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a b s t r a c t

This paper examines saturated control of a general class of uncertain nonlinear systems with time-
delayed actuation and additive bounded disturbances. The bound on the control is known a priori
and can be adjusted by changing the feedback gains. A Lyapunov-based stability analysis utilizing
Lyapunov–Krasovskii (LK) functionals is provided to prove uniformly ultimately bounded tracking despite
uncertainties in the dynamics. A numerical example is presented to demonstrate the performance of the
controller.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As described in the survey papers (Gu & Niculescu, 2003;
Richard, 2003; Sipahi, Niculescu, Abdallah, Michiels, & Gu, 2011;
Watanabe, Nobuyama, & Kojima, 1996) (and the hundreds of
references therein) and relatively recent monographs such as
(Gu, Kharitonov, & Chen, 2003; Krstic, 2009; Loiseau, Michiels,
Niculescu, & Sipahi, 2009;Mahmoud, 2000; Niculescu & Gu, 2004),
time delays are pervasive in nature and engineered systems.
A few well-known and documented engineering applications
include digital implementation of a continuous control signal,
regenerative chatter in metal cutting (especially prevalent in high-
speed manufacturing), delays in torque production due to engine
cycle delays in internal combustion engines, chemical process
control, rolling mills, teleoperated robotic systems, control over
networks, and active queue management (AQM). Delays are also
inherent in many biological process such as the delay in a person’s
response due to drugs and alcohol, delays in force production in
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muscle, and the cardiovascular control system. Systems that do not
compensate for such delays can exhibit reduced performance and
potential instability.

Motivated by performance and stability problems with time-
delayed systems, and inspired by the classic results of Smith (1959)
and Artstein (1982), solutions to the input delay problem typ-
ically exploit predictive-based control methods. Several results
have used variations of these methods to solve the input delay
problem for linear systems with certain and uncertain dynam-
ics (Bresch-Pietri & Krstic, 2009; Gomez, Orlov, & Kolmanovsky,
2007; Gu & Niculescu, 2003; Krstic & Smyshlyaev, 2008; Kwon &
Pearson, 1980; Richard, 2003; Yildiz, Annaswamy, Kolmanovsky,
& Yanakiev, 2010). However, as stated in the ‘‘Beyond this Book’’
section of the seminal work in Krstic (2009), Krstic indicates that
approaches developed for uncertain linear systems do not extend
in an obvious way to nonlinear plants since the linear bounded-
ness of the plant model is explicitly used in the stability proof,
and that new methods must be developed for select classes of
nonlinear systems with input delays. Several results have been
developed for input-delayed nonlinear systems with exact model
knowledge (Henson & Seborg, 1994; Jankovic, 2006; Krstic, 2008;
Mazenc & Bliman, 2006; Teel, 1998), but few results examine the
input delay problem for uncertain nonlinear systems. Specifically,
recent results in Sharma, Bhasin, Wang, and Dixon (2011) pro-
posed the development of a predictor-based controller for a time-
delayed actuation system with parametric uncertainty and/or
additive bounded disturbances using Lyapunov–Krasovskii (LK)
functionals to achieve a semi-global uniformly ultimately bounded
tracking result.

Due to the fact that control input signals are a function of the
system states, large initial conditions or unmodeled disturbances
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may cause the controller to exceed physical limitations. For sys-
temswith input delays, errors can build over the delay interval also
leading to large actuator demands, exacerbating potential prob-
lems with actuator saturation. Because degraded control perfor-
mance and the potential risk of thermal or mechanical failure can
occur when unmodeled actuator constraints are violated, control
schemeswhich can ensure performancewhile operatingwithin ac-
tuator limitations are motivated.

The majority of saturated controllers presently available for
systems with input delays are based on linear plant models (Bin
& Zongli, 2010; Cao, Wang, & Tang, 2007; Park, Choi, & Choo, 2000;
Zhou, Lin, & Duan, 2010), and only a few results are present for
nonlinear systems (especially thosewith uncertainties). InMazenc
et al. (2003), global uniform asymptotic stabilization is obtained
with bounded feedback of a strict-feedforward linear system with
delay in the control input. The authors were able to extend
the result to an uncertain but disturbance-free strict-feedforward
nonlinear system with delays in the control input in Mazenc
et al. (2004) using a system of nested saturation functions. The
controller requires a nonlinear strict-feedforward dynamic system
with parametric uncertainty, h (x), which satisfies the following
condition: |h (xi+1, xi+2, . . . , xn)| ≤ M


