2 − kef − γ x̃ − β1sgn(x̃), (27)

where the auxiliary signals, Ñ(x, x̃, ef , Ŵf , V̂f , t),NB1(x, x̂,
Ŵf , V̂f , t), and N̂B2(x̂, ˙̂x, Ŵf , V̂f , t) ∈ Rn are defined as

Ñ , α ˙̃x −
˙̂W

T

f σ̂f − Ŵ T
f σ̂

′

f
˙̂V
T

f x̂ +
1
2
W T

f σ̂
′

f V̂
T
f
˙̃x

+
1
2
Ŵ T

f σ̂
′

f V
T
f
˙̃x, (28)

NB1 , W T
f σ

′

f V
T
f ẋ −

1
2
W T

f σ̂
′

f V̂
T
f ẋ −

1
2
Ŵ T

f σ̂
′

f V
T
f ẋ + ε̇f (x), (29)

N̂B2 ,
1
2
W̃ T

f σ̂
′

f V̂
T
f
˙̂x +

1
2
Ŵ T

f σ̂
′

f Ṽ
T
f
˙̂x, (30)

where W̃f , Wf − Ŵf (t) ∈ RLf +1×n and Ṽf , Vf − V̂f (t) ∈ Rn×Lf .
To facilitate the subsequent stability analysis, an auxiliary term
NB2(x̂, ẋ, Ŵf , V̂f , t) ∈ Rn is defined by replacing ˙̂x(t) in N̂B2(·) by
ẋ(t), and ÑB2(x̂, ˙̃x, Ŵf , V̂f , t) , N̂B2(·)−NB2(·). The termsNB1(·) and
NB2(·) are grouped asNB , NB1+NB2. UsingAssumptions 2 and 4–6,
and (24), (26), (29) and (30), the following bounds can be obtainedÑ ≤ ρ1(∥z∥) ∥z∥ , (31)

∥NB1∥ ≤ ζ1, ∥NB2∥ ≤ ζ2,ṄB
 ≤ ζ3 + ζ4ρ2(∥z∥) ∥z∥ , (32)˙̃xT ÑB2

 ≤ ζ5
x̃2 + ζ6

ef 2 , (33)

where z ,

x̃T eTf

T
∈ R2n, ρ1(·), ρ2(·) ∈ R are positive, globally

invertible, non-decreasing functions, and ζi ∈ R, i = 1, . . . , 6 are
computable positive constants. To facilitate the subsequent stabil-
ity analysis, letD ⊂ R2n+2 be a domain containing y(t) = 0,where
y(t) ∈ R2n+2 is defined as

y ,

x̃T eTf

√
P

Q
T
, (34)

where the auxiliary function P(z, t) ∈ R is the Filippov generalized
solution (Filippov, 1988) to the differential equation

Ṗ = −L, P(0) = β1

n
i=1

x̃i(0)− x̃T (0)NB(0), (35)

where the auxiliary function L(z, t) ∈ R is defined as

L , eTf (NB1 − β1sgn(x̃))+ ˙̃x
T
NB2 − β2ρ2(∥z∥) ∥z∥

x̃ , (36)

where β1, β2 ∈ R are chosen according to the following sufficient
conditions to ensure P(t) ≥ 0 (Patre et al., 2008)

β1 > max

ζ1 + ζ2, ζ1 +

ζ3

α


, β2 > ζ4. (37)

The auxiliary function Q (W̃f , Ṽf ) ∈ R in (34) is defined as

Q ,
1
4
α

tr(W̃ T

f Γ
−1
wf W̃f )+ tr(Ṽ T

f Γ
−1
vf Ṽf )


,

where tr(·) denotes the trace of a matrix.

Theorem 1. For the system in (3), the identifier developed in (21) along
with the weight update laws in (26) ensures asymptotic identification
of the state and its derivative, in the sense that

lim
t→∞

x̃(t) = 0 and lim
t→∞

˙̃x(t) = 0,
provided the control gains k and γ are chosen sufficiently large
based on the initial conditions of the states2 and satisfy the following
sufficient conditions

γ >
ζ5

α
, k > ζ6, (38)

where ζ5 and ζ6 are introduced in (33), and β1, β2 introduced in (36),
are chosen according to the sufficient conditions in (37).

