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a b s t r a c t

A tracking controller is developed for a class of uncertain nonlinear systems subject to unknown
time-varying input delay and additive disturbances. A novel filtered error signal is designed using
the past states in a finite integral over a constant estimated delay interval. The maximum tolerable
error between unknown time-varying delay and a constant estimate of the delay is determined to
establish uniformly ultimately bounded convergence of the tracking error to the origin. The controller
development is based on an approach which uses Lyapunov–Krasovskii functionals to analyze the
effects of unknown sufficiently slowly time-varying input delays. A stability analysis is provided to
prove ultimate boundedness of the tracking error signals. Numerical simulation results illustrate the
performance of the developed robust controller.

© 2016 Published by Elsevier Ltd.
1. Introduction

Time delay commonly exists in many engineering applications
such as master–slave robots, haptic systems, chemical systems
and biological systems. The system dynamics, communication
over a network, and sensing with associated sensor processing
(e.g., image-based feedback) can induce time delays that can
result in decreased performance and loss of stability. Time delays
in physical systems are often time-varying. For example, the
input delay in neuromuscular electrical stimulation applications
often changes with muscle fatigue (Downey, Kamalapurkar,
Fischer, & Dixon, 2015; Merad, Downey, Obuz, & Dixon, 2016),
communication delays in wireless networks change with the
distance between the communicating agents, etc. Motivated by
such practical engineering challenges, numerous research efforts
have focused on designing controllers to compensate time delay
disturbances effects.

Research in recent years has focused on developing controllers
that provide stability for systems with delays in the closed-
loop dynamics. Smith’s pioneering work Smith (1959), Arstein’s
model reduction (Artstein, 1982), and the finite spectrumapproach
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(Manitius & Olbrot, 1979) have heavily influenced the methods of
designing controllers that compensate the effects of delays.

In recent years, research has focused on systems that experi-
ence a known delay in the control input. The works in Lozano,
Castillo, Garcia, and Dzul (2004), Normey-Rico, Guzman, Dormido,
Berenguel, and Camacho (2009) andRoh andOh (1999) develop ro-
bust controllers which compensate for known input time delay for
systems with linear plant dynamics. Compensation of input delay
disturbances for nonlinear plant dynamics is addressed in promi-
nentworks such as Dinh, Fischer, Kamalapurkar, and Dixon (2013),
Fischer (2012), Fischer, Dani, Sharma, and Dixon (2011), Fischer,
Dani, Sharma, and Dixon (2013), Fischer, Kamalapurkar, Fitz-Coy,
and Dixon (2012), Huang and Lewis (2003), Obuz, Tatlicioglu, Ce-
kic, and Dawson (2012), Sharma, Bhasin, Wang, and Dixon (2011)
and Teel (1998) for nonlinear plant dynamics affected by exter-
nal disturbances and in Henson and Seborg (1994), Jankovic (2006)
and Mazenc and Bliman (2006) for plant dynamics without exter-
nal disturbances. However, the controllers in Dinh et al. (2013),
Fischer (2012), Fischer et al. (2011), Fischer et al. (2013), Fischer,
Kamalapurkar et al. (2012), Henson and Seborg (1994), Huang and
Lewis (2003), Jankovic (2006), Mazenc and Bliman (2006), Obuz
et al. (2012), Sharma et al. (2011) and Teel (1998), require exact
knowledge of the time delay duration. In practice, the duration of
an input time delay can be challenging to determine for some ap-
plications, therefore, it is necessary to develop new controllers that
do not require exact knowledge of the time delay.

Since uncertainty in the delay can lead to unpredictable closed-
loop performance (potentially even instabilities), several recent
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results have been developed which do not assume that the delay
is exactly known. Compensation for unknown input delay is
investigated in Bresch-Pietri, Chauvin, and Petit (2010, 2011),
Bresch-Pietri, Chauvin, and Petit (2012), Bresch-Pietri and Krstic
(2009), Choi and Lim (2010), Herrera, Ibeas, Alcantara, Vilanova,
and Balaguer (2008), Li, Gu, Zhou, and Xu (2014), Li, Zhou, and Lin
(2014), Polyakov, Efimov, Perruquetti, and Richard (2013), Wang,
Wu, and Gao (2005) and Wang, Saberi, and Stoorvogel (2013) for
systemswith exactly knowndynamics and Chen and Zheng (2006),
Yue (2004), Yue and Han (2005) and Zhang and Li (2006a,b) for
systems with uncertain dynamics. However, all of the controllers
in Bekiaris-Liberis and Krstic (2013), Bresch-Pietri et al. (2010,
2011), Bresch-Pietri et al. (2012), Bresch-Pietri and Krstic (2009),
Chen and Zheng (2006), Choi and Lim (2010), Herrera et al. (2008),
Li, Gu et al. (2014), Li, Zhou et al. (2014), Polyakov et al. (2013),
Wang et al. (2013), Wang et al. (2005), Yue (2004), Yue and Han
(2005) and Zhang and Li (2006a,b) are developed for linear plant
dynamics. The works in Balas and Nelson (2011), Bresch-Pietri and
Krstic (2014), Mazenc and Niculescu (2011) and Nelson and Balas
(2012) develop controllers for plants with nonlinear dynamics
and an unknown input delay, but require exact model knowledge
of the nonlinear dynamics. The controller designed in Chiu and
Chiang (2009) compensates for Takagi–Sugeno fuzzy systems
and unknown actuation delay duration by using a memoryless
observer and a fuzzy parallel distributed integral compensator
for nonlinear, uncertain dynamics. However, the controller in
Chiu and Chiang (2009) is designed for output regulation and
does not address the output tracking problem. There remains a
need for a tracking controller that can compensate for the effects
of unknown time-varying input delays for a class of uncertain
nonlinear systems.

