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a b s t r a c t

Reinforcement learning (RL)-based online approximate optimal control methods applied to deterministic
systems typically require a restrictive persistence of excitation (PE) condition for convergence. This pa-
per develops a concurrent learning (CL)-based implementation of model-based RL to solve approximate
optimal regulation problems online under a PE-like rank condition. The development is based on the ob-
servation that, given amodel of the system, RL can be implemented by evaluating the Bellman error at any
number of desired points in the state space. In this result, a parametric systemmodel is considered, and a
CL-based parameter identifier is developed to compensate for uncertainty in the parameters. Uniformly
ultimately bounded regulation of the systemstates to a neighborhoodof the origin, and convergence of the
developed policy to a neighborhood of the optimal policy are established using a Lyapunov-based analysis,
and simulation results are presented to demonstrate the performance of the developed controller.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Reinforcement learning (RL) enables a cognitive agent to learn
desirable behavior from interactions with its environment. In
control theory, the desirable behavior is typically quantified using
a cost function, and the control problem is formulated as the desire
to find the optimal policy that minimizes a cumulative cost. RL
techniques for discrete time systems are inherently model-free,
and hence, have been a prime focus of research over the past few
decades (Kaelbling, Littman, & Moore, 1996).

Recently, various RL-based techniques have been developed
to approximately solve optimal control problems for continuous-
time and discrete-time deterministic systems (Al-Tamimi, Lewis,
& Abu-Khalaf, 2008; Bhasin et al., 2013; Dierks, Thumati, & Ja-
gannathan, 2009; Doya, 2000; Lewis & Vrabie, 2009; Mehta &
Meyn, 2009; Padhi, Unnikrishnan, Wang, & Balakrishnan, 2006;
Vamvoudakis & Lewis, 2010; Zhang, Cui, & Luo, 2013; Zhang, Cui,
Zhang, & Luo, 2011; Zhang, Liu, Luo, & Wang, 2013). The ap-
proximate solution is facilitated via value function approximation,
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where the optimal policy is computed based on an estimate of the
value function.

Methods that seek online solutions to optimal control problems
are comparable to adaptive control (cf., Bhasin et al., 2013; He &
Jagannathan, 2007; Padhi et al., 2006; Vamvoudakis & Lewis, 2010;
Zhang et al., 2013; Zhang, Wei, & Luo, 2008 and the references
therein). In adaptive control, the estimates for the uncertain
parameters in the plantmodel are updated using the tracking error
as a performance metric; whereas, in online RL-based techniques,
estimates for the uncertain parameters in the value function are
updated using the Bellman error (BE) as a performance metric.
Typically, to establish regulation or tracking, adaptive control
methods do not require the adaptive estimates to convergence to
the true values. However, convergence of the RL-based controller
to a neighborhood of the optimal controller requires convergence
of the parameter estimates to a neighborhood of their ideal
values.

Parameter convergence has been a focus of research in adap-
tive control for several decades. It is common knowledge that least
squares and gradient descent-based update laws generally require
persistence of excitation (PE) in the system state for convergence
of the parameter estimates. Modification schemes such as projec-
tion algorithms, σ -modification, and e-modification are used to
guarantee boundedness of parameter estimates and overall system
stability; however, these modifications do not guarantee param-
eter convergence unless the PE condition is satisfied (Ioannou &
Sun, 1996; Narendra & Annaswamy, 1987, 1989; Sastry & Bodson,
1989).
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In RL-based approximate online optimal control, the
Hamilton–Jacobi–Bellman (HJB) equation along with an estimate
of the state derivative (cf. Bhasin et al., 2013;Mehta &Meyn, 2009),
or an integral form of the HJB equation (cf. Vrabie, 2010) is uti-
lized to approximately evaluate the BE along the system trajec-
tory. The BE, evaluated at a point, provides an indirect measure of
the quality of the estimate of the value function evaluated at that
point. Hence, the unknown value function parameters are updated
based on evaluation of the BE along the system trajectory. Such
weight update strategies create two challenges for analyzing con-
vergence. The system states need to satisfy PE, and the system tra-
jectory needs to visit enough points in the state space to generate a
good approximation of the value function over the entire domain of
operation. These challenges are typically addressed in the related
literature (cf. Al-Tamimi, Lewis, & Abu-Khalaf, 2007; Bhasin et al.,
2013; Kiumarsi, Lewis, Modares, Karimpour, & Naghibi-Sistani,
2014; Lewis & Vrabie, 2009; Modares & Lewis, 2014; Modares,
Lewis, & Naghibi-Sistani, 2013, 2014; Vamvoudakis & Lewis, 2010,
2011; Vamvoudakis, Lewis, & Hudas, 2012) by adding an explo-
ration signal to the control input to ensure sufficient exploration
of the domain of operation. However, no analytical methods exist
to compute the appropriate exploration signal when the system
dynamics are nonlinear.

The aforementioned challenges arise from the restriction that
the BE can only be evaluated along the system trajectories. In par-
ticular, the integral BE is meaningful as a measure of quality of the
value function estimate only if it is evaluated along the system tra-
jectories, and state derivative estimators can only generate numer-
ical estimates of the state derivative along the system trajectories.
Recently, Modares et al. (2014) demonstrated that experience re-
play can be used to improve data efficiency in online approximate
optimal control by reuse of recorded data. However, since the data
needs to be recorded along the system trajectory, the system tra-
jectory under the designed approximate optimal controller needs
to provide enough excitation for learning. In general, such excita-
tion is not available; hence, the simulation results inModares et al.
(2014) are generated using an added probing signal.