Proof. See the Appendix. �

Using the developed identifier in (21), the actor weight update law
can now be simplified using (19) as

˙̂W a = proj


−

ηa1
√
1 + ωTω

φ′Gφ′
T

Ŵa − Ŵc


δhjb

− ηa2(Ŵa − Ŵc)


. (39)

5. Convergence and stability analysis

The unmeasurable form of the Bellman error can be written
using (5)–(8) and (11), as

δhjb = Ŵ T
c ω − W T

c φ
′Fu∗ + ûTRû − u∗

T
Ru∗

− ε′

vFu∗ ·

= −W̃ T
c ω − W Tφ′F̃û +

1
4
W̃ T

a φ
′Gφ′

T
W̃a

−
1
4
ε′

vGε
′
T

v − ε′

vFu∗ , (40)

where (9) and (10) are used. The dynamics of the critic weight
estimation error W̃c(t) can now be developed by substituting (40)
in (15), as

˙̃W c = −ηcΓψψ
T W̃c + ηcΓ

ω

1 + νωTΓω


− W Tφ′F̃û

+
1
4
W̃ T

a φ
′Gφ′

T
W̃a −

1
4
ε′

vGε
′
T

v − ε′

vFu∗


, (41)

where ψ(t) , ω(t)√
1+νω(t)TΓ (t)ω(t)

∈ RN is the normalized critic

regressor vector, bounded as

∥ψ∥ ≤
1

√
νϕ1

, (42)

where ϕ1 is introduced in (17). The error system in (41) can be
represented by the following perturbed system

˙̃W c = Ωnom +∆per , (43)

where Ωnom(W̃c, t) , −ηcΓψψ
T W̃c ∈ RN denotes the nominal

system, and∆per(t) , ηcΓ
ω

1+νωTΓω


−W Tφ′F̃û +

1
4W̃

T
a φ

′Gφ′
T
W̃a −

1
4ε

′
vGε

′
T
v − ε′

vFu∗


∈ RN denotes the perturbation. Using Theorem

2.5.1 in Sastry and Bodson (1989), the nominal system

˙̃W c = −ηcΓψψ
T W̃c (44)

is globally exponentially stable, if the bounded signal ψ(t) is PE,
i.e.

µ2I ≥

 t0+δ

t0
ψ(τ)ψ(τ)Tdτ ≥ µ1I ∀t0 ≥ 0,

2 See subsequent semi-global stability analysis.
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for some positive constants µ1, µ2, δ ∈ R. Since Ωnom(W̃c, t) is
continuously differentiable and the Jacobian ∂Ωnom

∂W̃c
= −ηcΓψψ

T

is bounded for the exponentially stable system in (44), the converse
Lyapunov Theorem 4.14 in Khalil (2002) can be used to show that
there exists a function Vc : RN

× [0,∞) → R, which satisfies the
following inequalities

c1
W̃c

2 ≤ Vc(W̃c, t) ≤ c2
W̃c

2
∂Vc

∂t
+
∂Vc

∂W̃c
Ωnom(W̃c, t) ≤ −c3

W̃c

2 (45) ∂Vc

∂W̃c

 ≤ c4
W̃c

 ,
for somepositive constants c1, c2, c3, c4 ∈ R.UsingAssumptions 2,
4–6 and 8, the projection bounds in (19), the fact that Fu∗ ∈ L∞

(using (4), Assumptions 2–6, and (9)), and provided the conditions
of Theorem 1 hold (required to prove that F̃û ∈ L∞), the following
bounds can be developed:W̃a

 ≤ κ1,

φ′Gφ′
T
 ≤ κ2,14W̃ T

a φ
′Gφ′

T
W̃a −

1
4
ε′

vGε
′
T

v − W Tφ′F̃û − ε′

vFu∗

 ≤ κ3,12W Tφ′Gε′
T

v +
1
2
ε′

vGε
′
T

v +
1
2
W Tφ′Gφ′

T
W̃a

+
1
2
ε′

vGφ
′
T

 ≤ κ4, (46)

where κ1, κ2, κ3, κ4 ∈ R are computable positive constants.

