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An infinite horizon optimal regulation problem is solved online for a deterministic control-affine nonlin-
ear dynamical system using a state following (StaF) kernel method to approximate the value function.
Unlike traditional methods that aim to approximate a function over a large compact set, the StaF kernel
method aims to approximate a function in a small neighborhood of a state that travels within a compact
set. Simulation results demonstrate that stability and approximate optimality of the control system can be
achievedwith significantly fewer basis functions thanmaybe required for global approximationmethods.
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1. Introduction

Reinforcement learning (RL) has become a popular tool for de-
termining online solutions of optimal control problems for systems
with finite state and action spaces (Bertsekas, 2007; Bertsekas &
Tsitsiklis, 1996; Konda & Tsitsiklis, 2004; Mehta & Meyn, 2009;
Sutton & Barto, 1998; Szepesvári, 2010). Due to various technical
and practical difficulties, implementation of RL-based closed-loop
controllers on hardware platforms remains a challenge. In recent
years, adaptive dynamic programming (ADP) has been successfully
used to realize RL in deterministic autonomous control-affine sys-
tems to solve optimal control problems via value function approxi-
mation (Al-Tamimi, Lewis, & Abu-Khalaf, 2008; Bhasin et al., 2013;
Deisenroth & Rasmussen, 2011; Dierks, Thumati, & Jagannathan,
2009; Doya, 2000; Lewis & Vrabie, 2009; Mehta & Meyn, 2009;
Padhi, Unnikrishnan, Wang, & Balakrishnan, 2006; Vamvoudakis
& Lewis, 2010; Zhang, Cui, & Luo, 2013; Zhang, Cui, Zhang, & Luo,
2011; Zhang, Liu, Luo, & Wang, 2013). ADP techniques employ
parametric function approximationmethods (typically neural net-
works (NNs)) to approximate the value function (Heydari & Bal-
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akrishnan, 2013; Kiumarsi, Lewis, Modares, Karimpour, & Naghibi-
Sistani, 2014; Liu, Huang, Wang, & Wei, 2013; Padhi et al., 2006;
Yang, Liu, & Wang, 2014). ADP-based controllers are void of pre-
designed stabilizing feedback and are completely defined by the
estimated parameters. Hence, the error between the optimal and
the estimated value function is required to decay to a sufficiently
small bound sufficiently fast to establish closed-loop stability. The
size of the error bound is determined by the selected basis func-
tions, and the convergence rate is determined by richness of the
data used for learning.

Sufficiently accurate approximation of the value function over
a sufficiently large neighborhood often requires a large number of
basis functions, and hence, introduces a large number of unknown
parameters. One way to achieve accurate function approximation
with fewer unknown parameters is to use prior knowledge about
the system to determine the basis functions. However, for general
nonlinear systems, prior knowledge of the features of the optimal
value function is generally not available; hence, a large number of
generic basis functions is often the only feasible option.

Fast approximation of the value function over a large neighbor-
hood requires sufficiently rich data to be available for learning. In
traditional ADPmethods such as Bhasin et al. (2013), Vamvoudakis
and Lewis (2009) and Vamvoudakis and Lewis (2010), richness of
data manifests itself as the amount of excitation in the system.
In experience replay-based techniques such as Chowdhary (2010),
Chowdhary and Johnson (2011a), Chowdhary, Yucelen, Mühlegg
(2013) and Modares, Lewis, and Naghibi-Sistani (2014), richness
of data is quantified by eigenvalues of a recorded history stack. In
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model-based RL techniques such as Kamalapurkar, Andrews, Wal-
ters, and Dixon (2014), Kamalapurkar, Klotz, and Dixon (2014) and
Kamalapurkar, Walters, and Dixon (2013), richness of data corre-
sponds to the eigenvalues of a learningmatrix. As the dimension of
the system and the number of basis functions increases, the richer
data is required to achieve learning. In traditional ADP methods,
the demand for rich data is met by adding excitation signals to the
controller, thereby causing undesirable oscillations. In experience
replay-based ADPmethods and inmodel-based RL, the demand for
richer data causes exponential growth in the required data storage.
Hence, implementations of traditional ADP techniques such as Al-
Tamimi et al. (2008), Bhasin et al. (2013), Dierks et al. (2009), Doya
(2000), Lewis and Vrabie (2009), Mehta and Meyn (2009), Padhi
et al. (2006), Vamvoudakis and Lewis (2009, 2010), Zhang, Cui et al.
(2013); Zhang et al. (2011); Zhang, Liu et al. (2013) and data-driven
ADP techniques such as Kamalapurkar, Andrews et al. (2014), Ka-
malapurkar, Klotz et al. (2014), Kamalapurkar et al. (2013), Luo,
Wu, Huang, and Liu (2014), Modares et al. (2014) and Yang, Liu,
and Wei (2014) in high dimensional systems are scarcely found in
the literature.

In this paper, a novel model-based RL technique is developed
to achieve sufficient excitation without causing undesirable
oscillations and expenditure of control effort like traditional ADP
techniques and at a lower computational cost than state-of-the-
art data-driven ADP techniques. Motivated by the fact that the
computational effort required to implement ADP and the data-
richness required to achieve convergence both decrease with
decreasing number of basis functions, this paper focuses on
reduction of the number of basis functions used for value function
approximation.

A key contribution of this paper and our preliminary work in
Kamalapurkar, Rosenfeld, and Dixon (2015) is the observation that
online implementation of an ADP-based approximate optimal con-
troller does not require an estimate of the optimal value function
over the entire domain of operation of the system. Instead, only an
estimate of the slope of the value function evaluated at the cur-
rent state is required for feedback. Since it is reasonable to postu-
late that approximation of the value function over a local domain
would require fewer basis functions than approximation over the
entire domain of operation, this paper focuses on reduction of the
size of the approximation domain. Such a reduction is achieved via
selection of basis functions that travel with the system state (re-
ferred to as state-following (StaF) kernels).

Unlike traditional value function approximation, where the un-
known parameters are constants, the unknown parameters corre-
sponding to the StaF kernels are functions of the system state. The
Lyapunov-based stability analysis presented in Section 4 is facil-
itated by the fact that the ideal weights are continuously differ-
entiable functions of the system state. To facilitate the proof of
continuous differentiability, the StaF kernels are selected from a
Reproducing Kernel Hilbert Space (RKHS). Other function approx-
imation methods, such as radial basis functions, sigmoids, higher
order neural networks, support vector machines, etc., can poten-
tially be utilized in a state-following manner to achieve similar re-
sults provided continuous differentiability of the ideal weights can
be established. An examination of smoothness properties of the
ideal weights resulting from a state-following implementation of
the aforementioned function approximation methods is out of the
scope of this paper.