x2i+1, x

2
i+2, . . . , x

2
n


, where

M denotes a positive real number when
xj ≤ 1, j = i +

1, . . . , n. Unlike compensation-based delay methods, the design
in Mazenc et al. (2004) cleverly exploits the inherent robustness
to delay in the particular structure of the feedback law and
plant. Krstic proposed a saturated compensator-based approach
in Krstic (2010), which results in a nonlinear version of the
Smith Predictor (Smith, 1959) with nested saturation functions,
and is able to achieve quantifiable closed-loop performance by
using an infinite-dimensional compensator for strict-feedforward
nonlinear systems with no uncertainties.

The work presented in this paper (along with the preliminary
work in Fischer, Dani, Sharma, & Dixon, 2011) introduces a new
saturated control design that can predict/compensate for input
delays in uncertain nonlinear systems. Based on our previous non-
saturated feedback work in Sharma et al. (2011), a continuous
saturated controller is developed which allows the bound on the
control to be known a priori and to be adjusted by changing the
feedback gains. The saturated controller is shown to guarantee
uniformly ultimately bounded tracking despite a known constant
input delay, parametric uncertainties, and sufficiently smooth
additive disturbances.2 Admissible values for the known input
delay can be determined based on sufficient gain selection and the
initial conditions of the system. The result is based on the idea
of developing a delay compensating auxiliary signal to obtain a
delay-free open-loop error system and the construction of an LK
functional to cancel the time-delayed terms. The result is valid in a
domain that is a function of the initial conditions. This domain can
be enlarged by selecting larger control gains; however, the size of
the domain is ultimately restricted by the saturation limits of the
actuator. A numerical simulation is presented to demonstrate the
performance of the controller.

2. Dynamic model and properties

Consider a class of nonlinear systems described by

ẍ = f (x, ẋ, t)+ u (t − τ)+ d (t) , (1)

2 To implement this controller on an Euler–Lagrange system with an Inertia
matrix, the control input will be a function of the Inertia matrix. This fact is
discussed in the subsequent simulation section. Thus, to apply the subsequent
theory to an Euler–Lagrange system, one would require exact model knowledge of
the Inertia matrix. For a control design which features an uncertain Inertia matrix,
see Fischer et al. (2011).
where x (t) , ẋ (t) ∈ Rn are the generalized system states, u (t − τ)
∈ Rn represents the generalized delayed control input vector,
where τ ∈ R+ is a constant time delay, f (x, ẋ, t) : Rn

× Rn
×

[0,∞) → Rn is an unknown C2 function that is uniformly
bounded in t , and d (t) ∈ Rn denotes a sufficiently smooth exoge-
nous disturbance (e.g., unmodeled effects).

The subsequent development is based on the assumption that
x (t) and ẋ (t) are measurable outputs, the time delay constant, τ ,
is known, and the control input vector u (t) and its past values
(i.e., u (t − θ)∀θ ∈ [0 τ ]) are measurable. Throughout the paper,
a time-dependent delayed function is denoted as ζ (t − τ) or ζτ .
Additionally, the following assumptions are used.

Assumption 1. The disturbance term and its first time derivative
are bounded by known constants, i.e., ∥d (t)∥ ≤ c1,

ḋ (t) ≤ c2,
where c1, c2 ∈ R+.

Assumption 2. The desired trajectory xd (t) ∈ Rn is designed such
that xd (t) , ẋd (t) , ẍd (t) ∈ L∞.

Assumption 3. The function f (x, ẋ, t) satisfies the following in-
equality: ∥f (x, ẋ, t)− f (xd, ẋd, t)∥ ≤ ρ (∥ϕ∥) ∥ϕ∥, where ϕ(x, ẋ,
xd, ẋd) ∈ R2n is defined asϕ = [x − xd, ẋ − ẋd]T andρ (·) : R → R
is a positive globally invertible function.

Remark 1. Imposing Assumption 3 on f (x, ẋ, t) is less restrictive
than claiming the function satisfies the global Lipschitz condition
(which would yield a linear bound in the states, i.e., ρ (∥ϕ∥) = ρ).

