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a b s t r a c t

An adaptive boundary control strategy is developed for the suppression of store induced oscillations in
the bending and twisting deflections of an uncertain flexible aircraft wing. A Lyapunov-based stability
analysis is used to show that the total energy in the system, and hence the distributed states of the system,
remains bounded and decays asymptotically to zero. Simulation results illustrate the performance of the
developed controller.
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1. Introduction

Store induced oscillations commonly described as Limit Cycle
Oscillations (LCO) occur on current high performance fighter
aircraft and are expected to remain an issue for next generation
aircraft (Beran, Strganac, Kim, & Nichkawde, 2004). Store induced
oscillations are characterized by antisymmetric, non-divergent
periodic motion of the wings. Asymmetry in the wing oscillations
cause a lateralmotion in the fuselage that hinders a pilot’s ability to
read cockpit instruments and heads-up display which can lead to
the premature termination of the mission or avoidance of a region
of the flight envelope crucial to combat survivability. Furthermore,
questions have been raised regarding the safe release of wing
stores, the target acquisition of smart munitions, and the accuracy
of unguided ordnance (Bunton & Denegri, 2000). These concerns
necessitate the development of a control strategy designed to
suppress store induced oscillations.

In a wide range of Mach numbers (Sheta, Harrand, Thompson,
& Strganac, 2002), store induced oscillations are prominent. Store
induced oscillations in the subsonic range provide additional
acceleration and result in additional force on the aircraft, which
affects its performance. Experimental investigations of oscillation
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of nonlinear aeroelastic systems in the subsonic airflow region
are found in Platanitis and Strganac (2004), Sheta et al. (2002)
and Strganac, Ko, Thompson, and Kurdila (2000). Experimental
results in Sheta et al. (2002) indicate the importance of addressing
oscillations in the subsonic airflow region.

Previously developed control strategies have focused on sup-
pressing oscillation behavior in a two-dimensional airfoil system.
Several of these control strategies require knowledge of the sys-
tem dynamics, including linear–quadratic regulator (Block & Str-
ganac, 1999; Prime, Cazzolato, Doolan, & Strganac, 2010; Zhang &
Ye, 2007), feedback linearization (Ko, Strganac, & Kurdila, 1998),
linear reduced order model-based control approaches (Danowsky
et al., 2010; Thompson et al., 2011), a Nissim aerodynamic energy-
based control approach (Cavagna, Ricci, & Scotti, 2009), and state-
dependent Riccati equation and sliding mode control approaches
(Elhami & Narab, 2012). Many adaptive control strategies have
been developed for uncertainties in the torsional stiffness model
such as adaptive feedback control for linear-in-the-parameter un-
certainties (Ko, Strganac, & Kurdila, 1999; Strganac et al., 2000).
Most recently, a RISE control structure was used to ensure asymp-
totic tracking of a two-dimensional airfoil section with modeling
uncertainties in the structural and aerodynamic properties (Bialy,
Pasiliao, Dinh, & Dixon, 2012), and then extended to compensate
for actuator saturation (Bialy, Andrews, Curtis, & Dixon, 2013).

Previously, research on control strategies for the suppression
of oscillation has been concerned with a two-dimensional airfoil
section rather than a full flexible aircraft wing. This work develops
an adaptive boundary controller for the suppression of store
induced oscillations in a full three-dimensional flexible aircraft
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wing. The dynamics of a flexible aircraft wing can be modeled,
using Hamilton’s principle (Hodges & Dowell, 1974; Hodges &
Ormiston, 1976; Martins, Mohamed, Tokhi, Sá da Costa, & Botto,
2003; Morita et al., 2002; Zhang, Xu, Nair, & Chellaboina, 2005;
Ziabari & Ghadiri, 2010), as a set of partial differential equations
(PDEs) and associated boundary conditions.

There are two boundary control methodologies that have been
developed for a system described by a set of PDEs. The first
method approximates the PDE system with a finite number of
ordinary differential equations (ODE) using operator theoretic
tools (Bucci & Lasiecka, 2010; Byrnes, Laukó, Gilliam, & Shubov,
2000; Luo, 1993; Luo & Guo, 1995) or Galerkin and Rayleigh–Ritz
methods (Christofides & Daoutidis, 1997; Meirovitch, 1967;
Shawky, Ordys, & Grimble, 2002). A boundary controller is then
designed using the resulting reduced-order model. The primary
concern with using a reduced-order model for the control design
is the potential for spillover instabilities (Balas, 1978;Meirovitch &
Baruh, 1983), in which the controller excites higher-order modes
that were neglected in the approximation. In special cases, the
placement of actuators and sensors can guarantee the neglected
modes are not excited (Balas, 1982). Specifically, placing actuators
at known zero locations of the higher-order modes will alleviate
spillover instabilities; however, this can conflict with the desire to
place actuators away from the zeros of the controlled modes.