A key contribution of this paper over our preliminary work in
Kamalapurkar et al. (2015) is the observation that model-based
RL techniques can be implemented without storing any data if
the available model is used to simulate persistent excitation. In
other words, an excitation signal added to the simulated system,
instead of the actual physical system, can be used to learn the
value function. Excitation via simulation is implemented using
Bellman error (BE) extrapolation (cf. Kamalapurkar, Andrews
et al., 2014, Kamalapurkar, Klotz et al., 2014 and Kamalapurkar
et al., 2013); however, instead of a large number of autonomous
extrapolation functions employed in results such as Kamalapurkar,
Andrews et al. (2014), Kamalapurkar, Klotz et al. (2014) and
Kamalapurkar et al. (2013), a single time-varying extrapolation
function is selected, where the time-variation of the extrapolation
function simulates excitation. The use of a single extrapolation
point introduces a technical challenge since the BE extrapolation
matrix is rank deficient at each time instance. The aforementioned
challenge is addressed in Section 4.3 by modifying the stability
analysis to utilize persistent excitation of the extrapolated
regressor matrix. Simulation results including comparisons with
state-of-the-art model-based RL techniques are presented to
demonstrate the effectiveness of the developed technique.

In the following, Section 2 summarizes key results from our
preliminary work in Rosenfeld, Kamalapurkar, and Dixon (2015),
where the theory of reproducing kernel Hilbert spaces (RKHSs) is
used to establish continuous differentiability of the ideal weights
with respect to the system state, and the postulate that approx-
imation of a function over a small neighborhood requires fewer
basis functions is stated and proved. In Section 3 the StaF-based
function approximation approach is used to approximately solve
an optimal regulation problem online using exact model knowl-
edge via value function approximation. Section 4 is dedicated to
Lyapunov-based stability analysis of the developed technique. Sec-
tion 5 extends the developed technique to systems with uncertain
drift dynamics. Section 6 presents comparative simulation results
and Section 7 provides concluding remarks.

2. StaF kernel functions

Let H be a universal RKHS over a compact set χ ⊂ Rn with a
continuously differentiable positive definite kernel k : χ×χ → R.
Let V

∗
: χ → R be a function such that V

∗
∈ H . Let C ,

[c1, c2, . . . , cL]T ∈ χ L be a set of distinct centers, and let σ :

χ × χ L
→ RL be defined as σ (x, C) = [k (x, c1) , . . . , k (x, cL)]T .

Then, there exists a unique set of weightsWH such that

WH (C) = argmin
a∈RL

aTσ(·, C) − V
∗

H

,

where ∥·∥H denotes the Hilbert space norm. Furthermore, for any
given ϵ > 0, there exists a constant L ∈ N, a set of centers, C ∈ χ L,
and a set of weights, W ∈ RL, such that

W Tσ(·, C) − V
∗

H

≤

ϵ. On compact sets, the Hilbert space norm corresponding to a
Hilbert space with continuously differentiable kernels dominates
the supremum norm of functions and their derivatives (Steinwart
& Christmann, 2008, Corollary 4.36). Hence, the function can
be approximated as well as its derivative, that is, there exist
centers and weights for which,

W Tσ(·, C) − V
∗


χ,∞
< ϵ andW T

∇σ(·, C) − ∇V
∗


χ,∞
< ϵ.1

Let Br (x) ⊂ χ denote a closed ball of radius r centered at the
current state x. Let Hx,r denote the restriction of the Hilbert space
H to Br (x). Then, Hx,r is a Hilbert space with the restricted kernel
kx,r : Br (x)×Br (x) → R defined as kx,r (y, z) = k (y, z) , ∀ (y, z) ∈

Br (x) × Br (x). The following result, first stated and proved in
Rosenfeld et al. (2015) is stated here to motivate the use of StaF
kernels.

1 The notation ∇f (x, y, . . .) denotes the partial derivative of f with respect to
the first argument and the notation ∥f ∥A,∞ denotes the supremum of the absolute
value (or the pointwise norm, if f is vector-valued) of f over the set A.
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Theorem 1 (Rosenfeld et al., 2015). Let ϵ, r > 0 and let p denote
a polynomial that approximates V

∗
within an error ϵ over Br(x).

Let N (r, x, ϵ) denote the degree of p. Let k(y, x) = ey
T x be the

exponential kernel function, which corresponds to a universal RKHS.
Then, for each x ∈ χ , there exists a finite number of centers,
c1, c2, . . . , cM(r,x,ϵ) ∈ Br(x) and weights w1, w2, . . . , wM(r,x,ϵ) such
thatV ∗

(y) −

M(r,x,ϵ)
i=1

wiey
T ci


Br (x),∞

< ϵ,

where M (r, x, ϵ) <


n+N(r,x,ϵ)+S(r,x,ϵ)
N(r,x,ϵ)+S(r,x,ϵ)


, asymptotically, for some

S (r, x, ϵ) ∈ N. Moreover, r , N (r, x, ϵ) and S (r, x, ϵ) can be bounded
uniformly over χ for any fixed ϵ.2

The Weierstrass theorem indicates that as r decreases, the degree
N (r, x, ϵ) of the polynomial needed to achieve the same error
ϵ over Br(x) decreases (Lorentz, 1986). Hence, by Theorem 1,
approximation of a function over a smaller domain requires a
smaller number of exponential kernels. Furthermore, provided the
region of interest is small enough, the number of kernels required
to approximate continuous functions with arbitrary accuracy can
be reduced to


n+2
2


.

In the StaF approach, the centers are selected to follow the
current state x, i.e., the locations of the centers are defined as a
function of the system state. Since the system state evolves in
time, the ideal weights are not constant. To approximate the ideal
weights using gradient-based algorithms, it is essential that the
weights change smoothly with respect to the system state. The
following result, first stated and proved in Rosenfeld et al. (2015)
establishes continuity of the ideal weights as a function of the
centers.

Theorem 2 (Rosenfeld et al., 2015). Let the kernel function k be such
that the functions k(·, x) are l-times continuously differentiable for all
x ∈ χ . Let C , [c1, c2, . . . , cL]T be a set of distinct centers such that
ci ∈ Br (x) , ∀i = 1, . . . , L, with associated ideal weights

WHx,r (C) = arg min
a∈RM

 M
i=1

aik(·, ci) − V (·)


Hx,r

. (1)

Then, the function WHx,r is l-times continuously differentiable with
respect to each component of C.

Theorem 1 motivates the use of StaF kernels for model-based RL,
and Theorem 2 facilitates implementation of gradient-based up-
date laws to learn the time-varying ideal weights in real-time.

3. StaF kernel functions for online approximate optimal
control

3.1. Problem formulation

Consider a control affine nonlinear dynamical system of the
form

ẋ (t) = f (x (t)) + g (x (t)) u (t) , (2)

t ∈ R≥t0 ,
3 where t0 denotes the initial time, x : R≥t0 → Rn

denotes the system state f : Rn
→ Rn and g : Rn

→ Rn×m denote
the drift dynamics and the control effectiveness, respectively, and

2 The notation
 a
b


denotes the combinatorial operation ‘‘a choose b’’.

3 The notation R≥a denotes the interval [a, ∞), and the notation R>a denotes the
interval (a, ∞).
u : R≥t0 → Rm denotes the control input. The functions f
and g are assumed to be known and locally Lipschitz continuous.
Furthermore, f (0n×1) = 0n×1 and∇f : Rn

→ Rn×n is continuous.4
In the following, the notation φu (t; t0, x0) denotes the trajectory
of the system in (2) under the control signal u with the initial
condition x0 ∈ Rn and initial time t0 ∈ R≥0.