To aid the subsequent control design and analysis, the vector
Tanh (·) ∈ Rn and the matrix Cosh (·) ∈ Rn×n are defined as fol-
lows:

Tanh (ξ) , [tanh (ξ1) , . . . , tanh (ξn)]T , (2)

Cosh (ξ) , diag {cosh (ξ1) , . . . , cosh (ξn)} , (3)

where ξ = [ξ1, . . . , ξn]T ∈ Rn and diag {·} represents a diago-
nal matrix. Based on the definitions in (2) and (3), the following
inequalities hold ∀ξ ∈ Rn (Zhang, Dawson, de Queiroz, & Dixon,
2000):

∥ξ∥2
≥

n
i=1

ln (cosh (ξi)) ≥
1
2
tanh2 (∥ξ∥) ,

∥ξ∥ > ∥Tanh (ξ)∥ , ∥Tanh (ξ)∥2
≥ tanh2 (∥ξ∥) ,

ξ TTanh (ξ) ≥ TanhT (ξ) Tanh (ξ) ,
∥ξ∥

tanh (∥ξ∥)
≤ ∥ξ∥ + 1. (4)

3. Control development

The control objective is to design an amplitude-limited continu-
ous controller thatwill ensure that the generalized state x (t) of the
input-delayed system in (1) tracks xd (t) despite uncertainties and
additive bounded disturbances in the dynamic model. To quantify
the control objective, a tracking error, denoted by e (x, t) ∈ Rn, is
defined as

e , xd − x. (5)

Embedding the control in a bounded trigonometric term (e.g.,
tanh (·)) is an obviousway to limit the control authority below an a
priori limit; however, a difficulty arises in the closed-loop stability
analysis with respect to the delay present in the control. Motivated
by these stability analysis complexities, and through an iterative
analysis procedure, ameasurable filtered tracking error is designed
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which includes additional smooth saturation terms and a finite in-
tegral of past control values. Specifically, the filtered tracking error
r

e, ė, ef , ez, t


∈ Rn is defined as

r , ė (ẋ, t)+ αTanh (e)+ Tanh

ef


− ez (t) , (6)

whereα ∈ R+ is a knownadjustable gain constant, ef (e, r, t) ∈ Rn

is the solution of the auxiliary error filter dynamics given by

ėf , Cosh2 
ef

 
−kr + Tanh (e)− γ Tanh


ef


, (7)

where ef (0) = 0 and k, γ ∈ R+ are constant control gains, and
ez (t) ∈ Rn denotes the finite integral of past control values, de-
fined as

ez ,

 t

t−τ
u (θ) dθ. (8)

From the definition in (8), the finite integral can be upper bounded
as ∥ez∥ ≤ ζz , where ζz ∈ R+ is a known bounding constant pro-
vided the control is bounded.

The open-loop error system can be obtained by taking the time
derivative of (6) and utilizing the expressions in (1) and (5) to yield

ṙ = ẍd (t)− f (x, ẋ, t)− u (t)− d (t)

+αCosh−2 (e) ė (ẋ, t)+ Cosh−2 
ef


ėf


e, ef , r, t


. (9)

From (9) and the subsequent stability analysis, the control input,
u


e, ef , t


, is designed as

u , −kTanh

ef


+ 2Tanh (e) , (10)

where k was introduced in (7).3
An important feature of the controller given by (10) is its

applicability to the case where constraints exist on the available
actuator commands. Note that the control law is bounded by the
adjustable control gain k, since ∥u∥ ≤ (k + 2)

√
n.

The strategy employed to develop the controller in (10) entails
several components. One component is the development of the
filtered error system in (6) and (7), which is composed of saturated
hyperbolic tangent functions designed from the Lyapunov analysis
to cancel cross terms. The filtered error system also includes
a predictor term (8), which utilizes past values of the control.
The motivation for the design of (7) stems from the need to
inject a −kr signal into the closed-loop error system, since such
terms cannot be directly injected through the saturated controller,
and to cancel cross terms in the analysis. The saturated control
structure motivates the need for hyperbolic tangent functions
in the Lyapunov analysis to yield −

Tanh 
ef

2 terms. The
time derivative of the hyperbolic tangent function will yield a
Cosh−2(ef ) term. The design of (7) is motivated by the desire
to cancel the Cosh−2(ef ) term, enabling the remaining terms to
provide the desired feedback and cancel nonconstructive terms as
dictated by the subsequent stability analysis.