The alternative approach is to design the controller based
on the full PDE system where model reduction techniques are
only required for implementation purposes. A PDE backstepping
strategy, described in Krstic and Smyshlyaev (2008), constructs
a state transformation using an invertible Volterra integral. The
transformationmaps the original system to an exponentially stable
target system. Due to the invertibility of the transform, stability of
the target system translates to stability of the closed-loop system
consisting of the original PDE and boundary feedback control.
While this method avoids spillover instabilities, it is limited to
linear PDEs and nonlinear PDEs of a particular form. The boundary
control strategy described in de Queiroz, Dawson, Nagarkatti, and
Zhang (2000) and de Queiroz and Rahn (2002) uses Lyapunov-
based design and analysis arguments to stabilize PDE systems.
The essence of the analysis is the assumption that for a real
physical system, if the energy of the system is bounded, then the
states that compose the energy are also bounded. Based on this
assumption, a Lyapunov-based stability analysis is used to show
that the energy in the closed-loop system remains bounded. A
PDE-based boundary control approach has been previously used
to stabilize fluid flow through a channel (Vazquez & Krstic, 2007),
maneuver flexible robotic arms (de Queiroz, Dawson, Agarwal,
& Zhang, 1999), control the bending in an Euler beam (Fard &
Sagatun, 2001;He, Ge, How, Choo, &Hong, 2011; Siranosian, Krstic,
Smyshlyaev, & Bement, 2011), regulate a flexible rotor system (de
Queiroz & Rahn, 2002; Nagarkatti, Dawson, de Queiroz, & Costic,
2001), and track the net aerodynamic force ormoment of a flapping
wing aircraft (Paranjape, Guan, Chung, & Krstic, 2013).

Many PDE-based and ODE-based control strategies have been
developed to stabilize the bending of a flexible beam such as Fard
and Sagatun (2001), Luo (1993), Luo andGuo (1995) and Siranosian
et al. (2011); however, this collection of work is focused on
structural beams and robotic arms and therefore do not encounter
the closed-loop interactions between the structural dynamics and
aerodynamics intrinsic to aircraft systems. Recently, the work
in Paranjape et al. (2013) used the PDE-backstepping method
described in Krstic and Smyshlyaev (2008) to track the net
aerodynamic forces on a flapping wing UAV whose dynamics are
represented by linear PDEs. The control objective in Paranjape et al.
(2013) was not concerned with the performance of the distributed
states, rather it focused on controlling the spatial integral of the
state variables.
Fig. 1. Schematic of the wing section., where E.A. denotes the elastic axis and C.G.
denotes the center of gravity.

The focus of the current work is the design of a controller to
suppress store induced oscillations in an aircraft wing described by
uncertain coupled nonlinear PDEs via regulation of the state vari-
ables. An adaptive boundary controller is designed to ensure the
distributed states of the flexiblewing are regulated asymptotically.
The challenge in this problem is that the uncertain nonlinear PDE
cannot be transformed into an exponentially stable target system
using theVoltera integral strategy in Krstic and Smyshlyaev (2008).
As a result, the controller is developed through a Lyapunov-based
analysis. The Lyapunov analysis is facilitated by examining the en-
ergy in the aircraft wing and through the development of novel
auxiliary terms introduced to yield favorable outcomes from the
derivative of the wing energy. Simulation results demonstrate the
open-loop oscillation and how the controller is applied to damp
out the oscillation.

2. Flexible aircraft wing model

Consider a flexible wing of length l ∈ R, mass per unit span of
ρ ∈ R, moment of inertia per unit length of Iw ∈ R, and bending
and torsional stiffnesses of EI ∈ R and GJ ∈ R, respectively, with a
store of massms ∈ R and moment of inertia Js ∈ R attached at the
wing tip. The bending and twisting dynamics of the flexible wing
are described by the following PDE system1

L̄wϕ(y, t) = ρωtt(y, t) − ρxc sin (ϕ(y, t)) ϕ2
t (y, t)

+ ρxc cos (ϕ(y, t)) ϕtt(y, t) + EIωyyyy(y, t), (1)

M̄wϕ(y, t) =

Iw + ρx2c


ϕtt(y, t)

+ ρxc cos (ϕ(y, t)) ωtt(y, t) − GJϕyy(y, t), (2)

whereω : R×R → R and ϕ : R×R → R denote the bending and
twisting displacements, respectively, y ∈ [0, l] denotes spanwise
location on the wing, xc ∈ R represents the distance from the
wing elastic axis to the wing center of gravity (as shown in Fig. 1),
and L̄w ∈ R and M̄w ∈ R denote aerodynamic lift and moment
coefficients, respectively.