Remark. Selection of an optimal regulation problem and the
assumption that the system dynamics are known are motivated
by ease of exposition. Using a concurrent learning (CL)-based
adaptive system identifier and the state augmentation technique
developed in Kamalapurkar, Andrews et al. (2014), the technique
developed in this paper can be extended to a class of trajectory
tracking problems in the presence of uncertainties in the system
drift dynamics. For a detailed description of StaF-based online
approximate optimal control under uncertainty, see Section 5.
Simulation results in Section 6.2 demonstrate the performance of
such an extension.

The control objective is to solve the infinite-horizon optimal
regulation problem online, i.e., to design a control signal u online
to minimize the cost functional

J (x, u) ,


∞

t0
r (x (τ ) , u (τ )) dτ , (3)

under the dynamic constraint in (2) while regulating the system
state to the origin. In (3), r : Rn

× Rm
→ R≥0 denotes the

instantaneous cost defined as

r

xo, uo , Q


xo

+ uoTRuo, (4)

for all xo ∈ Rn and uo
∈ Rm, where Q : Rn

→ R≥0 is a positive
definite function, and R ∈ Rm×m is a constant positive definite
symmetric matrix.5

3.2. Exact solution

It is well known that since the functions f , g , and Q are station-
ary (time-invariant) and the time-horizon is infinite, the optimal
control input is a stationary state-feedback policy u (t) = ξ (x (t))
for some function ξ : Rn

→ Rm. Furthermore, the value function is
also a stationary function (Liberzon, 2012, Equation 5.19). Hence,
the optimal value function V ∗

: Rn
→ R≥0 can be expressed as

V ∗

xo


, inf
u(τ )∈U|τ∈R≥t

∞
t

r

φu τ ; t, xo


, u (τ )


dτ , (5)

where U ⊂ Rm is the action space. Assuming an optimal
controller exists, the optimal value function is characterized by
the corresponding Hamilton–Jacobi–Bellman (HJB) equation (Kirk,
2004, Section 3.11)

0 = min
uo∈U


∇V


xo
 

f

xo

+ g


xo

uo

+ r

xo, uo , (6)

with the boundary condition V (0n×1) = 0, where U ⊂ Rm de-
notes the action space. Provided the HJB in (6) admits a contin-
uously differentiable solution, it constitutes a necessary and suffi-
cient condition for optimality (Liberzon, 2012, Section 5.1.4), (Kirk,
2004, Section 3.13). The optimal control policy u∗

: Rn
→ Rm can

be determined from (6) as

u∗

xo


, −
1
2
R−1gT xo ∇V ∗


xo
T

. (7)

4 The notation 0n×m denotes an n × mmatrix of zeros.
5 In (4) and in the reminder of this paper, the notation (·)o ∈ A is used to denote

an arbitrary element of the set A.
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3.3. Value function approximation

An analytical solution of the HJB equation is generally infeasi-
ble; hence, an approximate solution is sought. In an approximate
actor-critic-based solution, the optimal value function V ∗ is ap-
proximated using a parametric estimate. The expression for the
optimal policy in (7) indicates that, to compute the optimal action
when the system is at any given state xo, one only needs to eval-
uate the gradient ∇V ∗ at xo. Hence, to compute the optimal pol-
icy at xo, one only needs to approximate the value function over
a small neighborhood around xo. Furthermore, as established in
Theorem 1, the number of basis functions required to approximate
the value function is smaller if the approximation space is smaller
(with respect to the ordering induced by set containment). Hence,
in this result, the aim is to obtain a uniform approximation of the
value function over a small neighborhood around the current sys-
tem state.

StaF kernels are employed to achieve the aforementioned
objective. To facilitate the development, let χ ⊂ Rn be compact
and let xo be in the interior of χ . Then, for all ϵ > 0, there exists a
function V

∗
∈ Hxo,r such that supyo∈Br (xo)

V ∗ (yo) − V
∗
(yo)

 < ϵ,
where Hxo,r is a restriction of a universal RKHS, H , introduced in
Section 2, to Br (xo). In the developed StaF-based method, a small
compact set Br (xo) around the current state xo is selected for value
function approximation by selecting the centers C ∈ Br (xo) such
that C = c (xo) for some continuously differentiable function
c : χ → χ L. Using StaF kernels centered at a point xo, the value
function can be represented as

V ∗

yo


= W

xo
T

σ

yo, c


xo


+ ε

xo, yo


,

yo ∈ Br (xo), where ε (xo, yo) denotes the function approximation
error.

Since the centers of the kernel functions change as the system
state changes, the ideal weights also change as the system
state changes. The state-dependent nature of the ideal weights
differentiates this approach from state-of-the-art ADP methods in
the sense that the stability analysis needs to account for changing
ideal weights. Based on Theorem 2, it can be established that
the ideal weight function W : χ → RL defined as W (xo) ,
WHxo,r (c (xo)), whereWHxo,r was introduced in (1), is continuously
differentiable, provided the functions σ and c are continuously
differentiable.

The approximate value function V̂ : Rn
× Rn

× RL
→ R and

the approximate policy û : Rn
× Rn

× RL
→ Rm, evaluated at a

point yo ∈ Br (xo), using StaF kernels centered at xo, can then be
expressed as

V̂

yo, xo, Ŵc


, Ŵ T

c σ

yo, c


xo


,

û

yo, xo, Ŵa


, −

1
2
R−1gT yo∇σ


yo, c


xo
T Ŵa, (8)

where σ denotes the vector of basis functions, introduced in
Section 2.

The objective of the critic is to learn the ideal parameters
W (xo), and the objective of the actor is to implement a stabilizing
controller based on the parameters learned by the critic. Motivated
by the stability analysis, the actor and the critic maintain separate
estimates Ŵa and Ŵc , respectively, of the ideal parametersW (xo).
Using the estimates V̂ and û for V ∗ and u∗, respectively, a residual
error δ : Rn

× Rn
× RL

× RL
→ R, called the BE, is computed as

δ

yo, xo, Ŵc, Ŵa


, r


yo, û


yo, xo, Ŵa


+ ∇V̂


yo, xo, Ŵc

 
f

yo

+ g


yo

û

yo, xo, Ŵa


. (9)
To solve the optimal control problem, the critic aims to find a set
of parameters Ŵc and the actor aims to find a set of parameters Ŵa

such that δ

yo, xo, Ŵc, Ŵa


= 0, ∀xo ∈ Rn, ∀yo ∈ Br (xo). Since

an exact basis for value function approximation is generally not
available, an approximate set of parameters that minimizes the BE
is sought.

3.4. Online learning based on simulation of experience

To learn the ideal parameters online, the critic evaluates a form
δt : R≥t0 → R of the BE at each time instance t as

δt (t) , δ

x (t) , x (t) , Ŵc (t) , Ŵa (t)


, (10)

where Ŵa (t) and Ŵc (t) denote the estimates of the actor and the
critic weights, respectively, at time t , and the notation x (t) is used
to denote the state the system in (2), at time t , when starting from
initial time t0, initial state x0, and under the feedback controller

u (t) = û

x (t) , x (t) , Ŵa (t)


. (11)

Since (6) constitutes a necessary and sufficient condition for
optimality, the BE serves as an indirect measure of how close the
critic parameter estimates Ŵc are to their ideal values; hence, in
RL literature, each evaluation of the BE is interpreted as gained
experience. Since the BE in (10) is evaluated along the system
trajectory, the experience gained is along the system trajectory.