Theorem 2. If Assumptions 1–8 hold, the regressor ψ(t) ,
ω√

1+ωTΓω
is PE (persistently exciting), and provided (37), (38) and

the following sufficient gain condition is satisfied3

c3
ηa1

> κ1κ2, (47)

where ηa1, c3, κ1, κ2 are introduced in (19), (45) and (46), then the
controller in (10), the actor–critic weight update laws in (15), (16)
and (39), and the identifier in (21) and (26) guarantee that the state
of the system x(t), and the actor–critic weight estimation errors W̃a(t)
and W̃c(t) are UUB.

Proof. To investigate the stability of (3) with control û(x), and the
perturbed system in (43), consider VL : X × RN

× RN
× [0,∞) →

R as the continuously differentiable, positive-definite Lyapunov
function candidate defined as

VL(x, W̃c, W̃a, t) , V ∗(x)+ Vc(W̃c, t)+
1
2
W̃ T

a W̃a,

where V ∗(x) (the optimal value function), is the Lyapunov
function for (3), and Vc(W̃c, t) is the Lyapunov function for the
exponentially stable system in (44). Since V ∗(x) is continuously
differentiable and positive-definite from (1) and (2), there exist
class K functions α1 and α2 defined on [0, a], where Ba ⊂ X (see
Lemma 4.3 in Khalil, 2002), such that

α1(∥x∥) ≤ V ∗(x) ≤ α2(∥x∥) ∀x ∈ Ba. (48)

3 Since c3 is a function of the critic adaptation gain ηc , ηa1 is the actor adaptation
gain, and κ1, κ2 are known constants, the sufficient gain condition in (47) can be
easily satisfied.
Using (45) and (48), VL(x, W̃c, W̃a, t) can be bounded as

α1(∥x∥)+ c1
W̃c

2 +
1
2

W̃a

2 ≤ VL(x, W̃c, W̃a, t)

≤ α2(∥x∥)+ c2
W̃c

2 +
1
2

W̃a

2 ,
which can be written as

α3(
z̃) ≤ VL(x, W̃c, W̃a, t) ≤ α4(

z̃) ∀z̃ ∈ Bs,

where z̃(t) , [x(t)T W̃c(t)T W̃a(t)T ]T ∈ Rn+2N , α3 and α4 are class
K functions defined on [0, s], where Bs ⊂ X × RN

× RN . Taking
the time derivative of VL(·) yields

V̇L =
∂V ∗

∂x
f +

∂V ∗

∂x
gû +

∂Vc

∂t
+
∂Vc

∂W̃c
Ωnom

+
∂Vc

∂W̃c
∆per − W̃ T

a
˙̂W a, (49)

where the time derivative of V ∗(·) is taken along the trajectories
of the system (3) with control û(·) and the time derivative of Vc(·)

is taken along the trajectories of the perturbed system (43). To
facilitate the subsequent analysis, the HJB in (5) is rewritten as
∂V∗

∂x f = −
∂V∗

∂x gu∗
− Q (x) − u∗

T
Ru∗. Substituting for ∂V∗

∂x f in (49),
using the fact that ∂V∗

∂x g = −2u∗
T
R from (4), and using (19) and

(45), (49) can be upper bounded as

V̇L ≤ −Q − u∗
T
Ru∗

− c3
W̃c

2 + c4
W̃c

 ∆per


+ 2u∗
T
R(u∗

− û)+ ηa2W̃ T
a (Ŵa − Ŵc)

+
ηa1

√
1 + ωTω

W̃ T
a φ

′Gφ′
T
(Ŵa − Ŵc)δhjb. (50)

Substituting for u∗, û, δhjb, and ∆per using (4), (10), (40) and (43),
respectively, and using (17) and (42) in (50), yields