In this paper, and in our preliminary work in Kamalapurkar,
Walters, and Dixon (2013), a different approach is used to improve
data efficiency by observing that if the system dynamics are
known, the state derivative, and hence, the BE can be evaluated
at any desired point in the state space. Unknown parameters in
the value function can therefore be adjusted based on least square
minimization of the BE evaluated at any number of arbitrary points
in the state space. For example, in an infinite horizon regulation
problem, the BE can be computed at points uniformly distributed
in a neighborhood around the origin of the state space. The results
of this paper indicate that convergence of the unknownparameters
in the value function is guaranteed provided the selected points
satisfy a rank condition. Since the BE can be evaluated at any
desired point in the state space, sufficient exploration can be
achieved by appropriately selecting the points to cover the domain
of operation. If the system dynamics are partially unknown, an
approximation to the BE can be evaluated at any desired point in
the state space based on an estimate of the system dynamics.

If each new evaluation of the BE along the system trajectory
is interpreted as gaining experience via exploration, the use of a
model to evaluate the BE at an unexplored point in the state space
can be interpreted as a simulation of the experience. Learning
based on simulation of experience has been investigated in results
such as Abbeel, Quigley, andNg (2006); Atkeson and Schaal (1997);
Deisenroth (2010); Deisenroth and Rasmussen (2011); Mitro-
vic, Klanke, and Vijayakumar (2010); Singh (1992) for stochastic
model-based RL; however, these results solve the optimal control
problem off-line in the sense that repeated learning trials need to
be performed before the algorithm learns the controller, and sys-
tem stability during the learning phase is not analyzed. This paper
furthers the state of the art for nonlinear, control affine plants with
linearly parameterizable (LP) uncertainties in the drift dynamics
by providing an online solution to deterministic infinite horizon
optimal regulation problems. In this paper, a CL-based parameter
estimator is developed to exponentially identify the unknown pa-
rameters in the system model, and the parameter estimates are
used to implement simulation of experience by extrapolating the
BE.

Themain contributions of this paper include a novel implemen-
tation of model-based RL in deterministic nonlinear systems and
a detailed stability analysis that establishes simultaneous online
identification of system dynamics and online approximate learn-
ing of the optimal controller, while maintaining system stability.
Simulation results are provided that demonstrate the approximate
solution of infinite horizon optimal regulation problems online for
inherently unstable nonlinear systemswith uncertain drift dynam-
ics. The simulations also demonstrate that the developed method
can be used to implement RL without the addition of a probing sig-
nal.

2. Problem formulation

Consider a control affine nonlinear dynamical system1

ẋ (t) = f (x (t)) + g (x (t)) u (t) , (1)

where x : R≥t0 → Rn denotes the system state trajectory, u :

R≥t0 → Rm denotes the control input, f : Rn
→ Rn denotes

the drift dynamics, and g : Rn
→ Rn×m denotes the control

effectiveness. In the following, the notation φu (t; t0, xo) denotes
a trajectory of the system in (1) under the controller u with the
initial condition xo ∈ Rn and initial time t0 ∈ R≥0.2 The objective
is to solve the infinite horizon optimal regulation problem online,
i.e., to find the optimal policy u∗

: Rn
→ Rm defined as

u∗

xo


, argmin
u(τ )∈U|τ∈R≥t


∞

t
r

φu τ ; t, xo


, u (τ )


dτ , (2)

while regulating the system states to the origin.3 In (2), U ∈ Rm

denotes the action space and r : Rn
× Rm

→ R≥0 denotes the
instantaneous cost defined as r (xo, uo) , xoTQx + uoTRuo, where
Q ∈ Rn×n and R ∈ Rm×m are constant positive definite symmetric
matrices. The class of nonlinear systems considered in this paper
is characterized by the following assumption.

Assumption 1. The drift dynamics f is an unknown, LP locally
Lipschitz function such that f (0) = 0, and the control effectiveness
g is a known bounded locally Lipschitz function. Furthermore, f ′

:

Rn
→ Rn×n is continuous, where (·)′ denotes the partial derivative

with respect to the first argument.

A closed-form solution to the optimal control problem is formu-
lated in terms of the optimal value function V ∗

: Rn
→ R≥0 de-

fined as

V ∗

xo


, min
u(τ )∈U|τ∈R≥t


∞

t
r

φu τ ; t, xo


, u (τ )


dτ . (3)

1 For notational brevity, unless otherwise specified, the domain of all the
functions is assumed to beR≥0 , whereR≥a denotes the interval [a, ∞). The notation
∥·∥ denotes the Euclidean norm for vectors and the Frobenius norm for matrices.
The notation (·)o denotes arbitrary variables.
2 Whenever the initial time and state are implied or unimportant, a trajectory of

the system in (1) evaluated at time t will be denoted by x (t).
3 The definition in (2) implicitly assumes existence of the optimal policy.
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Assuming that the optimal value function is continuously differ-
entiable, it is the unique solution to the corresponding HJB equa-
tion (Kirk, 2004)

V ∗′

xo
 

f

xo

+ g


xo

u∗

xo


+ xoTQxo

+ u∗T xo Ru∗

xo


= 0, (4)

for all xo ∈ Rn, with the boundary condition V ∗ (0) = 0. The
optimal control law can be determined using the optimal value
function as u∗ (xo) = −

1
2R

−1gT (xo)

V ∗′ (xo)

T (Kirk, 2004).
An analytical solution of the HJB equation is generally not

feasible; hence, an approximate solution is sought. An approximate
solution of the HJB equation is facilitated by replacing V ∗ and u∗ in
(4) by their respective subsequently defined parametric estimates
V̂

xo, Ŵ o

c


and û


xo, Ŵ o

a


to compute the BE δ : Rn+2L

→ R as

δ

xo, Ŵ o

c , Ŵ
o
a


= xoTQxo + ûT


xo, Ŵ o

a


Rû

xo, Ŵ o

a


+ V̂ ′


xo, Ŵ o

c

 
f

xo

+ g


xo

û

xo, Ŵ o

a


, (5)

where Ŵ o
c ∈ RL and Ŵ o

a ∈ RL are the estimates of the unknown
parameters in the approximation of the value function, and the
policy, respectively. Since the BE depends on the uncertain drift
dynamics f , an estimate of the system dynamics is required to
evaluate the BE at any given point xo ∈ Rn.