Remark 1. EI , GJ and other wing parameters are considered to
be spatially invariant, although this work may be extended to
include spatially varying wing parameters by incorporating a
similar approach as in Ishihara and Nguyen (2014).

In (1) and (2), the subscripts t and y denote partial derivatives
with respect to time or the spanwise position along a wing. The
boundary conditions for tip-based control are

ω (0, t) = ωy (0, t) = ωyy (l, t) = ϕ (0, t) = 0, (3)

Ltip(t) = msωtt (l, t) − msxs sin (ϕ (l, t)) ϕ2
t (l, t)

1 Damping terms (e.g., Kelvin–Voigt damping Kangsheng & Zhuangyi, 1998)
could be added to themodel; however, the subsequent development illustrates how
to mitigate the oscillation through the closed-loop control.
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− EIωyyy (l, t) + msxs cos (ϕ (l, t)) ϕtt (l, t) , (4)

Mtip(t) =

msx2s + Js


ϕtt (l, t) + GJϕy (l, t)

+ msxs cos (ϕ (l, t)) ωtt (l, t) , (5)

where Ltip : R → R and Mtip : R → R denote the aerodynamic lift
and moment at the wing tip, and xs ∈ R represents the distance
from the wing elastic axis to the store center of gravity. To simplify
the notation, dependency of ϕ and ω on y and t will be suppressed
in the rest of the paper, i.e. ϕ(y, t) ≡ ϕ, ω(y, t) ≡ ω, ϕt(y, t) ≡

ϕt , ωt(y, t) ≡ ωt , and all time and spatial derivatives of ω and
ϕ. All model parameters are assumed to be uncertain constants.
Furthermore, based on Remark 5.1 in de Queiroz et al. (2000), the
system is assumed to have following properties.

Assumption 1. Potential energy of the system, EP(t) , 1
2 l

0


EIω2

yy + GJϕ2
y


dy is assumed to be bounded ∀t ∈ [0, ∞), and

∂nω
∂yn and ∂mϕ

∂ym are assumed to be bounded, uniformly in y ∀t ∈

[0, ∞) for n = 2, 3, 4 andm = 1, 2.

Assumption 2. The kinetic energy of the system,

EK (t) ,
1
2

 l

0


ρω2

t + 2ρxc cos (ϕ) ϕtωt

dy +

1
2
msω

2
t (l, t)

+
1
2
Jsϕ2

t (l, t) +
1
2

 l

0


Iw + ρx2c


ϕ2
t


dy,

is assumed to be bounded ∀t ∈ [0, ∞), and ∂qω
∂tq and ∂qϕ

∂tq are
assumed to be bounded, uniformly in t ∀y ∈ [0, l] for q = 1, 2, 3.

Assumption 3. The subsequent control development is based on
the assumption that ωt(l, ·), ωyyy(l, ·), ϕt(l, ·), ϕy(l, ·), ϕty(l, ·),
ωtyyy(l, ·) and ϕ(l, ·) are measurable.

Remark 2. In practice, time variation of both wing tip bending
and twisting deflection can be measured by transducers. Spatial
variation of bending deflection can be measured by strain gauges
(as mentioned in Fard and Sagatun (2001)) or shear sensors (as
discussed in de Queiroz et al. (1999)), based on the order of dif-
ferentiation. Time variations of these sensor measurements can
be obtained through numerical methods. Such measurements and
numerical methods can introduce noise. While motivation exists
for additional research to eliminate these higher-order measure-
ments, the subsequent simulation section includes measurement
noise that provides insight of the controller’s robustness. Advances
in fiber optic sensing (both Long Period Fiber Gratings and Fiber
Bragg Grating) can also be used to measure the deformation of the
wing. For example, fiber optic strain data from a ground load test
of a full-scale aircraft wing can be used to measure the deflection
of thewing and corrugated long-period fiber grating can be used to
measure strain, bending and torsion of the wing as in Durana et al.
(2009).

3. Adaptive boundary control development

The control objective is to ensure thewing bending and twisting
deformations are regulated in the sense that ω → 0 and ϕ →

0∀y ∈ [0, l] as t → ∞ via boundary control at the wing tip. To
facilitate the subsequent stability analysis, let the auxiliary signal
e : [0, ∞) → R2 and M̄(t) : [0, ∞) → R2×2 be defined as

e(t) ,


ωt (l, t) − ωyyy (l, t)
ϕt (l, t) + ϕy (l, t)


, (6)

M̄(t) ,


ms msxs cos (ϕ (l, t))

msxs cos (ϕ (l, t)) msx2s + Js


.