Learning based on simulation of experience is achieved by
extrapolating the BE to unexplored areas of the state space. The
critic selects a set of functions


xi : Rn

× R≥t0 → Rn
N
i=1 such that

each xi maps the current state x (t) to a point xi (x (t) , t) ∈

Br (x (t)).
The critic then evaluates a form δti : R≥t0 → R of the BE for

each xi as

δti (t) = δ

xi (x (t) , t) , x (t) , Ŵc (t) , Ŵa (t)


. (12)

The critic then uses the BEs from (10) and (12) to improve the
estimate Ŵc (t) using the recursive least-squares-based update
law

˙̂W c (t) = −kc1Γ (t)
ω (t)
ρ (t)

δt (t) −
kc2
N

Γ (t)
N
i=1

ωi (t)
ρi (t)

δti (t) , (13)

where ρi (t) ,


1 + γ1ω

T
i (t) ωi (t), ρ (t) ,

1 + γ1ωT (t) ω (t), kc1, kc2, γ1 ∈ R>0 are constant learning
gains,

ω (t) , ∇σ (x (t) , c (x (t))) f (x (t))

+ ∇σ (x (t) , c (x (t))) g (x (t)) û

x (t) , x (t) , Ŵa (t)


,

and

ωi (t) , ∇σ (xi (x (t)) , c (x (t))) f (xi (x (t) , t))

+ ∇σ (xi (x (t)) , c (x (t))) g (xi (x (t) , t)) û

xi (x (t) , t) , x (t) , Ŵa (t)


.

In (13), Γ (t) denotes the least-square learning gain matrix
updated according to

Γ̇ (t) = βΓ (t) − kc1Γ (t)
ω (t) ωT (t)

ρ2 (t)
Γ (t)

−
kc2
N

Γ (t)
N
i=1

ωi (t) ωT
i (t)

ρ2
i (t)

Γ (t) , Γ (t0) = Γ0, (14)

where β ∈ R>0 is a constant forgetting factor.
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Motivated by a Lyapunov-based stability analysis, the update
law for the actor is designed as

˙̂W a (t) = −ka1

Ŵa (t) − Ŵc (t)


− ka2Ŵa (t)

+
kc1GT

σ (t) Ŵa (t) ω (t)T

4ρ (t)
Ŵc (t) +

N
i=1

kc2GT
σ i (t) Ŵa (t) ωT

i (t)
4Nρi (t)

Ŵc (t) ,

(15)

where ka1, ka2 ∈ R>0 are learning gains,

Gσ (t) , ∇σ (x (t) , c (x (t))) g (x (t)) R−1gT (x (t))
· ∇σ T (x (t) , c (x (t))) ,

and

Gσ i (t) , ∇σ (xi (x (t) , t) , c (x (t))) g (xi (x (t) , t))
· R−1gT (xi (x (t) , t)) ∇σ T (xi (x (t) , t) , c (x (t))) .

4. Analysis

4.1. Computational complexity

The computational cost associated with the implementation
of the developed method can be computed to be O


N

L3 + mnL

+ Lm2
+ n2

+ m2

. Since local approximation is targeted, the

StaF kernels result in a reduction in the number of required
basis functions (i.e., L). Since the computational cost has a
cubic relationship with the number of basis functions, the
StaF methodology results in a significant computational benefit.
The computational cost grows linearly with the number of
extrapolation points (i.e., N). If the points are selected using grid-
based methods employed in results such as Kamalapurkar et al.
(2013), the number N increases geometrically with respect to the
state dimension, n. On the other hand, if the extrapolation points
are selected to be time varying, then as few as a single point can
be sufficient, provided the time-trajectory of the point contains
enough information to satisfy the subsequent Assumption 1.

In the following, Assumption 1 formalizes the conditions under
which the trajectories of the closed-loop system can be shown to
be ultimately bounded, and Lemma 1 facilitates the analysis of the
closed-loop system when time-varying extrapolation trajectories
are utilized.

4.2. Excitation conditions

For notational brevity, time-dependence of all the signals is
suppressed hereafter. Let Bζ ⊂ Rn+2L denote a closed ball with
radius ζ centered at the origin. Let χ , Bζ ∩ Rn. Let the notation
∥(·)∥ be defined as ∥h∥ , supξ∈χ ∥h (ξ)∥, for some continuous
function h : Rn

→ Rk. To facilitate the subsequent stability
analysis, the BEs in (10) and (12) are expressed in terms of the
weight estimation errors W̃c , W − Ŵc and W̃a = W − Ŵa as

δt = −ωT W̃c +
1
4
W̃aGσ W̃a + ∆ (x) ,

δti = −ωT
i W̃c +

1
4
W̃ T

a Gσ iW̃a + ∆i (x) , (16)

where the functions ∆, ∆i : Rn
→ R are uniformly bounded over

χ such that the bounds ∥∆∥ and ∥∆i∥ decrease with decreasing
∥∇ε∥ and ∥∇W∥. Let a candidate Lyapunov function VL : Rn+2L

×

R≥t0 → R be defined as

VL (Z, t) , V ∗ (x) +
1
2
W̃ T

c Γ −1 (t) W̃c +
1
2
W̃ T

a W̃a,
where V ∗ is the optimal value function, and

Z =


xT , W̃ T

c , W̃ T
a

T
.

To facilitate learning, the system states x and the selected functions
xi are assumed to satisfy the following.

Assumption 1. There exist constants T ∈ R>0 and c1, c2, c3 ∈

R≥0, such that

c1IL ≤

 t+T

t


ω (τ) ωT (τ )

ρ2 (τ )


dτ , ∀t ∈ R≥t0 ,

c2IL ≤ inf
t∈R≥t0


1
N

N
i=1

ωi (t) ωT
i (t)

ρ2
i (t)


,

c3IL ≤
1
N

 t+T

t


N
i=1

ωi (τ ) ωT
i (τ )

ρ2
i (τ )


dτ , ∀t ∈ R≥t0 ,

where, at least one of the constants c1, c2, and c3 is strictly positive.

Unlike typical ADP literature that assumes ω is PE, Assumption 1
only requires either the regressor ω or the regressor ωi to be
persistently exciting. The regressor ω is completely determined
by the system state x, and the weights Ŵa. Hence, excitation in ω
vanishes as the system states and the weights converge. Hence,
in general, it is unlikely that c1 > 0. However, the regressor
ωi depends on xi, which can be designed independent of the
system state x. Hence, c3 can be made strictly positive if the
signal xi contains enough frequencies. The constant c2 can bemade
strictly positive by selecting a sufficient number of extrapolation
functions.

Intuitively, selection of a single time-varying BE extrapolation
function results in virtual excitation. That is, instead of using in-
put–output data from a persistently excited system, the dynamic
model is used to simulate persistent excitation to facilitate param-
eter convergence. The performance of the developed extrapolation
method is demonstrated using comparative simulations in Sec-
tion 6.3,where it is demonstrated that the developedmethod using
a single time-varying extrapolation point results in improved com-
putational efficiency when compared to a large number of fixed
extrapolation functions.