V̇L ≤ −Q − c3
W̃c

2 − ηa2

W̃a

2 +
1
2
W Tφ′Gε′

T

v

+
1
2
ε′

vGε
′
T

v +
1
2
W Tφ′Gφ′

T
W̃a +

1
2
ε′

vGφ
′
T
W̃a

+ c4
ηcϕ0

2
√
νϕ1

−W Tφ′F̃û +
1
4
W̃ T

a φ
′Gφ′

T
W̃a

−
1
4
ε′

vGε
′
T

v − ε′

vFu∗

 W̃c

+ ηa2

W̃a

 W̃c


+

ηa1
√
1 + ωTω

W̃ T
a φ

′Gφ′
T
(W̃c − W̃a)


− W̃ T

c ω

−W Tφ′F̃û +
1
4
W̃ T

a φ
′Gφ′

T
W̃a −

1
4
ε′

vGε
′
T

v − ε′

vFu∗


. (51)

Using the bounds developed in (46), (51) can be further upper
bounded as

V̇L ≤ −Q − (c3 − ηa1κ1κ2)

W̃c

2 − ηa2

W̃a

2
+


c4ηcϕ0

2
√
νϕ1

κ3 + ηa1κ1κ2κ3 + ηa1κ
2
1κ2 + ηa2κ1

W̃c


+ ηa1κ

2
1κ2κ3 + κ4.
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Provided c3 > ηa1κ1κ2, and completing the square yields

V̇L ≤ −Q − (1 − θ)(c3 − ηa1κ1κ2)

W̃c

2 − ηa2

W̃a

2
+

1
4θ(c3 − ηa1κ1κ2)


c4ηcϕ0

2
√
νϕ1

κ3 + ηa1κ1κ2κ3

+ ηa1κ
2
1κ2 + ηa2κ1

2

+ ηa1κ
2
1κ2κ3 + κ4, (52)

where 0 < θ < 1. Since Q (x) is positive definite, Lemma 4.3 in
Khalil (2002) indicates that there exist classK functions α5 and α6
such that

α5(
z̃) ≤ Q + (1 − θ)(c3 − ηa1κ1κ2)

W̃c

2 + ηa2

W̃a

2
≤ α6(

z̃) ∀v ∈ Bs. (53)

Using (53), the expression in (52) can be further upper bounded as

V̇L ≤ −α5(
z̃)+

1
4θ(c3 − ηa1κ1κ2)


c4ηcϕ0

2
√
νϕ1

κ3

+ ηa1κ1κ2κ3 + ηa1κ
2
1κ2 + ηa2κ1

2

+ ηa1κ
2
1κ2κ3 + κ4,

which proves that V̇L(·) is negative whenever z̃(t) lies outside the
compact set Ωz̃ ,


z̃ :

z̃ ≤ α−1
5

 1
4θ(c3−ηa1κ1κ2)

 c4ηcϕ0
2
√
νϕ1
κ3 +

ηa1κ1κ2κ3 + ηa1κ
2
1κ2 + ηa2κ1

2
+ ηa1κ

2
1κ2κ3 + κ4


, and hence,z̃(t) is UUB (see Theorem 4.18 in Khalil, 2002). The bounds in

(46) depend on the actor NN approximation error ε′
v , which can be

reduced by increasing the number of neurons N , thereby reducing
the size of the residual setΩz̃ . From Assumption 7, as the number
of neurons of the actor and critic NNs N → ∞, the reconstruction
error ε′

v → 0. �

Remark 3. Since the actor, critic and identifier are continuously
updated, the developed RL algorithm can be compared to fully
optimistic PI in machine learning literature (Bertsekas & Tsitsiklis,
1996), where policy evaluation and policy improvement are done
after every state transition, unlike traditional PI, where policy
improvement is done after convergence of the policy evaluation
step. Proving convergence of optimistic PI is complicated and
is an active area of research in machine learning (Bertsekas &
Tsitsiklis, 1996; Busoniu, Babuska, De Schutter, & Ernst, 2010). By
considering an adaptive control framework, this result investigates
the convergence and stability behavior of fully optimistic PI in
continuous-time.