3. Approximate optimal control

3.1. System identification

The main contribution of this paper is a novel implementation
of simulation of experience for online approximate optimal
control of deterministic nonlinear systems. If a system model is
available, then the approximate optimal control technique can
be implemented using the model. However, if an exact model of
the system is unavailable, then parametric system identification
can be employed to generate an estimate of the system model. A
possible approach is to use parameters that are estimated offline in
a separate experiment. Amore useful approach is to use the offline
estimate as the initial guess, and to employ a dynamic system
identification technique capable of refining the initial guess based
on input–output data.

To facilitate online system identification, let f (xo) = Y (xo) θ
denote the linear parametrization of the function f , where Y :

Rn
→ Rn×p is the regression matrix and θ ∈ Rp is the vector of

constant unknown parameters. Let θ̂ ∈ Rp be an estimate of the
unknownparameter vector θ . The following development assumes
that an adaptive system identifier that satisfies conditions detailed
in Assumption 2 is available. For completeness, a concurrent
learning-based system identifier that satisfies Assumption 2 is
presented in the Appendix.

Assumption 2. A compact set Θ ⊂ Rp such that θ ∈ Θ is known
a priori. The estimates θ̂ : R≥t0 → Rp are updated based on a
switched update law of the form

˙̂
θ (t) = fθs


θ̂ (t) , t


, (6)

θ̂ (t0) = θ̂0 ∈ Θ , where s ∈ N denotes the switching index
and


fθs : Rp

× R≥0 → Rp

s∈N denotes a family of continuously

differentiable functions. The dynamics of the parameter estimation
error θ̃ : R≥t0 → Rp, defined as θ̃ (t) , θ − θ̂ (t) can be

expressed as ˙̃
θ (t) = fθs


θ − θ̃ (t) , t


. Furthermore, there exists
a continuously differentiable function Vθ : Rp
× R≥0 → R≥0 that

satisfies

vθ

θ̃ o
 ≤ Vθ


θ̃ o, t


≤ vθ

θ̃ o
 , (7)

V ′

θ


θ̃ o, t

 
−fθs


θ − θ̃ o, t


+

∂Vθ


θ̃ o, t


∂t

≤ −K
θ̃ o

2 + D
θ̃ o

 , (8)

for all s ∈ N, t ∈ R≥t0 , and θ̃ o
∈ Rp, where vθ , vθ : R≥0 → R≥0

are class K functions, K ∈ R>0 is an adjustable parameter, and
D ∈ R>0 is a positive constant.4

Using an estimate θ̂ o, the BE in (5) can be approximated by δ̂ :

Rn+2L+p
→ R as

δ̂

xo, Ŵ o

c , Ŵ
o
a , θ̂

o


= xoTQxo + ûT

xo, Ŵ o

a


Rû

xo, Ŵ o

a


+ V̂ ′


xo, Ŵ o

c

 
Y

xo

θ̂ o

+ g

xo

û

xo, Ŵ o

a


. (9)

In the following, the approximate BE in (9) is used to obtain an
approximate solution to the HJB equation in (4).

3.2. Value function approximation

Approximations to the optimal value function V ∗ and the
optimal policy u∗ are designed based on neural network (NN)-
based representations. Given any compact setχ ⊂ Rn and positive
constants ϵ̄, ϵ̄′

∈ R, the universal approximation property of NNs
can be exploited to represent the optimal value function V ∗ as
V ∗ (xo) = W Tσ (xo) + ϵ (xo) , for all xo ∈ χ , where W ∈ RL

is the ideal weight matrix, which is bounded above by a known
positive constant W̄ in the sense that ∥W∥ ≤ W̄ , σ : Rn

→ RL

is a continuously differentiable nonlinear activation function such
that σ (0) = 0 and σ ′ (0) = 0, L ∈ N is the number of neurons,
and ϵ : Rn

→ R is the function reconstruction error such that
supxo∈χ |ϵ (xo)| ≤ ϵ̄ and supxo∈χ

ϵ′ (xo)
 ≤ ϵ̄′.

Based on the NN representation of the value function a NN-
based representation of the optimal controller is derived as
u∗ (xo) = −

1
2R

−1gT (xo)

σ ′T (xo)W + ϵ′T (xo)


. The NN-based

approximations V̂ : Rn
× RL

→ R and û : Rn
× RL

→ Rm are
defined as

V̂

xo, Ŵ o

c


, Ŵ oT

c σ

xo

,

û

xo, Ŵ o

a


, −

1
2
R−1gT xo σ ′T xo Ŵ o

a , (10)

where Ŵ o
c ∈ RL and Ŵ o

a ∈ RL are the estimates of W . The use
of two sets of weights to estimate the same set of ideal weights
is motivated by the stability analysis and the fact that it enables
a formulation of the BE that is linear in the value function weight
estimates Ŵ o

c , enabling a least squares-based adaptive update law.