4.3. Boundedness of the least-squares gain under persistent excitation

The following lemma facilitates the stability analysis by
establishing upper and lower bounds on the eigenvalues of the
least-squares learning gain matrix, Γ .

Lemma 1. Provided Assumption 1 holds and λmin

Γ −1
0


> 0, the

update law in (14) ensures that the least squares gain matrix satisfies

Γ IL ≤ Γ (t) ≤ Γ IL, (17)

where Γ =
1

min

kc1c1+kc2 max{c2T ,c3},λmin


Γ

−1
0


e−βT

and Γ =

1

λmax

Γ

−1
0


+

(kc1+kc2)
βγ1

. Furthermore, Γ > 0.

Proof. The proof closely follows the proof of Corollary 4.3.2 in
Ioannou and Sun (1996). The update law in (14) implies that
d
dt Γ

−1 (t) = −βΓ −1 (t)+ kc1 ω(t)ωT (t)
ρ2(t)

+
kc2
N

N
i=1

ωi(t)ωT
i (t)

ρ2
i (t)

. Hence,

Γ −1 (t) = e−βtΓ −1
0 + kc1

 t

0
e−β(t−τ) ω (τ) ωT (τ )

ρ2 (τ )
dτ

+
kc2
N

 t

0
e−β(t−τ)

N
i=1

ωi (τ ) ωT
i (τ )

ρ2
i (τ )

dτ .
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To facilitate the proof, let t < T . Then,

Γ −1 (t) ≥ e−βtΓ −1
0 ≥ e−βTΓ −1

0 ≥ λmin

Γ −1
0


e−βT IL.

Since the integrands are positive, it follows that if t ≥ T , then Γ −1

can be bounded as

Γ −1 (t) ≥ kc1

 t

t−T
e−β(t−τ) ω (τ) ωT (τ )

ρ2 (τ )
dτ

+
kc2
N

 t

t−T
e−β(t−τ)

N
i=1

ωi (τ ) ωT
i (τ )

ρ2
i (τ )

dτ .

Hence,

Γ −1 (t) ≥ kc1e−βT
 t

t−T

ω (τ) ωT (τ )

ρ2 (τ )
dτ

+
kc2
N

e−βT
 t

t−T

N
i=1

ωi (τ ) ωT
i (τ )

ρ2
i (τ )

dτ .

Using Assumption 1,

1
N

 t

t−T

N
i=1

ωi (τ ) ωT
i (τ )

ρ2
i (τ )

dτ ≥ max

c2T , c3


IL, t

t−T

ω (τ) ωT (τ )

ρ2 (τ )
dτ ≥ c1IL.

Hence a lower bound for Γ −1 is obtained as,

Γ −1 (t) ≥ min

kc1c1 + kc2 max


c2T , c3


, λmin


Γ −1
0


e−βT IL.

(18)

Provided Assumption 1 holds, the lower bound in (18) is strictly
positive. Furthermore, using the facts that ω(t)ωT (t)

ρ2(t)
≤

1
γ1

and
ωi(t)ωT

i (t)

ρ2
i (t)

≤
1
γ1

for all t ∈ R≥t0 ,

Γ −1 (t) ≤

 t

0
e−β(t−τ)


kc1

1
γ1

+
kc2
N

N
i=1

1
γ1


ILdτ + e−βtΓ −1

0

≤


λmax


Γ −1
0


+

(kc1 + kc2)
βγ1


IL.

Since the inverse of the lower and upper bounds on Γ −1 are the
upper and lower bounds on Γ , respectively, the proof is complete.

4.4. Main result

Since the optimal value function is positive definite, (17) and
Khalil (2002, Lemma 4.3) can be used to show that the candidate
Lyapunov function satisfies the following bounds

vl
Zo

 ≤ VL

Zo, t


≤ vl

Zo
 , (19)

for all t ∈ R≥t0 and for all Zo
∈ R2+2L. In (19), vl, vl : R≥0 → R≥0

are class K functions. To facilitate the analysis, let c ∈ R>0 be a
constant defined as

c ,
β

2Γ kc2
+

c2
2

, (20)
and let ι ∈ R>0 be a constant defined as

ι ,

3


(kc1+kc2)∥∆∥
√

v
+

∥∇Wf ∥
Γ

+
∥Γ −1GWσ W∥

2

2

4kc2c

+
1

(ka1 + ka2)


∥GWσW∥ + ∥GVσ ∥

2
+ ka2∥W∥

+ ∥∇Wf ∥ +
(kc1 + kc2) ∥Gσ ∥∥W∥

2

4
√

v

2

+
1
2
∥GVWσ∥ +

1
2
∥GVε∥,

where GWσ , ∇WG∇σ T , GVσ , ∇V ∗G∇σ T , GVW , ∇V ∗G∇W T ,
and GVϵ , ∇V ∗G∇ϵT . Let vl : R≥0 → R≥0 be a class K function
such that

vl (∥Z∥) ≤
Q (x)
2

+
kc2c
6

W̃c

2 +
(ka1 + ka2)

8

W̃a

2 .

The sufficient conditions for the subsequent Lyapunov-based
stability analysis are given by

kc2c
3

≥


∥GWσ ∥

2Γ +
(kc1+kc2)∥W T Gσ∥

4
√

v
+ ka1

2

(ka1 + ka2)
, (21)

(ka1 + ka2)
4

≥


∥GWσ ∥

2
+

(kc1 + kc2)∥W∥∥Gσ ∥

4
√

v


, (22)

v−1
l (ι) < vl

−1 vl (ζ )

. (23)

The sufficient condition in (21) can be satisfied provided the
points for BE extrapolation are selected such that the minimum
eigenvalue c , introduced in (20) is large enough. The sufficient
condition in (22) can be satisfied without affecting (21) by
increasing the gain ka2. The sufficient condition in (23) can be
satisfied provided c , ka2, and the state penalty Q (x) are selected
to be sufficiently large and the StaF kernels for value function
approximation are selected such that ∥∇W∥, ∥ε∥, and ∥∇ε∥ are
sufficiently small.6 To improve computational efficiency, the size
of the domain around the current state where the StaF kernels
provide good approximation of the value function is desired to be
small. Smaller approximation domain results in almost identical
extrapolated points, which in turn, results in smaller c. Hence, the
approximation domain cannot be selected to be arbitrarily small
and needs to be large enough to meet the sufficient conditions in
(21)–(23).

Theorem 3. Provided Assumption 1 holds and the sufficient gain
conditions in (21)–(23) are satisfied, the controller in (11) and the
update laws in (13)–(15) ensure that the state x and the weight
estimation errors W̃c and W̃a are ultimately bounded.
Proof. The time-derivative of the candidate Lyapunov function is
given by

V̇L = V̇ ∗
+ W̃ T

c Γ −1

Ẇ −

˙̂W c


+

1
2
W̃ T

c Γ̇ −1W̃c

+ W̃ T
a


Ẇ −

˙̂W a


.