Remark 4. The PE condition in Theorem 2 is equivalent to the
exploration paradigm in RL which ensures sufficient sampling of
the state space and convergence to the optimal policy (Sutton &
Barto, 1998).

6. Simulation

The following nonlinear system is considered (Vamvoudakis &
Lewis, 2010)

ẋ =


−x1 + x2

−0.5x1 − 0.5x2(1 − (cos(2x1)+ 2)2)


+


0

cos(2x1)+ 2


u, (54)
where x(t) , [x1(t)x2(t)]T ∈ R2 and u(t) ∈ R. The state and
control penalties are chosen as

Q (x) = xT

1 0
0 1


x; R = 1.

The optimal value function and optimal control for the system in
(54) are known, and given by Vamvoudakis and Lewis (2010)

V ∗(x) =
1
2
x21 + x22; u∗(x) = −(cos(2x1)+ 2)x2,

which can be used to find the optimal weights W = [0.501]T . The
activation function for the critic NN is selectedwithN = 3 neurons
as

φ(x) = [x21 x1x2 x22]
T ,

while the activation function for the identifier DNN is selected as a
symmetric sigmoid with Lf = 5 neurons in the hidden layer.

Remark 5. The choice of a good basis for the value function and
control policy is critical for convergence. For a general nonlinear
system, choosing a suitable basis can be a challenging problem
without any prior knowledge about the system. This is an active
area of research in machine learning.

The identifier gains are selected as

k = 800, α = 300, γ = 5, β1 = 0.2,
Γwf = 0.1I6×6, Γvf = 0.1I2×2,

and the gains for the actor–critic learning laws are selected as

ηa1 = 10, ηa2 = 50, ηc = 20, ν = 0.005.

The covariance matrix is initialized to Γ (0) = 5000, all the NN
weights are randomly initialized in [−1, 1], and the states are ini-
tialized to x(0) = [3,−1]. An implementation issue in using the
developed algorithm is to ensure PE of the critic regressor vec-
tor. Unlike linear systems, where PE of the regressor translates to
sufficient richness of the external input, no verifiable method ex-
ists to ensure PE in nonlinear regulation problems. To ensure PE
qualitatively, a small exploratory signal consisting of sinusoids of
varying frequencies, n(t) = sin2(t) cos(t) + sin2(2t) cos(0.1t) +

sin2(−1.2t) cos(0.5t)+ sin5(t), is added to the control u(t) for the
first 3 s (Vamvoudakis & Lewis, 2010). The proposed control al-
gorithm is implemented using (10), (11), (15), (16), (21), (22) and
(39). The evolution of states is shown in Fig. 2. The identifier ap-
proximates the system dynamics, and the state derivative estima-
tion error is shown in Fig. 3.

Remark 6. As compared to discontinuous sliding mode robust
identifiers which require infinite bandwidth and exhibit chatter-
ing, the RISE-based identifier developed in (21) is continuous, and
thus, mitigates chattering to a large extent, as seen in Fig. 3.

Persistence of excitation ensures that the weights converge close
to their optimal values, i.e., Ŵc = [0.5004 0.0005 0.9999]T (≈ Ŵa)

in approximately 2 s, as seen from the evolution of actor–critic
weights in Figs. 4 and 5. The improved actor–critic weight update
laws, based on minimization of the Bellman error, led to faster
convergence of weights as compared to (Vamvoudakis & Lewis,
2010). The errors in approximating the optimal value function and
optimal control at steady state (t = 10 s.) are plotted against the
states in Figs. 6 and 7, respectively.
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Fig. 2. System states x(t)with persistently excited input for the first 3 s.

Fig. 3. Error in estimating the state derivative ˙̃x(t) by the identifier.

Fig. 4. Convergence of critic weights Ŵc(t).

7. Conclusion

An actor–critic–identifier architecture is proposed to learn the
approximate solution to the HJB equation for infinite-horizon op-
timal control of uncertain nonlinear systems. The online method
is the first ever indirect adaptive control approach to continuous-
timeRL. The learning by the actor, critic and identifier is continuous
Fig. 5. Convergence of actor weights Ŵa(t).