The closed-loop error system is obtained by utilizing (7), (9) and
(10) to yield

ṙ = S (xd, ẋd, ẍd, t)+ χ

e, ė, ef , t


+ kTanh


ef


− Tanh (e)− kr


e, ė, ef , ez, t


, (11)

3 To implement the controller in (10), the tracking error e (·) and the integral of
past control values ez (·) should be evaluated first. The signal ez (·) is considered
to be 0 until t = τ . The filtered tracking error r (·) can be evaluated using either
the initial condition for ef (·) (ef (0) = 0 as stated after (7)) or the computed value
after the first iteration. The auxiliary signal ef (·) can be solved online by evaluating
ėf (·) at each time step using the computed values for e (·) and r (·) and the previous
value for ef (·). Since each of the terms on the right-hand side of (7) is measurable,
the solution ef (t) can be found using any of the numerous numerical integration
techniques available in the literature. Once each of the auxiliary error signals has
been computed, (10) can be implemented.
where the auxiliary terms S (xd, ẋd, ẍd, t) ∈ Rn and χ

e, ė, ef , t


∈

Rn are defined as

S , ẍd (t)− f (xd, ẋd, t)− d (t) , (12)

χ , −f (x, ẋ, t)+ f (xd, ẋd, t)
+αCosh−2 (e) ė (ẋ, t)− γ Tanh


ef


. (13)

The structure of (11) is motivated by the desire to segregate terms
that can be upper bounded by state-dependent terms and terms
that can be upper bounded by constants. Using Assumptions 1
and 2, the following inequality can be developed based on the
expression in (12):

∥S∥ ≤ s̄, (14)

where s̄ ∈ R+ is a known constant. Using Assumption 3, (4) and
(6), the expression in (13) can be upper bounded as (de Queiroz,
Hu, Dawson, Burg, & Donepudi, 1997, Appendix A)

∥χ∥ ≤ χ̄ (∥z∥) ∥z∥ , (15)

where the bounding function χ̄ (∥z∥) : R → R is a positive glob-
ally invertible function, and z


e, ef , r, ez, P


∈ R4n+1 is defined as

z ,

eT TanhT 

ef


rT eTz
√
P
T
. (16)

In (16), P (t) ∈ R+ denotes an LK functional defined as

P , ω

 t

t−τ

 t

s
∥u (θ)∥2 dθ


ds, (17)

where ω ∈ R+ is a known constant.

4. Stability analysis

Theorem 1. Given the dynamics in (1), the controller in (10) ensures
uniformly ultimately bounded tracking provided the adjustable
control gains α, γ , k are selected according to the following sufficient
conditions:

α >
ψ2

4
+ 2ωτ (2k + 1) , γ > kωτ (k + 2) , ωψ2 > 2τ , (18)

4βk2 ≥ χ̄2 (µ̄)

cosh−1


e2µ̄

2


+ 1
2
, (19)

where ψ ∈ R+ is an known adjustable positive constant, µ̄ ∈ R
is defined as µ̄ , max


d̄, ∥z (0)∥


, and d̄ ∈ R is a subsequently

defined positive constant that defines the radius of a ball containing
the position tracking errors.

Proof. Let VL (z, t) : D × [0, ∞) → R be a continuously dif-
ferentiable positive-definite functional on a domain D ⊆ R4n+1,
defined as

VL ,
1
2
rT r +

n
i=1

ln (cosh (ei))+
1
2
TanhT 

ef

Tanh


ef


+ P, (20)

which can be bounded using (4) as

φ1 (∥z∥) ≤ VL ≤ φ2 (∥z∥) , (21)

where the strictly increasing nonnegative functions φ1 (·) , φ2 (·) :

R4n+1
→ R are defined as φ1 (∥z∥) , 1

2 ln (cosh (∥z∥)) , φ2 (∥z∥)
, ∥z∥2.