3.3. Simulation of experience via BE extrapolation

In traditional RL-based algorithms, the value function estimate
and the policy estimate are updated based on observed data. The

4 The subsequent analysis in Section 4 indicates that when a system identifier
that satisfies Assumption 2 is employed to facilitate online optimal control, the ratio
D
K needs to be sufficiently small to establish set-point regulation and convergence
to optimality.
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use of observed data to learn the value function naturally leads to a
sufficient exploration conditionwhich demands sufficient richness
in the observed data. In stochastic systems, this is achieved
using a randomized stationary policy (cf. Konda & Tsitsiklis,
2004; Mehta & Meyn, 2009; Sutton & Barto, 1998), whereas in
deterministic systems, a probing noise is added to the derived
control law (cf. Bhasin et al., 2013; Dierks & Jagannathan, 2009,
2010; Vamvoudakis & Lewis, 2009, 2010).

The technique developed in this result implements simulation
of experience in a model-based RL scheme by using Y θ̂ as an esti-
mate of the uncertain drift dynamics f to extrapolate the approx-
imate BE to a predefined set of points {xi ∈ Rn

| i = 1, . . . ,N} in
the state space. In the following, δ̂t : R≥t0 → R denotes the ap-
proximate BE in (9) evaluated along the trajectories of (1), (6),
(11) and (13) as δ̂t (t) , δ̂


x (t) , Ŵc (t) , Ŵa (t) , θ̂ (t)


and δ̂ti :

R≥t0 → R denotes the approximate BE extrapolated to the points
{xi ∈ Rn

| i = 1, . . . ,N} along the trajectories of (6), (11), and (13)
as δ̂ti , δ̂


xi, Ŵc (t) , Ŵa (t) , θ̂ (t)


.

A least-squares update law for the value function weights is
designed based on the subsequent stability analysis as

˙̂W c (t) = −ηc1Γ
ω (t)
ρ (t)

δ̂t (t) −
ηc2

N
Γ

N
i=1

ωi (t)
ρi (t)

δ̂ti (t) , (11)

Γ̇ (t) =


βΓ (t) − ηc1

Γ (t) ω (t) ω (t)T Γ (t)
ρ2 (t)


1{∥Γ ∥≤Γ }, (12)

∥Γ (t0)∥ ≤ Γ , where Γ : R≥t0 → RL×L is a time-varying least-

squares gain matrix, ω (t) , σ ′ (x (t))

Y (x (t)) θ̂ (t) + g (x (t)) û

x(t),Ŵa (t)


, ωi (t),σ ′ (xi)

Y (xi) θ̂ (t)+g (xi) û


xi, Ŵa (t)


,

ρ (t) , 1 + νωT (t) Γ (t) ω (t), ρi (t) , 1 + νωT
i (t)

Γ (t) ωi (t), where ν ∈ R is a constant positive normalization
gain, 1{·} denotes the indicator function, Γ > 0 ∈ R is a satu-
ration constant, β > 0 ∈ R is a constant forgetting factor, and
ηc1, ηc2 > 0 ∈ R are constant adaptation gains.

The policy weights are updated based on the subsequent
stability analysis as5

˙̂W a (t) = −ηa1


Ŵa (t) − Ŵc (t)


− ηa2Ŵa (t)

+
ηc1GT

σ (t) Ŵa (t) ωT (t)
4ρ (t)

Ŵc (t)

+

N
i=1

ηc2GT
σ iŴa (t) ωT

i (t)
4Nρi (t)

Ŵc (t) , (13)

where ηa1, ηa2 ∈ R are positive constant adaptation gains,Gσ (t) ,
σ ′ (x (t)) g (x (t)) R−1gT (x (t)) σ ′T (x (t)), Gσ i , σ ′

i giR
−1gT

i σ ′T
i ∈

RL×L, where gi = g (xi) and σ ′

i = σ ′ (xi).
The update law in (11) ensures that the adaptation gain matrix

is bounded such that
Γ ≤ ∥Γ (t)∥ ≤ Γ , ∀t ∈ R≥t0 . (14)

Using the weight estimates Ŵa, the controller for the system in (1)
is designed as

u (t) = û

x (t) , Ŵa (t)


. (15)

5 Using the fact that the ideal weights are bounded, a projection-based

(cf. Dixon, Behal, Dawson, & Nagarkatti, 2003) update law
·

Ŵ a (t) =

proj

−ηa1


Ŵa (t) − Ŵc (t)


can be utilized to update the policy weights.

Since the policy weights are bounded a priori by the projection algorithm, a less
complex stability analysis can be used to establish the result in Theorem 1.
The following rank condition facilitates the subsequent stability
analysis.

Assumption 3. There exists a finite set of fixed points {xi ∈ Rn
|

i = 1, . . . ,N} such that ∀t ∈ R≥t0

0 < c ,
1
N


inf

t∈R≥t0


λmin


N
i=1

ωi (t) ωT
i (t)

ρi (t)


, (16)

where λmin {·} denotes the minimum eigenvalue.

The rank condition in (16) depends on the estimates θ̂ and Ŵa;
hence, in general, it is impossible to guarantee a priori. However,
unlike the PE condition in previous results such as Bhasin et al.
(2013); Dierks and Jagannathan (2009, 2010); Vamvoudakis and
Lewis (2009, 2010), the condition in (16) can be verified online at
each time t . Furthermore, the condition in (16) can be heuristically
met by collecting redundant data, i.e., by selecting more points
than the number of neurons by choosing N ≫ L.