Fig. 6. Error in approximating the optimal value function by the critic at steady
state.

Fig. 7. Error in approximating the optimal control by the actor at steady state.

and simultaneous, and the novel addition of the identifier to the
traditional actor–critic architecture eliminates the need to know
the system drift dynamics. The actor and critic minimize the Bell-
man error using gradient and least-squares update laws, respec-
tively, and provide online approximations to the optimal control
and the optimal value function, respectively. The identifier esti-
mates the system dynamics online and asymptotically converges
to the system state and its derivative. A PE condition is required to
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ensure exponential convergence to a bounded region in the neigh-
borhood of the optimal control andUUB stability of the closed-loop
system. Simulation results demonstrate the performance of the
actor–critic–identifier-basedmethod. A limitation of themethod is
the requirement of the knowledge of the input gain matrix. Future
efforts will investigate ways to overcome this limitation, e.g., using
methods similar to the model-free Q-learning methods (Bradtke,
Ydstie, & Barto, 1994; Mehta, Barooah, & Dixon, 2009; Watkins &
Dayan, 1992).

Appendix. Proof of Theorem 1

Let VI(y) : D → R be a Lipschitz continuous regular positive
definite function defined as

VI ,
1
2
eTf ef +

1
2
γ x̃T x̃ + P + Q , (A.1)

which satisfies the following inequalities:

U1(y) ≤ VI(y) ≤ U2(y), (A.2)

where U1(y), U2(y) ∈ R are continuous positive definite functions
defined as

U1 ,
1
2
min(1, γ ) ∥y∥2 U2 , max(1, γ ) ∥y∥2 .

Let ẏ = h(y, t) represent the closed-loop differential equations in
(23), (26), (27) and (35), where h(y, t) ∈ R2n+2 denotes the right-
hand side of the closed-loop error signals. Using Filippov’s theory
of differential inclusions (Filippov, 1964; Smirnov, 2002), the ex-
istence of solutions can be established for ẏ ∈ K [h](y, t), where
K [h] ,


δ>0


µM=0 coh(B(y, δ) − M, t), where


µM=0 denotes

the intersection over all sets M of Lebesgue measure zero, co de-
notes convex closure, and B(y, δ) = {x ∈ R2n+2

| ∥y − x∥ < δ}. The
right hand side of the differential equation, h(y, t), is continuous
except for the Lebesguemeasure zero set of times t ∈ [t0, tf ]when
x̃(t) = 0. Hence, the set of time instances for which ẏ(t) is not
defined is Lebesgue negligible. The absolutely continuous solution
y(t) = y(t0) +

 t
t0
ẏ(t)dt does not depend on the value of ẏ(t) on

a Lebesgue negligible set of time instances (Leine & van de Wouw,
2008). Under Filippov’s framework, a generalized Lyapunov stabil-
ity theory can be used to establish strong stability of the closed-
loop system ẏ = h(y, t). The generalized time derivative of (A.1)
exists almost everywhere (a.e.), i.e. for almost all t ∈ [t0, tf ], and

V̇I(y)∈a.e. ˙̃VI(y)where

˙̃VI =


ξ∈∂VI (y)

ξ TK

ėf T ˙̃x

T 1
2
P−

1
2 Ṗ

1
2
Q−

1
2 Q̇
T
, (A.3)

where ∂VI is the generalized gradient of VI(y) (Clarke, 1990). Since
VI (y) is a Lipschitz continuous regular function which is smooth in
y, (A.3) can be simplified as Shevitz and Paden (1994)

˙̃VI = ∇VI
TK

ėf T ˙̃x

T 1
2
P−

1
2 Ṗ

1
2
Q−

1
2 Q̇
T

=


eTf γ x̃

T2P
1
2 2Q

1
2


K

ėf T ˙̃x

T 1
2
P−

1
2 Ṗ

1
2
Q−

1
2 Q̇
T
.