After utilizing (6), (7), and (11), and canceling similar terms, the
time derivative of (20) can be expressed as

V̇L = rTχ + rT S − krT r − αTanhT (e) Tanh (e)
− γ TanhT 

ef

Tanh


ef


+ TanhT (e) ez

+ωτ ∥u∥2
− ω

 t

t−τ
∥u (θ)∥2 dθ, (22)
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where the Leibniz integral rule was applied to determine the time
derivative of (17). Using (4), (10), (14), and (15), (22) can be upper
bounded by

V̇L ≤ −k ∥r∥2
− α ∥Tanh (e)∥2

− γ
Tanh 

ef
2

+ ∥r∥ χ̄ (∥z∥) ∥z∥ + ∥r∥ s̄ + ∥Tanh (e)∥ ∥ez∥

+ k2ωτ
Tanh 

ef
2

+ 4ωτ ∥Tanh (e)∥2

+ 4kωτ
Tanh 

ef
 ∥Tanh (e)∥ − ω

 t

t−τ
∥u (θ)∥2 dθ. (23)

Young’s inequality can be used to upper bound select terms in
(23) as

∥Tanh (e)∥ ∥ez∥ ≤
ψ2

4
∥Tanh (e)∥2

+
1
ψ2

∥ez∥2 , (24)

Tanh 
ef

 ∥Tanh (e)∥ ≤
1
2

Tanh 
ef

2
+

1
2

∥Tanh (e)∥2 ,

where ψ is a known constant. Utilizing the Cauchy–Schwarz in-
equality, the last integral in (22) can be upper bounded as

− ω

 t

t−τ
∥u (θ)∥2 dθ ≤ −

ω

2τ
∥ez∥2

−
ω

2

 t

t−τ
∥u (θ)∥2 dθ. (25)

Using (24) and (25), (23) can be upper bounded as

V̇L ≤ −k1 ∥r∥2
−


α −

ψ2

4
− 4ωτ


k
2

+ 1


∥Tanh (e)∥2

−

γ − 2kωτ − k2ωτ

 Tanh 
ef

2

−


ω

2τ
−

1
ψ2


∥ez∥2

− k2 ∥r∥2
+ χ̄ (∥z∥) ∥z∥ ∥r∥

− k3 ∥r∥2
+ s̄ ∥r∥ −

ω

2

 t

t−τ
∥u (θ)∥2 dθ (26)

where k, introduced in (7) and (10), is split into adjustable con-
stants k1, k2, k3 ∈ R+ as k , k1 + k2 + k3. After completing the
squares, the expression in (26) can be upper bounded as

V̇L ≤ −k1 ∥r∥2
−


α −

ψ2

4
− 4ωτ


k
2

+ 1


∥Tanh (e)∥2

−

γ − 2kωτ − k2ωτ

 Tanh 
ef

2

−


ω

2τ
−

1
ψ2


∥ez∥2

+
χ̄2 (∥z∥)

4k2
∥z∥2

−
ω

2

 t

t−τ
∥u (θ)∥2 dθ +

s̄2

4k3
. (27)

The inequality t

t−τ

 t

s
∥u (θ)∥2 dθ


ds ≤ τ sup

s∈[t, t−τ ]

 t

s
∥u (θ)∥2 dθ



= τ

 t

t−τ
∥u (θ)∥2 dθ

can be used to upper bound (27) as

V̇L ≤ −k1 ∥r∥2
−


α −

ψ2

4
− 4ωτ


k
2

+ 1


∥Tanh (e)∥2

−

γ − 2kωτ − k2ωτ

 Tanh 
ef

2
−


ω

2τ
−

1
ψ2


∥ez∥2

+
χ̄2 (∥z∥)

4k2
∥z∥2

−
ω

2τ

 t

t−τ

 t

s
∥u (θ)∥2 dθ


ds +

s̄2

4k3
. (28)

Let y

e, ef , ez, r, P


∈ R4n+1 be defined as

y ,

TanhT (e) TanhT 

ef


eTz rT
√
P
T
. (29)

By using (16) and (29), (28) can be upper bounded as

V̇L ≤ −β ∥y∥2
+
χ̄2 (∥z∥)

4k2
∥z∥2

+
s̄2

4k3
, (30)

where the auxiliary constant β ∈ R+ is defined as

β , min

k1, α −

ψ2

4
− 4ωτ


k
2

+ 1

,

γ − 2kωτ − k2ωτ,
ω

2τ
−

1
ψ2
,

1
2τ


. (31)

If the sufficient conditions in (18) are satisfied, then β > 0. The
conditions in (18) and (19) are solvable for a sufficiently small τ .
Provided the following inequality is satisfied,

χ̄2 (∥z∥)
4k2

∥z∥2
− β ∥y∥2

≤ 0, (32)

(30) can be expressed as

V̇L ≤ −β2 ∥y∥2
+

s̄2

4k3
, (33)

where β2 ∈ R+ is some constant. From the definitions in (16) and
(29), and utilizing the fact that ∥y∥2