The update law in (11) is fundamentally different from the CL
adaptive update in results such as Chowdhary and Johnson (2011);
Chowdhary, Yucelen, Muhlegg, and Johnson (2013), in the sense
that the points {xi ∈ Rn

| i = 1, . . . ,N} are selected a priori based
on prior information about the desired behavior of the system.
Given the systemdynamics, or an estimate of the systemdynamics,
the approximate BE can be extrapolated to any desired point in
the state space, whereas in adaptive control, the prediction error
is used as a metric which can only be evaluated at observed data
points along the state trajectory.

4. Stability analysis

For notational brevity, the dependence of all the functions on
the system states and time is suppressed hereafter unless required
for clarity of exposition. To facilitate the subsequent stability
analysis, the approximate BE is expressed in terms of the weight
estimation errors W̃c , W − Ŵc and W̃a , W − Ŵa. Subtracting
(4) from (9), an unmeasurable form of the instantaneous BE can be
expressed as

δ̂t = −ωT W̃c − W Tσ ′Y θ̃ +
1
4
W̃ T

a Gσ W̃a

+
1
4
Gϵ − ϵ′f +

1
2
W Tσ ′Gϵ′T , (17)

where G , gR−1gT
∈ Rn×n and Gϵ , ϵ′Gϵ′T

∈ R. Similarly, the
approximate BE evaluated at the sampled states {xi | i = 1, . . . ,N}

can be expressed as

δ̂ti = −ωT
i W̃c +

1
4
W̃ T

a Gσ iW̃a − W Tσ ′

i Yiθ̃ + ∆i, (18)

where Yi = Y (xi), ϵ′

i = ϵ′ (xi), fi = f (xi), Gi , giR−1gT
i ∈ Rn×n,

Gϵi , ϵ′

iGiϵ
′T
i ∈ R, and ∆i , 1

2W
Tσ ′

i Giϵ
′T
i +

1
4Gϵi − ϵ′

i fi ∈ R is a
constant.

On any compact set χ ⊂ Rn the function Y is Lipschitz
continuous, and hence, there exists a positive constant LY ∈ R such
that6

∥Y∥ ≤ LY ∥x∥ , ∀x ∈ χ. (19)

6 The Lipschitz property is exploited here for clarity of exposition. The bound in
(19) can be easily generalized to ∥Y (x)∥ ≤ LY (∥x∥) ∥x∥, where LY : R → R is a
positive, non-decreasing function.
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Using (14), the normalized regressor ω
ρ
can be bounded as

sup
t∈R≥t0

ω

ρ

 ≤
1

2
√

νΓ
. (20)

For brevity of notation, given a compact set χ ⊂ Rn, the operator
(·) , supx∈χ (·) : R≥0 → R≥0 and the following positive constants
are defined.

ϑ1 ,
ηc1LY ∥θ∥ ϵ̄′

4
√

νΓ
, ϑ2 ,

N
i=1


ηc2

σ ′

i Yi
W

4N
√

νΓ


,

ϑ3 ,
LYηc1W∥σ ′∥

4
√

νΓ
, ϑ4 ,

14Gϵ

,
ϑ5 ,

ηc1
2W Tσ ′Gϵ′T + Gϵ


8
√

νΓ
+

 N
i=1

ηc2ωi∆i

Nρi

 ,

ϑ6 ,

12W TGσ +
1
2
ϵ′GTσ ′T

+ ϑ7W
2
+ ηa2W ,

ϑ7 ,
ηc1∥Gσ ∥

8
√

νΓ
+

N
i=1


ηc2 ∥Gσ i∥

8N
√

νΓ


, q , λmin{Q },

vl =
1
2
min

 q

2
,
ηc2c
3

,
ηa1 + 2ηa2

6
,
K
4


,

ι =
3ϑ2

5

4ηc2c
+

3ϑ2
6

2 (ηa1 + 2ηa2)
+

D2

2K
+ ϑ4. (21)

Let Z : R≥t0 → Rn+2L+p denote the concatenated tra-
jectories of Ż (t) = h (Z (t) , t), defined as Z (t) ,


xT (t) ,

W̃ T
c (t) , W̃ T

a (t) , θ̃ T (t)
T

, where h : Rn+2L+p
× R≥t0 → Rn+2L+p is

a concatenation of the dynamics in (1), (6), (11) and (13). The suf-
ficient conditions for ultimate boundedness of Z are derived based
on the subsequent stability analysis as

ηa1 + 2ηa2

6
> ϑ7W


2ζ2 + 1
2ζ2


,

K
4

>
ϑ2 + ζ1ζ3ϑ3Z

ζ1
,

ηc2

3
>

ζ2ϑ7W + ηa1 + 2

ϑ1 + ζ1ϑ2 + (ϑ3/ζ3) Z


2c

,

q

2
> ϑ1, (22)

where Z , v−1

v

max


∥Z (t0)∥ ,


ι
vl


, ζ1, ζ2, ζ3 ∈ R are

known positive adjustable constants, and v and v are subsequently
defined class K functions. The Lipschitz constants in (19) and the
NN function approximation errors depend on the underlying com-
pact set; hence, given a bound on the initial condition Z (t0) for
the concatenated state Z , a compact set that contains the concate-
nated state trajectory needs to be established before adaptation
gains satisfying the conditions in (22) can be selected. In the fol-
lowing, based on the subsequent stability analysis, an algorithm
is developed to compute the required compact set, denoted by
Z ⊂ R2n+2L+p. In Algorithm 1, the notation {(·)}i denotes the value
of (·) computed in the ith iteration. Since the constants ι and vl

depend on LY only through the products LY ϵ′ and LY
ζ3
, Algorithm 1

ensures that
ι

vl
≤

1
2
diam (Z) , (23)
where diam (Z) denotes the diameter of the set Z defined as
diam (Z) , sup {∥x − y∥ | x, y ∈ Z}. Themain result of this paper
can now be stated as follows.