When uncertain nonlinear dynamics are present, the control
design is significantly more challenging than when linear or
exactly known nonlinear dynamics are present. For example, in
general, if the system states evolve according to linear dynamics,
the linear behavior can be exploited to predict the system response
over the delay interval. Exact knowledge of the dynamics facilitates
the ability to predict the state transition for nonlinear systems. For
uncertain nonlinear systems, the state transition is significantly
more difficult to predict, especially if the delay interval is also
unknown and/or time-varying. Given the difficulty in predicting
the state transition, the contribution in this paper (and in Fischer,
Kamalapurkar et al., 2012 and Kamalapurkar, Fischer, Obuz, &
Dixon, 2016) is to treat the input delay and dynamic uncertainty as
a disturbance and develop a robust controller that can compensate
for these effects.

Recently, Fischer et al. presented a robust controller for
uncertain nonlinear systems with additive disturbances subject to
slowly varying input delay in Fischer, Kamalapurkar et al. (2012),
where it is assumed that the input delay duration is measurable
and the absolute value of the second derivative of the delay is
bounded by a known constant. The approach in this study extends
our previous work in Fischer, Kamalapurkar et al. (2012) by using
a novel filtered error signal to compensate for an unknown slowly
varying input delay for uncertain nonlinear systems affected by
additive disturbances. In Fischer, Kamalapurkar et al. (2012), a
filtered error signal defined as the finite integral of the actuator
signals over the delay interval is used to obtain a delay-free
expression for the control input in the closed-loop error system.
However, the computation of the finite integral requires exact
knowledge of the input delay. In this study, a novel filtered error
signal is designed using the past states in a finite integral over
a constant estimated delay interval to cope with the lack of
delay knowledge, which requires a significantly different stability
analysis that takes advantage of Lyapunov–Krasovskii functionals.
Techniques used in this study provide relaxed requirements of
the delay measurement and obviate the need for a bound of the
absolute value of the second derivative of the delay. It is assumed
that the estimated input delay is selected sufficiently close to
the actual time-varying input delay. That is, there are robustness
limitations, which can be relaxed with more knowledge about
the time-delay. Because it is feasible to obtain lower and upper
bounds for the input delay in many applications (Richard, 2003), it
is feasible to select a delay estimate in an appropriate range. New
sufficient conditions for stability are based on the length of the
estimated delay as well as the maximum tolerable error between
the actual and estimated input delay. A Lyapunov-based stability
analysis is used to prove ultimate boundedness of the error signals.
Numerical simulation results demonstrate the performance of the
robust controller.

2. Dynamic system

Consider a class of nth-order nonlinear systems

ẋi = xi+1, i = 1, . . . , n − 1,
ẋn = f (X, t) + d + u (t − τ) , (1)

where xi ∈ Rm, i = 1, . . . , n are the measurable system states,
X =


xT1, xT2, . . . , xTn

T
∈ Rmn, u ∈ Rm is the control input,

f : Rmn
× [t0, ∞) → Rm is an uncertain nonlinear function,

d : [t0, ∞) → Rm denotes sufficiently smooth unknown additive
disturbance (e.g., unmodeled effects), and τ : [t0, ∞) → R
denotes a time-varying unknown positive time delay,1 where t0
is the initial time. Throughout the paper, delayed functions are
denoted as

hτ ,


h (t − τ) t − τ ≥ t0
0 t − τ < t0.

The dynamic model of the system in (1) can be rewritten as

x(n)
1 = f (X, t) + d + u (t − τ) , (2)

where the superscript (n) denotes the nth time derivative. In
addition, the dynamic model of the system in (1) satisfies the
following assumptions.