≥ tanh2 (∥z∥) from (4), the
expression in (32) is satisfied if

∥z∥
tanh (∥z∥)

2

≤
4βk2

χ̄2 (∥z∥)
. (34)

Using the properties in (4), a sufficient condition for (34) is

(∥z∥ + 1)2 ≤
4βk2

χ̄2 (∥z∥)
. (35)

We can now utilize the lower bound on VL (z, t) from (21), to state
that

∥z∥ ≤ cosh−1 (exp (2VL)) ; (36)

hence, a sufficient condition for (35) can be obtained as

χ̄2 
cosh−1 (exp (2VL))+ 1

2
≤ 4βk2. (37)

If condition (37) is satisfied, then, from (4), the expression in
(33) can be rewritten as

V̇L ≤ −φ3 (∥z∥)+
s̄2

4k3
, (38)

where the strictly increasing nonnegative function φ3 : R4n+1
→

R is defined asφ3 (∥z∥) , β2 tanh2 (∥z∥). Given (21), and (38), z (·)
(as well as e (·) and r (·) via the definition in (16) and standard lin-
ear analysis) is uniformly ultimately bounded (Corless & Leitmann,
1981) in the sense that

∥e (t)∥ ≤ ∥z (t)∥ < d̄, ∀t ≥ T

d̄, ∥z (0)∥


, (39)
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provided the sufficient conditions in (18) and the inequality in (37)
are satisfied. In (39), d̄ defines the radius of a ball containing the po-
sition tracking errors, selected according to Corless and Leitmann
(1981)

d̄ >

φ−1
1 ◦ φ2

 
φ−1
3


s̄2

4k3


, (40)

and T

d̄, ∥z (0)∥


∈ R is a positive constant that denotes the ul-

timate time to reach the ball (Corless & Leitmann, 1981):

T ,


0 ∥z (0)∥ ≤


φ−1
2 ◦ φ1

 
d̄


φ2 (∥z (0)∥)− φ1

φ−1
2 ◦ φ1

 
d̄


φ3

φ−1
2 ◦ φ1

 
d̄

−

s̄2
4k3

∥z (0)∥ >

φ−1
2 ◦ φ1

 
d̄

.

From (21) and (39), a final sufficient condition for (37), given in
(19), can be expressed in terms of either the initial conditions of
the system or the ultimate bound. �

Remark 2. Based on (38), the size of the ultimate bound in (40) can
be made smaller by selecting k3 larger. For arbitrarily large delays
or arbitrarily large initial conditions, the control gains required to
satisfy the sufficient gain conditions in (19) may demand torque
that is not physically deliverable by the system (i.e., the gain kmay
be required to be larger than the saturation limit of the actuator).
The gain condition in (19) is directly influenced by the bound given
in (15), which results from the bounds derived in Assumption 3.
For example, if f is globally Lipschitz, then the upper bound on
χ reduces to a constant times the state, and a local condition
on the state z can be determined as ∥z (0)∥ ≤

√
4βk2/χ̄ − 1,

which can be enlarged by increasing k2 (up to a point based on
the actuator constraints). Given the current more general bound
forχ fromAssumption 3, a simplified closed-form initial condition
bound cannot be derived. However, given an upper bound on the
disturbance, an upper bound on the time delay, and the initial
conditions, (19) and (31) can be used to determine the sufficient
gain βk2, if possible, based on the actuator limit. This result does
not satisfy the standard semi-global result because, under the
consideration of input constraints, k cannot be arbitrarily increased
and consequently cannot satisfy all initial conditions. This outcome
is not surprising from a physical perspective in the sense that such
demands may yield cases where the actuation is insufficient to
stabilize the system.

Remark 3. From the sufficient gain conditions in (18) and (19), the
admissible values for the known input delay can be determined

as τ = min

ωψ2

2 −
ζ (µ̄)

4k2
,

γ

kω(k+2) −
ζ (µ̄)

4k2
,

α−
ψ2
4

2ω(2k+1) −
ζ (µ̄)

4k2
,
ζ (µ̄)

2k2


,

where ζ (µ̄) denotes the right-hand side of (19). Independent of
the actuator saturation limits, α and γ can be made arbitrarily
large, and the remaining conditions can be selected according to
(18) and (19).