Using the calculus for K [·] from Paden and Sastry (1987, Theorem
1, Properties (2,5,7)), and substituting the dynamics from (27) and
(35), yields

˙̃VI ⊂ eTf (Ñ + NB1 + N̂B2 − kef − β1K [sgn(x̃)] − γ x̃)

+ γ x̃T (ef − αx̃)− eTf (NB1 − β1K [sgn(x̃)])

− ˙̃x
T
NB2 + β2ρ2(∥z∥) ∥z∥

x̃
−
1
2
α

tr(W̃ T

f Γ
−1
wf

˙̂W f )+ tr(Ṽ T
f Γ

−1
vf

˙̂V f )


(A.4)

−
1
2
α

m
i=1


tr(W̃ T

giΓ
−1
wgi

˙̂W gi)+ tr(Ṽ T
giΓ

−1
vgi

˙̂V gi)

.

a.e.
≤ −αγ

x̃2 − k
ef 2 + ρ1(∥z∥) ∥z∥

ef 
+ ζ5

x̃2 + ζ6
ef 2 + β2ρ2(∥z∥) ∥z∥

x̃ , (A.5)
where (26), (31) and (33) are used, K [sgn(x̃)] = SGN(x̃) (Paden &
Sastry, 1987), such that SGN(x̃i) = 1 if x̃i > 0, [−1, 1] if x̃i = 0,
and −1 if x̃i < 0 (the subscript i denotes the ith element). The set
in (A.4) reduces to the scalar inequality in (A.5) since the RHS is
continuous a.e., i.e., the RHS is continuous except for the Lebesgue
measure zero set of times when x̃(t) = 0 (Leine & van de Wouw,
2008). Substituting for k , k1+k2 and γ , γ1+γ2, and completing
the squares, the expression in (A.5) can be upper bounded as
˙̃VI

a.e.
≤ −(αγ1 − ζ5)

x̃2 − (k1 − ζ6)
ef 2

+
ρ1(∥z∥)2

4k2
∥z∥2

+
β2
2ρ2(∥z∥)

2

4αγ2
∥z∥2 . (A.6)

Provided the sufficient conditions in (38) are satisfied, the expres-
sion in (A.6) can be rewritten as

˙̃VI
a.e.
≤ −λ ∥z∥2

+
ρ(∥z∥)2

4η
∥z∥2

a.e.
≤ −U(y)∀y ∈ D (A.7)

where λ , min{αγ1 − ζ5, k1 − ζ6}, η , min

k2,

αγ2
β22


, ρ(∥z∥)2 ,

ρ1(∥z∥)2 + ρ2(∥z∥)2 is a positive, globally invertible, non-
decreasing function, and U(y) = c ∥z∥2 , for some positive con-
stant c , is a continuous, positive semi-definite function defined on
the domain D ,


y(t) ∈ R2n+2

| ∥y∥ ≤ ρ−1

2
√
λη

. The size of

the domainD can be increased by increasing the gains k and γ . The
inequalities in (A.2) and (A.7) can be used to show that VI(y) ∈ L∞

in D; hence, x̃(t), ef (t) ∈ L∞ in D . Using (24), standard linear
analysis can be used to show that ˙̃x(t) ∈ L∞ in D , and since
ẋ(t) ∈ L∞,

˙̂x(t) ∈ L∞ in D . Since Ŵf (t) ∈ L∞ from the use of
projection in (26), σ̂f (t) ∈ L∞ from Assumption 5, and û(t) ∈ L∞

from Assumption 8, µ(t) ∈ L∞ in D from (21). Using the above
bounds, it can be shown from (27) that ėf (t) ∈ L∞ in D . Since
x̃(t),ef (t) ∈ L∞, the definition of U(y) can be used to show that
it is uniformly continuous in D . Let S ⊂ D denote a set defined as
S ,


y(t)⊂ D | U2(y(t)) < 1

2


ρ−1


2
√
λη
2

,where the region
of attraction canbemade arbitrarily large to include any initial con-
ditions by increasing the control gain η (i.e. a semi-global type of
stability result), and hence c ∥z∥2

→ 0ast → ∞∀y(0) ∈ S. Using
the definition of z(t), it can be shown that

x̃(t) , ˙̃x(t) , ef  →

0ast → ∞∀y(0) ∈ S.
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