Algorithm 1 Gain Selection
First iteration:
Given z ∈ R≥0 such that ∥Z (t0)∥ < z, let Z1 ,


ξ ∈ R2n+2L+p

|

∥ξ∥ ≤ v−1 (v (z))

. Using Z1, compute the bounds in (21) and

select the gains according to (22). If


ι
vl


1

≤ z, set Z = Z1 and

terminate.
Second iteration:

If z <


ι
vl


1
, let Z2 ,


ξ ∈ R2n+2L+p

| ∥ξ∥ ≤ v−1
v


ι
vl


1


. UsingZ2, compute the bounds in (21) and select

the gains according to (22). If


ι
vl


2

≤


ι
vl


1
, set Z = Z2 and

terminate.
Third iteration:

If


ι
vl


2

>


ι
vl


1
, increase the number of NN neurons to {L}3 to

ensure {LY }2

ϵ′

3 ≤ {LY }2


ϵ′

2 , ∀i = 1, . . . ,N, increase the

constant ζ3 to ensure {LY }2
{ζ3}3

≤
{LY }2
{ζ3}2

, and increase the gains K and
ηa1 to satisfy the gain conditions in (22). Provided the constant c
is large enough and D is small enough, these adjustments ensure

{ι}3 ≤ {ι}2. SetZ =


ξ ∈ R2n+2L+p

| ∥ξ∥ ≤ v−1


v


ι
vl


2


and terminate.

Theorem 1. Provided Assumption 1–3 hold and gains q, ηc2, ηa2,
and K are selected large enough using Algorithm 1, the controller
in (15) along with the adaptive update laws in (11) and (13) ensure
that the state x, the value functionweight estimation error W̃c , and the
policy weight estimation error W̃a are uniformly ultimately bounded
(UUB).

Proofs. Let VL : Rn+2L+p
× R≥0 → R≥0 be a continuously differ-

entiable positive definite candidate Lyapunov function defined as

VL

Zo, t


, V ∗


xo

+

1
2
W̃ oT

c Γ −1 (t) W̃ o
c

+
1
2
W̃ oT

a W̃ o
a + Vθ


θ̃ o, t


, (24)

where V ∗ is the optimal value function, Vθ was introduced in

Assumption 2, and Zo ,

xoT , W̃ oT

c , W̃ oT
a , θ̃ oT

T
.Using the fact that

V ∗ is positive definite, (7), (14) and Lemma 4.3 from Khalil (2002)
yield

v
Zo

 ≤ VL

Zo, t


≤ v

Zo
 , (25)

for all t ∈ R≥t0 and for all Zo
∈ Rn+2L+p, where v, v : R≥0 → R≥0

are class K functions.
Provided the gains are selected based using Algorithm 1,

substituting for the approximate BEs from (17) and (18), using the
bounds in (19) and (20), and using Young’s inequality, the time
derivative of (24) evaluated along the trajectory Z can be upper-
bounded as

V ′

L


Zo, t


h

Zo, t


+

∂VL (Zo, t)
∂t

≤ −vl
Zo

2 , (26)
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for all ∥Zo∥ ≥


ι
vl

> 0, Zo
∈ Z and t ∈ R≥t0 .

7 Using (25),

(23) and (26), Theorem 4.18 in Khalil (2002) can now be invoked
to conclude that Z is UUB in the sense that lim supt→∞ ∥Z (t)∥ ≤

v−1

v


ι
vl


. Furthermore, the concatenated state trajectories

are bounded such that ∥Z (t)∥ ≤ Z for all t ∈ R≥t0 . Since
the estimates Ŵa approximate the ideal weights W , the policy û
approximates the optimal policy u∗.

5. Simulation

This section presents two simulations to demonstrate the
performance and the applicability of the developed technique.
First, the performance of the developed controller is demonstrated
through an approximate solution of an optimal control problem
that has a known analytical solution. Based on the known solution,
an exact polynomial basis is used for value function approximation.
The second simulation demonstrates the applicability of the
developed technique in the case where the analytical solution, and
hence, the basis for value function approximation is unknown.
In this case, since the optimal solution is unknown, the optimal
trajectories obtained using the developed technique are compared
with optimal trajectories obtained through numerical optimal
control techniques.

5.1. Problem with a known basis

The performance of the developed controller is demonstrated
by simulating a nonlinear, control affine system with a two
dimensional state x = [x1, x2]T . The system dynamics are
described by (1), where (Vamvoudakis & Lewis, 2010)

f =


x1 x2 0 0
0 0 x1 x2


1 − (cos (2x1) + 2)2


a
b
c
d

 ,

g =

0 (cos (2x1) + 2)T

T
. (27)

In (27) a, b, c , d ∈ R are positive unknown parameters. The
parameters are selected as8 a = −1, b = 1, c = −0.5, and d =

−0.5. The control objective is to minimize the cost in (3), where
Q = I2×2 and R = 1, where In×n denotes an n × n identity matrix.
The optimal value function and optimal control for the system in
(27) are given by V ∗(x) =

1
2x

2
1+x22, and u∗(x) = −(cos(2x1)+2)x2

(cf. Vamvoudakis & Lewis, 2010).
To facilitate the identifier design, thirty data points are recorded

using a singular value maximizing algorithm (cf. Chowdhary et al.,
2013) for the CL-based adaptive update law in (A.2). The state
derivative at the recorded data points is computed using a fifth
order Savitzky–Golay smoothing filter (cf. Savitzky & Golay, 1964).