6 Similar to NN-based approximation methods such as Al-Tamimi et al. (2008),
Dierks et al. (2009), Doya (2000), Lewis and Vrabie (2009), Mehta andMeyn (2009),
Padhi et al. (2006), Vamvoudakis and Lewis (2010) and Zhang et al. (2011), the
function approximation error, ε, is unknown, and in general, infeasible to compute
for a given function, since the ideal NN weights are unknown. Since a bound on ε is
unavailable, the gain conditions in (21)–(23) cannot be formally verified. However,
they can be met using trial and error by increasing the gain ka2 , the number of StaF
basis functions, and c , by selecting more points to extrapolate the bellman error.
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Using Theorem 2, the time derivative of the ideal weights can be
expressed as

Ẇ = ∇W (x) (f (x) + g (x) u) . (24)

Using (13)–(16) and (24), the time derivative of the candidate
Lyapunov function is expressed as

V̇L = ∇V ∗ (x) (f (x) + g (x) u)

+ W̃ T
c Γ −1

∇W (x) (f (x) + g (x) u)

− W̃ T
c Γ −1


−kc1Γ

ω

ρ


−ωT W̃c +

1
4
W̃aGσ W̃a + ∆(x)


− W̃ T

c Γ −1


−

kc2
N

Γ

N
i=1

ωi

ρi

1
4
W̃ T

a Gσ iW̃a



− W̃ T
c Γ −1


−

kc2
N

Γ

N
i=1

ωi

ρi


−ωT

i W̃c + ∆i (x)


−
1
2
W̃ T

c Γ −1


βΓ − kc1Γ
ωωT

ρ
Γ


Γ −1W̃c

−
1
2
W̃ T

c Γ −1


−

kc2
N

Γ

N
i=1

ωiω
T
i

ρi
Γ


Γ −1W̃c

+ W̃ T
a


∇W (x) (f (x) + g (x) u) −

˙̂W a


.

Provided the sufficient conditions in (21)–(23) hold, the time
derivative of the candidate Lyapunov function can be bounded as

V̇L ≤ −vl (∥Z∥) , ∀ζ > ∥Z∥ > v−1
l (ι) . (25)

Using (19), (23), and (25), Khalil (2002, Theorem 4.18) can be
invoked to conclude that Z is ultimately bounded, in the sense that

lim sup
t→∞

∥Z (t)∥ ≤ vl
−1 vl


v−1
l (ι)


.

Since Z ∈ L∞, x, W̃a, and W̃c ∈ L∞. Since x ∈ L∞ and sinceW
is a continuous function of x, W ◦x ∈ L∞. Hence, Ŵa and Ŵc ∈ ∞,
which implies u ∈ L∞.

5. Extension to systems with uncertain drift dynamics

If the drift dynamics are uncertain, a parametric approximation
of the dynamics can be employed for BE extrapolation. On any
compact set C ⊂ Rn the function f can be represented using a NN
as f (xo) = θ Tσf


Y T x1 (xo)


+εθ (x), where x1 (xo) ,


1, xoT

T
∈

Rn+1, θ ∈ Rp+1×n and Y ∈ Rn+1×p denote the constant unknown
output-layer and hidden-layer NN weights, σf : Rp

→ Rp+1

denotes a bounded NN basis function, εθ : Rn
→ Rn denotes the

function reconstruction error, and p ∈ N denotes the number of
NN neurons. Using the universal function approximation property
of single layer NNs, given a constant matrix Y such that the rows
of σf


Y T x1


form a proper basis (cf. Sadegh, 1993), there exist

constant ideal weights θ and known constants θ , εθ , and ε′

θ ∈

R such that ∥θ∥ ≤ θ < ∞, supxo∈C ∥εθ (xo)∥ ≤ εθ , and
supxo∈C ∥∇xoεθ (xo)∥ ≤ ε′

θ . Using an estimate θ̂ ∈ Rp+1×n of
the weight matrix θ , the function f can be approximated by the
function f̂ : Rn

× Rp+1×n
→ Rn defined as f̂


xo, θ̂


, θ̂ Tσθ (xo),

where σθ : Rn
→ Rp+1 is defined as σθ (xo) = σf


Y T

1, xoT

T.
Using f̂ , the BE in (9) can be approximated by δ̂ : Rn

× Rn
× RL

×

RL
× Rp+1×n

→ Rn as

δ̂

yo, xo, Ŵc, Ŵa, θ̂


, r


yo, û


yo, xo, Ŵa


+ ∇V̂


yo, xo, Ŵc

 
f̂

yo, θ̂


+ g


yo

û

yo, xo, Ŵa


. (26)

Using δ̂, the instantaneous BEs in (10) and (12) are redefined as

δt (t) , δ̂

x (t) , x (t) , Ŵc (t) , Ŵa (t) , θ̂ (t)


, (27)

and

δti (t) = δ̂

xi (x (t) , t) , x (t) , Ŵc (t) , Ŵa (t) , θ̂ (t)


, (28)

respectively, where ω and ωi are redefined as

ω (t) , ∇σ (x (t) , c (x (t))) f̂

x (t) , θ̂ (t)


+ ∇σ (x (t) , c (x (t))) g (x (t)) û


x (t) , x (t) , Ŵa (t)


, (29)

and

ωi (t) , ∇σ (xi (x (t) , t) , c (x (t))) f

xi (x (t) , t) , θ̂ (t)


+ ∇σ (xi (x (t) , t) , c (x (t))) g (xi (x (t) , t))

· û

xi (x (t) , t) , x (t) , Ŵa (t)


. (30)

The following assumption describes the characteristic of a
parameter estimator required to achieve closed-loop stability.

Assumption 2 (Kamalapurkar, Walters, & Dixon, 2016). A compact
set Θ ⊂ Rp that contains the unknown parameter vector θ is
known a priori. The estimates θ̂ : R≥t0 → Rp are updated based
on a switched update law of the form

˙̂
θ (t) = fθs


θ̂ (t) , t


, (31)

θ̂ (t0) = θ̂0 ∈ Θ , where s ∈ N denotes the switching
index and


fθs : Rp+1×n

× R≥0 → Rp+1×n

s∈N denotes a family of

continuously differentiable functions. There exists a continuously
differentiable function Vθ : Rp+1×n

× R≥0 → R≥0 that satisfies

vθ

θ̃ o
 ≤ Vθ


θ̃ o, t


≤ vθ

θ̃ o
 , (32)

∇Vθ


θ̃ o, t

 
−fθs


θ − θ̃ o, t


+

∂Vθ


θ̃ o, t


∂t

≤ −K
θ̃ o

2 + D
θ̃ o

 , (33)

for all s ∈ N, t ∈ R≥t0 , and θ̃ o
∈ Rp+1×n, where vθ , vθ : R≥0 →

R≥0 are class K functions, K ∈ R>0 is an adjustable parameter,
and D ∈ R>0 is a positive constant (possibly dependent on K ).
Furthermore, the ratio D

K is sufficiently small.