The open-loop dynamics of the auxiliary signal are obtained by
multiplying the time derivative of e by M̄ to yield

M̄(t)ė(t) = M̄(t)

ωtt (l, t)
ϕtt (l, t)


+ M̄(t)


−ωtyyy (l, t)

ϕty (l, t)


. (7)

Substituting the boundary conditions in (4) and (5) into (7) and
after some algebraic manipulation, (7) can be expressed as

M̄(t)ė(t) = U(t) −
1
2

˙̄M(t)e(t) + Y (t)θ, (8)

where U(t) ,

L(t) M(t)

T
: [0, ∞) → R2, θ ∈ R5 is a vector

of unknown parameters, and Y : [0, ∞) → R2×5 is a regression
matrix of known quantities. Specifically, Y and θ are defined as

Y (t) ,


Y11 ωyyy (l, t) −ωtyyy (l, t) 0 0
Y21 0 0 −ϕy(l, t) ϕty (l, t)


,

θ ,

msxs EI ms GJ


msx2s + Js

T
,

2where Y11 =
1
2 sin (ϕ (l, t))


ϕ2
t (l, t) − ϕt (l, t) ϕy (l, t)


+ cos


ϕ

(l, t)

ϕty (l, t) and Y21 =

1
2 sin (ϕ (l, t)) ϕt (l, t)


ωyyy (l, t) −

ωt (l, t)

− cos (ϕ (l, t)) ωtyyy (l, t).

Based on the open-loop dynamics in (8), the boundary control
is designed as

U(t) = −Ke(t) − Y (t)θ̂ , (9)

where K ∈ R is a positive constant control gain, and θ̂ : [0, ∞) →

R5 is a vector of estimates of the uncertain parameters in θ . The
vector of parameter estimates θ̂ (t) is updated according to the
gradient update law defined as

˙̂
θ(t) = Γ Y (t)T e(t), (10)

where Γ ∈ R5×5 is a positive definite control gain.3 Substituting
(9) into (8) yields

M̄(t)ė(t) = −
1
2

˙̄M(t)e(t) − Ke(t) + Y θ̃ (t), (11)

where θ̃ (t) , θ − θ̂ (t).

4. Lyapunov-based stability analysis

To facilitate the subsequent stability analysis, let the auxiliary
terms ET : [0, ∞) → R and Ec : [0, ∞) → R be defined as

ET (t) ,
1
2

 l

0


ρω2

t + 2ρxc cos (ϕ) ϕtωt + EIω2
yy


dy

+
1
2

 l

0


Iw + ρx2c


ϕ2
t + GJϕ2

y


dy, (12)

Ec(t) , β1

 l

0
ρωyy (ωt + xc cos (ϕ) ϕt) dy

+ β1

 l

0
ϕyy


Iw + ρx2c


ϕtdy

+ β1

 l

0
ϕyyρxc cos (ϕ) ωtdy, (13)

2 Unknown parameters EI and GJ can be upper bounded by known constants ĒI
and ḠJ respectively.
3 The subsequent stability analysis ensures the parameter estimate will remain

bounded. In practice, a projection algorithm (cf. Dixon, Behal, Dawson, &Nagarkatti,
2003; Krstic, Kanellakopoulos, & Kokotovic, 1995) can be used to keep the
parameter estimates within a specified bound.
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where β1 ∈ R is a positive weighting constant. Note that ET is
analogous to the energy in the wing and Ec contains cross terms
used to facilitate the stability analysis. Using Young’s inequality,
an upper bound on ET can be expressed as

ET (t) ≤
1
2
max


(ρ + ρ |xc |) ,


Iw + ρx2c + ρ |xc |


, EI,GJ


Eb(t),

where Eb : [0, ∞) → R is defined as

Eb(t) ,

 l

0


ω2

t + ω2
yy + ϕ2

t + ϕ2
y


dy. (14)

In a similar manner, ET can be lower bounded as

ET (t)

≥
1
2
min


(ρ − ρ |xc |) ,


Iw + ρx2c − ρ |xc |


, EI,GJ


Eb(t). (15)

Remark 3. Provided that |xc | < 1 and Iw > ρx2c − ρ |xc |, ET
will be non-negative. The conditions |xc | < 1 and Iw > ρx2c −

ρ|xc | are engineering design considerations that ensure the store
is mounted sufficiently close to the wing center of mass Thompson
and Strganac (2005).