5. Simulation

The controller in (10) was simulated for a two-link planar ma-
nipulator. The manipulator can be modeled as an Euler–Lagrange
system with the following dynamics:

M (q) q̈ + Vm (q, q̇) q̇ + F (q̇)+ τd (t) = τc (t − τ) , (41)

where M (q) ∈ R2×2 denotes the inertia matrix, Vm (q, q̇) ∈ R2×2

denotes the centripetal-Coriolis matrix, F (q̇) ∈ R2 denotes fric-
tion, and τd (t) ∈ Rn denotes an external disturbance. Addition-
ally, q (t) , q̇ (t) , q̈ (t) ∈ R2 denote the link position, velocity,
Fig. 1. Tracking error versus time for (a) 100ms input delay, (b) 500ms input delay,
(c) 1 s input delay.

and acceleration, and τc (t − τ) ∈ R2 denotes the control
torque. In (41), M (q) ,


p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2


, Vm (q, q̇) ,

−p3s2q̇2 −p3s2 (q̇1 + q̇2)
p3s2q̇1 0


, and F (q̇) ,


fd1 0
0 fd2

 
q̇1
q̇2


, where p1 =

3.473 kg · m2, p2 = 0.196 kg · m2, p3 = 0.242 kg · m2, fd1 =

5.3 N m s, fd2 = 1, 1 N m s, c2 denotes cos (q2), and s2 de-
notes sin (q2). The dynamics in (41) can be rewritten in the form
of (1), where x (t) =


q1 (t) , q2 (t)

T , f (x, ẋ, t) , −M−1 (q)
(Vm (q, q̇) q̇ + F (q̇)) , u (t − τ) , M−1 (q) τc (t − τ), and d (t) ,
−M−1 (q) τd (t).4 An explicit bound for M (q) can be found, and
thus a bound for τc (t − τ) is obtainable a priori. The disturbance
terms were selected as τd1 = 0.5 sin

 t
5


, and τd2 = 0.1 sin

 t
5


.

The desired trajectories for links 1 and 2 for all simulations were
selected as

qd1 (t) = 1.5 sin (t/2) rad
qd2 (t) = 0.5 sin (t/4) rad.

The initial conditions for the manipulator were selected as sta-
tionary with a significant offset from the initial conditions of the
desired trajectory as


q1 q2

T
=


1 2

T rad. For comparison,
the simulation was completed using various values of input delay,
ranging from 100ms to 1 s. For each case, the actuation torquewas
limited to τ1 ≤ 20 N, τ2 ≤ 10 N.

Fig. 1 illustrates the tracking errors associated with each of
the input delay cases. As the delay magnitude is increased, the
performance degrades and the tracking error bound increases.
Fig. 2 shows that, even with a large input delay in the system, the
proposed controller is able to ensure that the control torque does
not exceed the actuator limits (as specified by the controller gains)
while ensuring the boundedness of the tracking error.

Remark 4. The controller presented in (10) can also be extended
to standard nonlinear Euler–Lagrange systemswhere the design of
the error systems and controller follow similarly to the presented
method and two additional LK functionals are included to cancel
cross terms associated with uncertainties in inertia. This extension

4 To transform (41) into the general formof (1), we assume that the Inertiamatrix
is known in this case. For a complete analysis of a Euler–Lagrange system with
unknown Inertia matrix, we refer the reader to the conference version of this work
in Fischer et al. (2011).
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Fig. 2. Control torque τ (t) versus time for (a) 100ms input delay, (b) 500ms input
delay, (c) 1 s input delay.

can be considered as an application of the presented method.
Specifically, (6) can be modified to accommodate the uncertain
inertia effects in the dynamics as

r , ė + αTanh (e)+ Tanh

ef


− Bez,

where B ∈ Rn×n is a symmetric positive-definite constant gain
matrix. The remaining error system development follows identi-
cally from the proposed result, i.e., (7), (8) and (10) are designed
the same. For additional details, see Fischer et al. (2011).

6. Conclusion

A continuous saturated controller is developed for uncertain
nonlinear systems which include input delays and sufficiently
smooth additive bounded disturbances. The bound on the control
is known a priori and can be adjusted by changing the feedback
gains. The saturated controller is shown to guarantee uniformly
ultimately bounded tracking provided the delay is sufficiently
small, and a numerical example demonstrating the performance of
the control design is presented. Extending the result for uncertain
time-varying time delays will enhance the applicability of the
controller; this is the focus of on-going efforts.
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