To facilitate the ADP-based controller, the basis function σ :

R2
→ R3 for value function approximation is selected as

σ =

x21, x1x2, x22


. Based on the analytical solution, the ideal

weights are W = [0.5, 0, 1]T . The data points for the CL-based
update law in (11) are selected to be on a 5 × 5 grid around the
origin. The learning gains are selected as ηc1 = 1, ηc2 = 15,
ηa1 = 100, ηa2 = 0.1, and ν = 0.005. The gains for the system
identifier developed in the Appendix are selected as kx = 10I2×2,
Γθ = 20I4×4, and kθ = 30. The policy and the value function

7 Since Vθ is a common Lyapunov function for the switched subsystem in (6), and
the terms introduced by the update law (12) do not contribute to the bound in (26),
VL is a common Lyapunov function for the complete error system.
8 The origin is an unstable equilibrium point of the unforced system ẋ = f (x).
weight estimates are initialized using a stabilizing set of initial
weights as Ŵc (0) = Ŵa (0) = [1, 1, 1]T and the least squares
gain is initialized as Γ (0) = 100I3×3. The initial condition for the
system state is selected as x (0) = [−1, −1]T , the state estimates x̂
are initialized to be zero, the parameter estimates θ̂ are initialized
to be one, and the data stack for CL is recorded online.

Fig. 1 demonstrates that the system state is regulated to
the origin, the unknown parameters in the drift dynamics are
identified, and the value function and the policy weights converge
to their true values. Furthermore, unlike previous results, a probing
signal to ensure PE is not required. Fig. 2 demonstrates the
satisfaction of Assumptions 3 and 4.

5.2. Problem with an unknown basis

To demonstrate the applicability of the developed controller, a
nonlinear, control affine system with a four dimensional state x =

[x1, x2, x3, x4]T is simulated. The system dynamics are described
in Bhasin, Kamalapurkar, Dinh, and Dixon (2013, Equation 31),
with the states selected as9 x1 = q1, x2 = q2, x3 = q̇1, and
x4 = q̇2, and the inertia parameters p1, p2, and p3, and the friction
coefficients are considered unknown. The control objective is to
minimize the cost in (3), where Q = diag ([10, 10, 1, 1]) and
R = diag ([1, 1]).

The basis function σ : R4
→ R10 for value function approxi-

mation is selected as σ(x) =


x1x3, x2x4, x3x2, x4x1, x1x2, x4x3,

x21, x22, x23, x24

. The data points for the CL-based update law in

(11) are selected to be on a 3 × 3 × 3 × 3 grid around the ori-
gin, and the policy weights are updated using a projection-based
update law. The learning gains are selected as ηc1 = 1, ηc2 =

30, ηa1 = 0.1, and ν = 0.0005. The gains for the system iden-
tifier developed in the Appendix are selected as kx = 10I4×4,
Γθ = diag([90, 50, 160, 50]), and kθ = 1.1. The least squares gain
is initialized as Γ (0) = 1000I10×10 and the policy and the value
function weight estimates are initialized as Ŵc (0) = Ŵa (0) =

[5, 5, 0, 0, 0, 0, 25, 0, 2, 2]T . The initial condition for the system
state is selected as x (0) = [1, 1, 0, 0]T , the state estimates x̂ are
initialized to be zero, the parameter estimates θ̂ are initialized to
be one, and the data stack for CL is recorded online.

Fig. 3 demonstrates that the system state is regulated to
the origin, the unknown parameters in the drift dynamics are
identified, and the value function and the policy weights converge.
Fig. 5 demonstrates the satisfaction of Assumptions 3 and 4. The
value function and the policy weights converge to the following
values.

Ŵ ∗

c = Ŵ ∗

a = [24.7, 1.19, 2.25, 2.67, 1.18,

0.93, 44.34, 11.31, 3.81, 0.10]T . (28)

Since the true values of the value function weights are unknown,
the weights in (28) cannot be compared to their true values. How-
ever, a measure of proximity of the weights in (28) to the ideal
weights W can be obtained by comparing the system trajecto-
ries resulting from applying the feedback control policy û∗ (x) =

−
1
2R

−1gT (x) σ ′T (x) Ŵ ∗
a to the system, against numerically com-

puted optimal system trajectories. In Fig. 4, the numerical optimal
solution is obtained using an infinite-horizon Gauss pseudospec-
tral method (cf. Garg, Hager, & Rao, 2011) using 45 collocation
points. Fig. 4 indicates that the weights in (28) generate state and
control trajectories that closely match the numerically computed
optimal trajectories.

9 The origin is a marginally stable equilibrium point of the unforced system
ẋ = f (x).
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Fig. 1. System trajectories generated using the developed technique, and compared to the analytical solution.
Fig. 2. Satisfaction of Assumptions 3 and 4 for the simulation with known basis.
6. Conclusion

An online approximate optimal controller is developed, where
the value function is approximatedwithout PE in the system states
via novel use of a model to evaluate the BE over unexplored
areas of the state-space. The PE condition is replaced by a set
of rank conditions that can be verified online using current and
recorded observations. UUB regulation of the system states to
a neighborhood of the origin, and convergence of the policy
to a neighborhood of the optimal policy are established using
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Fig. 3. System trajectories generated using the developed technique, where the drift parameter estimates are compared to the actual drift parameters.
Fig. 4. State and control trajectories generated using feedback policy û∗ (x) compared to a numerical optimal solution.
a Lyapunov-based analysis. Simulations demonstrate that the
developed technique approximates the system model and the
optimal controller on-line, while maintaining system stability,
without the use of a probing signal.
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Fig. 5. Satisfaction of Assumptions 3 and 4 for the simulation with unknown basis.
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Appendix. System identification

A.1. CL-based parameter update

In traditional adaptive control, convergence of the estimates
θ̂ to their true values θ is ensured by assuming that a persistent
excitation condition is satisfied (Ioannou & Sun, 1996; Narendra &
Annaswamy, 1989; Sastry & Bodson, 1989). To ensure convergence
under a finite excitation condition, this result employs a CL-
based approach to update the parameter estimates using recorded
input–output data (Chowdhary, 2010; Chowdhary & Johnson,
2011; Chowdhary et al., 2013).