After using Young’s inequality, the cross term Ec can be upper
bounded as

|Ec(t)| ≤ β1ρl (1 + |xc |)
 l

0
ω2

t dy

+ β1l

Iw + ρx2c + ρ |xc |

  l

0


ϕ2
t + ϕ2

y


dy

+ β1ρl (1 + |xc |)
 l

0
ω2

ydy. (16)

Lemma A.12 in de Queiroz et al. (2000) can be applied to the third
integral in (16) to yield

|Ec(t)| ≤ β1ρl (1 + |xc |)
 l

0
ω2

t dy

+ β1ρl3 (1 + |xc |)
 l

0
ω2

yydy

+ β1l

Iw + ρx2c + ρ |xc |

  l

0


ϕ2
t + ϕ2

y


dy

≤ β1lmax

(ρ + ρ |xc |) , l2 (ρ + ρ |xc |) ,

Iw + ρx2c + ρ |xc |


Eb(t). (17)

From (17), Ec can be lower bounded as

Ec(t) ≥ −β1lmax

(ρ + ρ |xc |) , l2 (ρ + ρ |xc |) ,

Iw + ρx2c + ρ |xc |


Eb(t). (18)

From (15) and (18), if β1 is selected as β1 <
δ1
2lδ2

,where

δ1 , min

(ρ − ρ |xc |) ,


Iw + ρx2c − ρ |xc |


, EI,GJ


,

δ2 , max

(ρ + ρ |xc |) , l2(ρ +ρ|xc |) ,


Iw+ ρx2c +ρ|xc |


then

ζ1Eb(t) ≤ ET (t) + Ec(t) ≤ ζ2Eb(t) (19)

where the positive constants ζ1 and ζ2 are defined as

ζ1 ,
1
2
δ1 − β1lδ2, ζ2 ,

1
2
δ2 + β1lδ2.
Theorem 1. The boundary control law in (9) along with the adaptive
update law in (10) ensure the system states ω → 0 and ϕ → 0 ∀y ∈

[0, l] as t → ∞ provided the following sufficient gain conditions are
satisfied:

K >
1
2
max


ĒI + β1ĒIl, Kβ ḠJ


, (20)

β1l < Kβ , (21)

β1ρ − β1ρxc − L̄w > 0, (22)

3ĒI
2

−
L̄w l3

2
> 0, (23)

β1

Iw + ρx2c


− β1ρxc − M̄w > 0, (24)

β1ḠJ − β1M̄wl3 − β1M̄wl − β1̄Lwl3 −

M̄w + L̄w


l2 >0, (25)

β1ĒIl + ĒI − β1ρ − β1ρxc l > 0, (26)

ḠJ − β1l

Iw + ρx2c


− β1ρxc l > 0. (27)

Remark 4. The sufficient gain conditions in (20)–(27) can be
satisfied by a combination of gain selection and engineering design
consideration. Selection of the wing aerodynamic properties can
be done to satisfy aircraft performance criteria (e.g., minimum
takeoff distance, maximum range, etc.). The structural properties
of thewing can then be selected to satisfy the sufficient conditions.
Increasing the stiffness and mass of the wing or mounting the
store closer to the wing center of mass will satisfy the sufficient
conditions. A set of wing and store parameters satisfying these
conditions are listed in Thompson and Strganac (2005).

Remark 5. The gain conditions in (20)–(27) may be further
simplified and potentially less conservative by using theWirtinger
bound and the inequalities in Mitrinovic, Pecaric, and Fink
(1992). Furthermore, an extension of this work can be done by
incorporating spatial variation of wing parameters, and the use
of the Wirtinger bound for such an extension may provide more
flexibility in choosing control gains.
Proof. LetVL : [0, ∞) → R+, continuously differentiable function
defined as

VL(t) , ET (t) + Ec(t) +
e(t)TM̄(t)e(t)

2
+

θ̃ (t)TΓ −1θ̃ (t)
2

. (28)

Note that the nontrivial cases for which VL is zero (e.g., θ̃ = 0, and
whenϕ andω are constants) will not occur because of the essential
boundary conditions in (3). Based on the structure of VL in (28) and
the inequalities in (19), VL can be bounded as

VL(t) ≥ ζ1Eb(t) +
λmin

2


M̄(t) ∥e(t)∥2

+ Γ −1 θ̃ (t)
2

, (29)