Assumption 2 implies that the function Vθ can be used as a
candidate Lyapunov function to establish convergence of the
parameter estimation error, θ̃ , to a neighborhood of the origin.
The function Vθ + VL is used as a candidate Lyapunov function
to prove Theorem 4. CL (cf. Chowdhary, 2010, Chowdhary &
Johnson, 2011b, and Chowdhary et al., 2013) can be used to design
parameter estimators that satisfy Assumption 2. Examples of CL-
based parameter estimators that satisfy Assumption 2 are available
in Kamalapurkar (2014, Section 6.2) for nonlinearly parameterized
uncertainty andKamalapurkar et al. (2016, AppendixA) for linearly
parameterized uncertainty. The main result for uncertain drift
dynamics is summarized in the following theorem.
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Theorem 4. Provided a parameter estimator that satisfies Assump-
tion 2 is available, the StaF kernels and the basis functions for system
identification are selected such that ∇W and the approximation er-
rors ε, ∇ε, εθ and ∇εθ are sufficiently small, and provided the points
for BE extrapolation are selected such that the minimum eigenvalue
c, introduced in (20) is sufficiently large, then the update laws given
by (13)–(15), with the renewed definitions in (26)–(30) ensure that
the state x and the weight estimation errors θ̃ , W̃c , and W̃a are ulti-
mately bounded.
Proof. The proof is a trivial combination of the proof of Theorem 3
and Kamalapurkar et al. (2016, Theorem 1), and hence, is omitted.

6. Simulation

6.1. Optimal regulation problem with exact model knowledge

6.1.1. Simulation parameters
To demonstrate the effectiveness of the StaF kernels, simula-

tions are performed on a two-state nonlinear dynamical system.
The system dynamics are given by (2), where xo = [xo1, x

o
2]

T ,

f

xo


=


−xo1 + xo2

−
1
2
xo1 −

1
2
xo2

cos


2xo1

+ 2

2 ,

g

xo


=


0

cos

2xo1

+ 2


. (34)

The control objective is to minimize the cost
∞

0


xT (τ ) x (τ ) + u2 (τ )


dτ . (35)

The system in (34) and the cost in (35) are selected because the
corresponding optimal control problem has a known analytical
solution. The optimal value function is V ∗ (xo) =

1
2x

o2
1 + xo22 , and

the optimal control policy is u∗(xo) = −(cos(2xo1) + 2)xo2 (cf.
Vamvoudakis & Lewis, 2010).

To apply the developed technique to this problem, the value
function is approximated using three exponential StaF kernels, i.e.,
σ (xo, C) = [σ1 (xo, c1) , σ2 (xo, c2) , σ3 (xo, c3)]T . The kernels are
selected to be σi (xo, ci) = ex

oT ci − 1, i = 1, . . . , 3. The centers
ci are selected to be on the vertices of a shrinking equilateral
triangle around the current state, i.e., ci = xo + di (xo) , i =

1, . . . , 3, where d1 (xo) = 0.7νo (xo) · [0, 1]T , d2 (xo) = 0.7νo (xo) ·

[0.87, −0.5]T , and d3 (xo) = 0.7νo (xo) · [−0.87, −0.5]T , and
νo (xo) ,


xoT xo+0.01
1+γ2xoT xo


denotes the shrinking function, where

γ2 ∈ R>0 is a constant normalization gain. To ensure sufficient
excitation, a single point for BE extrapolation is selected at random
from a uniform distribution over a 2.1νo (x (t)) × 2.1νo (x (t))
square centered at the current state x (t) so that the function xi is
of the form xi (xo, t) = xo + ai (t) for some ai (t) ∈ R2.7

The system is initialized at t0 = 0 and the initial conditions8

x (0) = [−1, 1]T , Ŵc (0) = 0.4 × 13×1,

Γ (0) = 500I3, Ŵa (0) = 0.7Ŵc (0) ,

and the learning gains are selected as
kc1 = 0.001, kc2 = 0.25, ka1 = 1.2, ka2 = 0.01,
β = 0.003, γ1 = 0.05, γ2 = 1.

7 For a general problem with an n-dimensional state, exponential kernels can be
utilized with the centers placed at the vertices of an n-dimensional simplex with
the current state as the centroid. The extrapolation point can be sampled at each
iteration from a uniform distribution over an n-dimensional hypercube centered at
the current state.
8 The notation In denotes an n× n identity matrix and the notation 1n×m denotes

an n × mmatrices of ones.
Fig. 1. State trajectories generated using StaF kernel-based ADP.

Fig. 2. Control trajectory generated using StaF kernel-based ADP compared with
the optimal control trajectory.

6.1.2. Results
Fig. 1 shows that the developed StaF-based controller drives

the system states to the origin while maintaining system stabil-
ity. Fig. 2 shows the implemented control signal compared with
the optimal control signal. It is clear that the implemented control
converges to the optimal controller. Figs. 3 and 4 show that the
weight estimates for the StaF-based value function and policy ap-
proximation remain bounded and converge as the state converges
to the origin. Since the ideal values of the weights are unknown,
the weights cannot directly be compared with their ideal values.
However, since the optimal solution is known, the value function
estimate corresponding to theweights in Fig. 3 can be compared to
the optimal value function at each time t . Fig. 5 shows that the er-
ror between the optimal and the estimated value functions rapidly
decays to zero.

6.2. Optimal tracking problem with parametric uncertainties in the
drift dynamics

6.2.1. Simulation parameters
This simulation demonstrates the effectiveness of the extension

developed in Section 5. The drift dynamics in the two-state
nonlinear dynamical system in (34) are assumed to be linearly
parameterized as

f

xo


=


θ1 θ2 θ3
θ4 θ5 θ6


  

θT

 xo1
xo2

xo2

cos


2xo1

+ 2




  
σθ (xo)

,
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Fig. 3. Trajectories of the estimates of the unknown parameters in the value
function generated using StaF kernel-based ADP. The ideal weights are unknown
and time-varying; hence, the obtainedweights cannot be comparedwith their ideal
weights.

Fig. 4. Trajectories of the estimates of the unknown parameters in the policy
generated using StaF kernel-based ADP. The ideal weights are unknown and time-
varying; hence, the obtained weights cannot be compared with their ideal weights.

Fig. 5. The error between the optimal and the estimated value function.

where θ ∈ R3×2 is thematrix of unknown parameters and σθ is the
known vector of basis functions. The ideal values of the unknown
parameters are θ1 = −1, θ2 = 1, θ3 = 0, θ4 = −0.5, θ5 = 0,
and θ6 = −0.5. Let θ̂ denote an estimate of the unknownmatrix θ .
The control objective is to drive the estimate θ̂ to the idealmatrix θ ,
and to drive the state x to follow a desired trajectory xd. The desired
trajectory is selected to be solution of the initial value problem

ẋd (t) =


−1 1
−2 1


xd (t) , xd (0) =


0
1


, (36)

and the cost functional is selected to be
∞

0


eT (t) diag (10, 10) e (t) + (µ (t))2


dt , where e (t) = x (t) −

xd (t) , µ is an auxiliary controller designed using the developed
method, and the tracking controller is designed as

u (t) = g+ (xd (t))


−1 1
−2 1


xd (t) − θ̂ Tσθ (xd (t))


+ µ (t) ,

where g+ (xo) denotes the pseudoinverse of g (xo).
The value function is a function of the concatenated state

ζ ,

eT xTd

T
∈ R4. The value function is approximated using

five exponential StaF kernels given by σi (ζ
o, C), where the five

centers are selected according to ci = ζ o
+ di (ζ o) to form a

regular five dimensional simplex around the current state with
νo (ζ o) ≡ 1. Learning gains for system identification and value
function approximation are selected as

kc1 = 0.001, kc2 = 2, ka1 = 2, ka2 = 0.001,
β = 0.01, γ1 = 0.1, γ2 = 1, k = 500,
Γ θ = I3, Γ (0) = 50I5, kθ = 20.