Assumption 4 (Chowdhary & Johnson, 2011; Chowdhary et al.,
2013). A collection Hid of triplets


aj, bj, cj


| aj ∈ Rn, bj ∈ Rn,

cj ∈ Rm
M
j=1

that satisfies

rank


M
j=1

Y T aj Y aj = p,bj − f

aj

+ g


aj

cj
 < d, ∀j, (A.1)

is available a priori, where d ∈ R≥0 is a positive constant.10

To satisfy Assumption 4, data recorded in a previous run of the
systemcan be utilized, or the data stack can be recorded by running
the systemusing a different known stabilizing controller for a finite
amount of time until the recorded data satisfies the rank condition
(A.1).

In some cases, a data stack may not be available a priori. For
such applications, the data stack can be recorded online, i.e., the
points aj and cj can be recorded along the system trajectory as
aj = x


tj

and cj = u


tj

for some tj ∈ R≥t0 . Provided the

system states are exciting over a finite time interval t ∈

t0, t0 + t


(versus t ∈ [t0, ∞) as in traditional PE-based approaches) until
the data stack satisfies (A.1), then amodified form of the controller
developed in Section 3 can be used over the time interval t ∈
t0, t0 + t


, and the controller developed in Section 3 can be

used thereafter. The required modifications to the controller, and

10 Since θ ∈ Θ , where Θ is a compact set, the assumption that d is independent
of θ is justified.
the resulting modifications to the stability analysis are provided
in Kamalapurkar (2014, Appendix A).

Based on Assumption 4, the update law for the parameter
estimates is designed as

˙̂
θ =

Γθkθ

M

M
j=1

Y T aj bj − g

aj

cj − Y


aj

θ̂


, (A.2)

where Γθ ∈ Rp×p is a constant positive definite adaptation gain
matrix and kθ ∈ R is a constant positive CL gain. From (1) and
the definition of θ̃ , the bracketed term in (A.2), can be expressed
as bj − g


aj

cj − Y


aj

θ̂ = Y


aj

θ̃ + dj, where dj , bj −

f

aj

+ g


aj

cj ∈ Rn, and the parameter update law in (A.2) can

be expressed in the advantageous form

˙̂
θ =

Γθkθ

M


M
j=1

Y T aj Y aj θ̃ +
Γθkθ

M

M
j=1

Y T aj dj. (A.3)

The rate of convergence of the parameter estimates to a neighbor-
hood of their ideal values is directly (and the ultimate bound is in-
versely) proportional to the minimum singular value of the matrixM

j=1 Y
T

aj

Y

aj

; hence, the performance of the estimator can

be improved online if a triplet

aj, bj, cj


in Hid is replaced with

an updated triplet (ak, bk, ck) that increases the singular value ofM
j=1 Y

T

aj

Y

aj

. The stability analysis in Section 4 allows for

this approach through the use of a singular value maximizing al-
gorithm (cf. Chowdhary, 2010; Chowdhary et al., 2013).

A.2. Convergence analysis

Let Vθ : Rn+p
→ R≥0 be a positive definite continuously

differentiable candidate Lyapunov function defined as

Vθ


θ̃


,
1
2
θ̃ TΓ −1

θ θ̃ .

The following bounds on the Lyapunov function can be established:
γ

2

θ̃2 ≤ Vθ


θ̃


≤
γ

2

θ̃2 ,

where γ , γ ∈ R denote the minimum and the maximum
eigenvalues of the matrix Γ −1

θ . Using (A.3), the Lyapunov
derivative can be expressed as

V̇θ = −θ̃ T kθ

M


M
j=1

Y T aj Y aj θ̃ −
kθ

M
θ̃ T

M
j=1

Y T aj dj.
Let y ∈ R be the minimum eigenvalue of


1
M

M
j=1 Y

T

aj

Y

aj


.

Since
M

j=1 Y
T

aj

Y

aj


is symmetric and positive semi-
definite, (A.1) can be used to conclude that it is also positive
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definite, and hence y > 0. Hence, the Lyapunov derivative can be
bounded as11

V̇0 ≤ −ykθ

θ̃2 + kθdθ

θ̃ ,

where dθ = dY , Y = maxj=1,...,M
Y aj. Hence, θ̃ exponen-

tially decays to an ultimate bound as t → ∞. The CL-based system
identifier satisfies Assumption 2 with K = ykθ and D = kθdθ . To
satisfy the last inequality in (22), the quantity ι

vl
needs to be small.

Based on the definitions in (21), the quantity ι
vl

is proportional to
D2

K2 , which is proportional to d2θ
y2
. From the definitions of dθ and y,

d2θ
y2

= d
2


M
j=1

Y aj2


λmin


M
j=1

Y T

aj

Y

aj
2 .

Thus, in general, a small d (i.e., accurate numerical differentiation)
is required to obtain the result in Theorem 1.
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