VL(t) ≤ ζ2Eb(t) +
λmax

2


M̄(t) ∥e(t)∥2

+ Γ −1 θ̃ (t)
2

, (30)

where λmin (ξ) and λmax (ξ) denote the minimum and maximum
eigenvalue of ξ , respectively. Differentiating (28) and substituting
(10) and (11) into the resulting expression yields

V̇L(t) = ĖT (t) + Ėc(t) − e(t)TKe(t). (31)

In (31), ĖT is determined by differentiating (12) with respect to
time to obtain

ĖT (t) =

 l

0
ωt


ρωtt + ρxc cos (ϕ) ϕtt − ρxc sin (ϕ) ϕ2

t


dy

+

 l

0


EIωyyωtyy + GJϕyϕty


dy

+

 l

0


Iw + ρx2c


ϕtt + ρxc cos (ϕ) ωtt


ϕtdy. (32)
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Substituting (1) and (2) into the first two integrals of (32) yields

ĖT (t) =

 l

0


L̄wϕωt + M̄wϕϕt


dy −

 l

0
EIωtωyyyydy

+

 l

0
EIωyyωtyydy +

 l

0
GJϕtϕyydy +

 l

0
GJϕyϕtydy. (33)

Integrating the third and fifth integrals in (33) by parts and
applying the boundary conditions of the PDE system results in l

0
EIωyyωtyydy = −EIωyyy(l, t)ωt(l, t) +

 l

0
EIωtωyyyydy, (34) l

0
GJϕyϕtydy = GJϕy(l, t)ϕt(l, t) −

 l

0
GJϕtϕyydy. (35)

Using the expressions in (34) and (35) andusing the auxiliary signal
definition in (6), (33) can be rewritten as

ĖT (t) =

 l

0


L̄wϕωt + M̄wϕϕt


dy + e(t)T

EI
2

0

0
kβGJ
2

 e(t)

−
EI
2


ω2

t (l, t) + ω2
yyy(l, t)


−

KβGJ
2


ϕ2
y (l, t) + ϕ2

t (l, t)

. (36)

After integrating and using Young’s inequality and Lemma A.12
from de Queiroz et al. (2000), Ėc can be upper bounded as

Ėc(t) ≤ − (1 − xc)
β1ρ

2

 l

0
ω2

t dy +
β1EIl
2

e21

−


3EI
2

−
L̄w l3

2


β1

 l

0
ω2

yydy

−

Iw + ρx2c − ρxc

 β1

2

 l

0
ϕ2
t dy

+
1
2
β1l


Iw + ρx2c


ϕ2
t (l, t) −

β1EIl
2

ω2
y (l, t)

−

GJ − M̄w l3 − M̄w l − L̄w l3

 β1

2

 l

0
ϕ2
ydy

−
β1EIl
2

ω2
yyy (l, t) +

1
2
β1GJlϕ2

y (l, t)

+
1
2
β1ρlω2

t (l, t) + β1ρxc lϕt (l, t) ωt (l, t) , (37)

where e1 denotes the first element of the vector e, (i.e., e1(t) ,
ωt (l, t) − ωyyy (l, t)). Inserting (36) and (37) into (31) and using
Young’s inequality yields

V̇L(t) ≤ −
1
2


β1ρ − β1ρxc − L̄w

  l

0
ω2

t dy −
EI
2

β1lω2
yyy (l, t)

−
1
2


−β1L̄w l3 −


M̄w + L̄w


l2
  l

0
ϕ2
ydy

−
1
2


β1


Iw + ρx2c


− β1ρxc − M̄w

  l

0
ϕ2
t dy

−
1
2


β1GJ − β1M̄w l3 − β1M̄w l

  l

0
ϕ2
ydy

−
GJ
2


Kβ − β1l


ϕ2
y (l, t) −

EI
2

ω2
yyy (l, t)

−


3EI
2

−
L̄w l3

2


β1

 l

0
ω2

yydy

−
1
2

(β1EIl + EI − β1ρl − β1ρxc l) ω2
t (l, t)
−
1
2


KβGJ − β1l


Iw + ρx2c


− β1ρxc l


ϕ2
t (l, t)

−


K −

1
2
max


EI + β1EIl, KβGJ


∥e(t)∥2 . (38)

Provided the sufficient conditions in (20)–(23) are satisfied, (38)
can be expressed as

V̇L(t) ≤ −λ1Eb (t) − λ2e2 (t) , −g (t) , (39)

where λ1 ∈ R and λ2 ∈ R are positive constants defined as

λ1 ,
1
2
min


β1ρ − β1ρxc − L̄w, 3EI − L̄w l3,

β1

Iw + ρx2c


− β1ρxc − M̄w,

β1

GJ − M̄w l3 − M̄w l − L̄w l3


−


M̄w + L̄w


l2

,

λ2 , K −
1
2
max {EI + β1EIl,GJ} .