Sufficient excitation is ensured by selecting a single state trajectory
ζi (ζ

o, t) , ζ o
+ ai (t) for BE extrapolation, where ai (t) is sampled

at each t from a uniform distribution over the 2.1×2.1×2.1×2.1
hypercube centered at the origin. The history stack required for
CL contains ten points, and is recorded online using a singular
value maximizing algorithm (cf. Chowdhary et al., 2013), and
the required state derivatives are computed using a fifth order
Savitzky–Golay smoothing filter (cf. Savitzky & Golay, 1964).

The initial values for the state and the state estimate are
selected to be x (0) = [0, 0]T and x̂ (0) = [0, 0]T , respectively.
The initial values for the NN weights for the value function,
the policy, and the drift dynamics are selected to be 0.025 ×

15×1, 0.025 × 15×1, and 03×2, respectively. Since the system in
(34) has no stable equilibria, the initial policy µ̂ (ζ , 03×2) is not
stabilizing. The stabilization demonstrated in Fig. 6 is achieved via
fast simultaneous learning of the system dynamics and the value
function.

6.2.2. Results
Figs. 6 and 7 demonstrate that the controller remains bounded

and the tracking error is regulated to the origin. The NN weights
are functions of the system state ζ . Since ζ converges to a periodic
orbit, the NN weights also converge to a periodic orbit (within the
bounds of the excitation introducedby theBE extrapolation signal),
as demonstrated in Figs. 8 and 9. Fig. 10 demonstrates that the
unknown parameters in the drift dynamics, represented by solid
lines, converge to their ideal values, represented by dashed lines.

6.3. Comparison

The developed technique is compared with the model-based
RL method developed in Kamalapurkar et al. (2013) for regulation
and Kamalapurkar, Andrews et al. (2014) for tracking, respectively.
The simulations are performed inMATLAB R⃝ Simulink R⃝ at 1000Hz
on the same machine. The simulations run for 100 s of simulated
time. Since the objective is to compare computational efficiency
of the model-based RL method, exact knowledge of the system
model is used. Table 1 shows that the developed controller requires
significantly fewer computational resources than the controllers
from Kamalapurkar, Andrews et al. (2014) and Kamalapurkar
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Table 1
Simulation results for 2, 3 and 4 dimensional nonlinear systems.

Problem description Regulation (2-state system) Regulation (3-state system) Tracking (4-state system)

Controller StaF Controller in Kamalapurkar
et al. (2013)

StaF Controller in Kamalapurkar
et al. (2013)

StaF Controller in Kamalapurkar,
Andrews et al. (2014)

Running time (s) 6.5 17 9.5 62 12 260
Total cost 2.8 1.8 9.3 12.3 3.9 3.4
RMS steady-state error 2.5 × 10−6 0 4.3 × 10−6 4.5 × 10−6 3.5 × 10−4 2.5 × 10−4
Fig. 6. Tracking error trajectories generated using the proposed method for the
trajectory tracking problem.

Fig. 7. Control signal generated using the proposed method for the trajectory
tracking problem.

et al. (2013). Furthermore, as the system dimension increases,
the developed controller significantly outperforms the controllers
from Kamalapurkar, Andrews et al. (2014) and Kamalapurkar et al.
(2013) in terms of computational efficiency.

Since the optimal solution for the regulation problem is known
to be quadratic, the model-based RL method from Kamalapurkar
et al. (2013) is implemented using three quadratic basis functions.
Since the basis used is exact, the method from Kamalapurkar
et al. (2013) yields a smaller steady-state error than the developed
method, which uses three inexact, but generic StaF kernels. For the
3-state regulation problem and the tracking problem, themethods
from Kamalapurkar, Andrews et al. (2014) and Kamalapurkar et al.
(2013) are implemented using polynomial basis functions selected
based on a trial-and-error approach. The developed technique is
implemented using generic StaF kernels. In this case, since the
optimal solution is unknown, both the methods use inexact basis
functions, resulting in similar steady-state errors.

The two main advantages of StaF kernels are that they are
universal, in the sense that they can be used to approximate a large
Fig. 8. Policy weight trajectories generated using the proposed method for the
trajectory tracking problem. The weights do not converge to a steady-state value
because the ideal weights are functions of the time-varying system state. Since an
analytical solution of the optimal tracking problem is not available, weights cannot
be compared against their ideal values.

Fig. 9. Value functionweight trajectories generated using the proposedmethod for
the trajectory tracking problem. Theweights do not converge to a steady-state value
because the ideal weights are functions of the time-varying system state. Since an
analytical solution of the optimal tracking problem is not available, weights cannot
be compared against their ideal values.

class of value functions, and that they target local approximation,
resulting in a smaller number of required basis functions.
However, the StaF kernels trade optimality for universality and
computational efficiency. The kernels are inexact, and the weight
estimates need to be continually adjusted based on the system
trajectory. Hence, as shown in Table 1, the developed technique
results in a higher total cost than state-of-the-art model-based RL
techniques.

7. Conclusion

In this paper an infinite horizon optimal control problem is
solved using a new approximation methodology called the StaF
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Fig. 10. Trajectories of the unknown parameters in the system drift dynamics for
the trajectory tracking problem. The dotted lines represent the true values of the
parameters.

kernel method. Motivated by the fact that a smaller number of
basis functions is required to approximate functions on smaller
domains, the StaF kernel method aims to maintain good approx-
imation of the value function over a small neighborhood of the
current state. Computational efficiency of model-based RL is im-
proved by allowing selection of fewer time-varying extrapolation
trajectories instead of a large number of autonomous extrapolation
functions. Simulation results are presented that solve the infinite
horizon optimal regulation and tracking problems online for a two
state system using only three and five basis functions, respectively,
via the StaF kernel method.

State-of-the-art solutions to solve infinite horizon optimal con-
trol problems online aim to approximate the value function over
the entire operating domain. Since the approximate optimal policy
is completely determined by the value function estimate, state-of-
the-art solutions generate, often at an intractable computational
cost, policies that are valid over the entire state space. Since the
StaF kernel method aims at maintaining local approximation of
the value function around the current system state, the StaF ker-
nel method lacks memory, in the sense that the information about
the ideal weights over a region of interest is lost when the state
leaves the region of interest. Thus, unlike existing techniques, the
StaF method trades global optimality for computational efficiency
to generate a policy that is near-optimal only over a small neigh-
borhood of the origin. A memory-based modification to the StaF
technique that retains and reuses past information is a subject for
future research. The control design in (8) exploits the fact that
given a basis σ for approximation of the value function, the ba-
sis 1

2R
−1gT

∇σ T approximates the optimal controller, provided the
dynamics control-affine. As a part of future research, possible ex-
tensions to nonaffine systems could potentially be explored by ap-
proximating the controller using an independent basis (cf. Bian,
Jiang, & Jiang, 2014, Ge & Zhang, 2003, Kiumarsi, Kang, & Lewis,
2016, Liu et al., 2013, Song,Wei, & Xiao, 2016,Wang, Liu,Wei, Zhao,
& Jin, 2012, Yang, Liu, Wei, &Wang, 2015 and Zhang, Zhang, Sun, &
Luo, 2012).
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