From (28) and (39), VL ∈ L∞; hence, Eb ∈ L∞, e ∈ L∞, and
θ̃ ∈ L∞. Since Eb ∈ L∞, it can be concluded that

 l
0 ω2

yydy ∈ L∞

and
 l
0 ϕ2

ydy ∈ L∞; hence, the elastic potential energy in the wing
EP ∈ L∞ and by Assumption 1,ωyyy (l, ·) ∈ L∞ andϕy (l, ·) ∈ L∞.
Since e ∈ L∞, ωyyy (l, ·) ∈ L∞, and ϕy (l, ·) ∈ L∞, (6) can be used
to show ωt (l, ·) ∈ L∞ and ϕt (l, ·) ∈ L∞. Since ωt (l, ·) ∈ L∞,
ϕt (l, ·) ∈ L∞, and Eb ∈ L∞, the kinetic energy of the system EK ∈

L∞ and by Assumption 2, ∂qω
∂tq and ∂qφ

∂tq are bounded, uniformly in
t∀y ∈ [0, l] for q = 1, 2, 3. Eqs. (4) and (5) can be used to show
that the boundary control input, U ∈ L∞. Differentiating g from
(39) with respect to time yields

ġ(t) = λ1Ėb(t) + 2λ2e(t)ė(t), (40)

where

Ėb(t) = 2
 l

0


ωtωtt + ωyyωtyy + ϕtϕtt + ϕtyϕy


dy. (41)

After integrating by parts the second and fourth terms in (41), Ėb
can be expressed as

Ėb(t) = 2
 l

0


ωt


ωtt + ωyyyy


+ ϕt


ϕtt − ϕyy


dy

− 2ωt (l, t) ωyyy (l, t) + 2ϕt (l, t) ϕy (l, t) . (42)

Since all system signals are bounded, (42) can be used to conclude
that Ėb ∈ L∞. Eqs. (11) and (40) can be used to show that ġ ∈ L∞.
Given that V (t) is a non-negative function in time and V̇ (t) ≤

−g(t), where g(t) is a non-negative function and ġ(t) ∈ L∞,
Lemma A.6 in de Queiroz et al. (2000) and Lemma 4.3 in Slotine
and Li (1991) can be used to show that limt→∞ Eb (t) , e (t) → 0.
Using (14) and LemmaA.12 in deQueiroz et al. (2000) the following
inequalities can be developed

Eb(t) ≥

 l

0
ω2

yydy ≥
1
l3

ω2
≥ 0, (43)

Eb(t) ≥

 l

0
ϕ2
ydy ≥

1
l
ϕ2

≥ 0. (44)

Since Eb → 0 as t → ∞, it can be concluded from (43) and (44)
that ω → 0 and ϕ → 0 as t → ∞∀y ∈ [0, l].

5. Numerical simulation

A numerical simulation is presented to illustrate the perfor-
mance of the developed controller. To approximate the simulta-
neous nonlinear system of PDEs that describe the bending and
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twisting of aircraft wing with a finite number of ODEs, a Galerkin-
based method is used. The twisting and bending deflections of the
wing are represented as aweighted sum of basis functions as given
by

ϕ(y, t) = a0(t)h0(y) +

n
i=1

ai(t)hi(y),

ω(y, t) = b0(t)g0(y) +

p
i=1

bi(t)gi(y), (45)

where n = 5, p = 4, denote the number of basis functions used in
the approximations of the wing twisting and bending deflection,
respectively. Eq. (45) is a standard trail solution for Galerkin’s
weighted residual method. Selecting the trial solution in this way
ensures that the solution satisfies the PDEs, by using principle
of orthogonality between the basis functions and any arbitrary
function. A set of linearly independent functions {hi(y)}ni=0 and
{gi(y)}

p
i=0 is used satisfying the following boundary conditions.

h0 (0) = hi (0) = 0, hy0 (l) = 1, hyi (l) = 0,
g0 (0) = gi (0) = 0, gy0 (0) = gyi (0) = 0,
gyy0 (l) = gyyi (l) = 0, gyyy0 (l) = 1, gyyyi (l) = 0.

First the approximation of the twisting and bending deflection
given in (45) is substituted in the system of PDEs in (1) and
(2), and then Taylor’s approximation up to two terms is used to
approximate sine and cosine terms, and the resulting equations can
be written as a set of coupled nonlinear ODEs

G1b̈ + ȧ2

G21a + G22a3


+ ä


G31 + G32a2


+G4b + G5a = 0, (46)

H1ä + H21b̈ + H22b̈a2 + H3a + H4a = 0. (47)

In (46) and (47) b(t) ,

b0(t) b1(t) . . . bp(t)

T , a(t) ,
a0(t) a1(t) . . . an(t)

T , G1 , ρ
 l
0 g(y)g

T (y)dy, G21 , −ρxc l
0 g(y)


h(y)h(y)2

T dy, G22 , ρxc
3!

 l
0 g(y)


h(y)2h(y)3

T dy, G31 ,

ρxc
 l
0 g(y)h

T (y)dy, G32 , −
ρxc
2!

 l
0 g(y)


h(y)h(y)2

T dy, G4 ,

EI
 l
0 g(y)g

T
yyyy(y)dy, G5 , −L̄w

 l
0 g(y)h

T (y)dy, H1 ,

Iw + ρx2c

 l
0 h(y)h

T (y)dy, H21 , ρxc
 l
0 h(y)g

T (y)dy, H22 , −
ρxc
2!

 l
0 h(y)

g(y)h(y)2
T dy, H3 , −GJ


h(y)hT

yy(y)dy, H4 , −M̄w

 l
0 h(y)h

T

(y)dy.
The coupled nonlinear ODEs are simulated with the following

initial conditions: ω(y, 0) = 0 m and ϕ(y, 0) =
y2

2l2
rad. Figs. 2

and 3 indicate that these initial conditions yield store induced os-
cillations. Figs. 4 and 5 show the twisting and bending deflection
at the wing tip and wing center, respectively. Unlike twisting de-
flection, bending deflection is higher at the wing center compared
to the wing tip, which is intuitive since there is added mass at the
wing tip due to the store. Therefore, for the closed-loop response,
twisting and bending deflection for both the wing tip and center
are plotted in subsequent figures.

The control objective is to regulate the twisting and bending
deflection of the flexiblewing. For the adaptive controller designed
in (9), the only user defined input parameter is the positive
constant control gain K . The control gain is selected as K = 100 to
satisfy the sufficient gain conditions. Figs. 6 and 7 indicate that the
controller is capable of suppressing the store induced oscillations
with measurement noise in the system. To illustrate robustness to
measurement noise, standard white Gaussian noise is added to the
simulation with a signal to noise ratio of 28. Figs. 8 and 9 indicate
the mitigation of both twisting and bending deflection at wing tip
and wing center, respectively, which justifies the previous claim
Fig. 2. Open-loop twisting deflection.

Fig. 3. Open-loop bending deflection.

Fig. 4. Open-loop response at the wing tip.

of controlling the state variables instead of the integral of state
variables over spatial interval (Paranjape et al., 2013).

Control actuation is applied at the store attached at thewing tip.
Figs. 10 and 11 illustrate the time variation of the applied control
force and moment.

6. Conclusion

This paper presents the development of a boundary control
strategy for suppressing store induced oscillations in an uncer-
tain flexible aircraft wing. The boundary control strategy retains
the full PDE system, thereby avoiding potential spillover instabili-
ties, and ensures asymptotic regulation of the distributed states in
the presence of parametric uncertainties. Numerical simulations
illustrate the performance of the developed adaptive controller.
Although a finite difference method is used in the simulation
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Fig. 5. Open-loop response at the wing center.

Fig. 6. Closed-loop twisting deflection (with added measurement noise).

Fig. 7. Closed-loop bending deflection (with added measurement noise).

Fig. 8. Closed-loop response at the wing tip (with added measurement noise).
Fig. 9. Closed-loop response at the wing center (with added measurement noise).

Fig. 10. Applied control force.

Fig. 11. Applied control moment.

section to approximate derivative terms, methods such as a
Kalman-filter or extension of this type of observer can be used
to reduce the noise, caused by numerical methods. A potential
drawback to the developed method is the need for measure-
ments of high-order spatial derivatives of the distributed states
(e.g., ωyyy (l, t)). Future efforts are focused on developing PDE-
based output feedback boundary control strategies that would
eliminate the need for high-order spatial derivative measure-
ments. The sufficient gain conditions require the control gains to
be selected large enough based on the aerodynamics lift and mo-
ment, which varieswith airspeed. The sufficient conditions also re-
quire the structural stiffness to be sufficiently larger than the lift
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and moment. These conditions ultimately limit the airspeed and
motivate further development for higher airspeed operating con-
ditions (e.g., transonic speed). For flight readiness implementation
of the developed controlmethod, additional robustness guarantees
in terms of stability margins would need to be examined further,
alongwith experimental validation. These tasks are the focus of fu-
ture efforts.
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