Assumption 1. The function f and its first and second partial
derivatives are bounded on each subset of their domain of the form
Ξ × [t0, ∞), where Ξ ⊂ Rmn is compact and for any given Ξ , the
corresponding bounds are known.2

Assumption 2 (Fischer, Kan, &Dixon, 2012). The nonlinear additive
disturbance term and its first time derivative (i.e., d, ḋ) exist and are
bounded by known positive constants.

Assumption 3. The reference trajectory xr ∈ Rm is designed such
that the derivatives x(i)

r , ∀i = 0, 1, . . . , (n + 2) exist and are
bounded by known positive constants.

1 The developed method can be extended to the case of multiple delays.
Assumption 4 can be modified for the case of multiple delays by redefining the
delayed input vector and using themaximum input delay instead of the actual delay
bound such that max{τ1, τ2, . . . , τm} < Υ . To obviate the requirement of exact
knowledge of the time delay dynamics in the stability analysis and introducing new
Lyapunov–Krasovskii functionals for each input delay, the closed-loop dynamics
can be revised in terms of u̇τ̂ , (u̇τ − u̇τ̂ ) instead of the terms u̇τ̂ , u̇τ , : (u̇τ − u̇τ̂ ).
In this paper, single time-varying input delay is considered for ease of exposition.
2 Given a compact set Ξ ⊂ Rmn , the bounds of f , ∂ f (X,t)

∂X , ∂ f (X,t)
∂t , ∂2 f (X,t)

∂2X
, ∂2 f (X,t)

∂X∂t ,

and ∂2 f (X,t)
∂2 t

over Ξ are assumed to be known.
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Assumption 4. The input delay is bounded such that τ (t) < Υ for
all t ∈ R, differentiable, and slowly varying such that |τ̇ | < ϕ < 1
for all t ∈ R, where ϕ, Υ ∈ R are known positive constants.
Additionally, a sufficiently accurate constant estimate τ̂ ∈ R of
τ is available such that |τ̃ | ≤ τ̃ , for all t ∈ R, where τ̃ , τ − τ̂ , and
¯̃τ ∈ R is a known positive constant.3 Furthermore, it is assumed
that the system in (1) does not escape to infinity during the time
interval [t0, t0 + Υ ].

3. Control development

The objective of the control design is to develop a continuous
controller which ensures that the state x1 of the delayed system in
(2) tracks a reference trajectory, xr .

To quantify the control objective, a tracking error, denoted by
e1 ∈ Rm, is defined as

e1 , xr − x1. (3)
To facilitate the subsequent analysis, auxiliary tracking error
signals, denoted by ei ∈ Rm, i = 2, 3, . . . , n, are defined as Xian,
Dawson, de Queiroz, and Chen (2004)

e2 , ė1 + e1, (4)
e3 , ė2 + e2 + e1, (5)

...

en , ėn−1 + en−1 + en−2. (6)

A general expression of ei for i = 2, 3, . . . , n can be written as

ei =

i−1
j=0

ai,je
(j)
1 , (7)

where ai,j ∈ R are defined as4 Tatlicioglu (2007)

ai,0 ,
1

√
5

1 +
√
5

2

i

−


1 −

√
5

2

i
 , ∀i = 2, 3, . . . , n,

ai,j ,

i−1
p=1

ai−p−j+1,0ap+j−1,j−1,

∀i = 3, 4, . . . , n, ∀j = 1, 2, . . . , (i − 2) .

To obtain a delay-free control expression for the input in the
closed-loop error system, an auxiliary tracking error signal,
denoted by eu ∈ Rm, is defined as

eu , −

 t

t−τ̂

u̇ (θ) dθ. (8)

It should be emphasized that the estimate of τ , denoted by τ̂ , is
required instead of exact knowledge of τ in the control design.
For example, the constant estimate τ̂ may be selected to best
approximate the mean of τ . Based on the subsequent stability
analysis, the following continuous robust controller is designed as

u , k (en − en (t0)) + υ, (9)
where en (t0) ∈ Rm is the initial error signal and υ ∈ Rm is the
solution to the differential equation

υ̇ = k (Λen + αeu) , (10)

where k, Λ, α ∈ Rm×m are constant, diagonal, positive definite
gain matrices.

3 Since the maximum tolerable error, ¯̃τ , and the estimate of actual delay, τ̂ , are
known, themaximum tolerable input delay can be determined. Because the bounds
on the input delay are feasible to obtain in many applications (Richard, 2003),
Assumption 4 is reasonable.
4 It should be noted that ai,i−1 = 1, ∀i = 1, 2, . . . , n.
4. Stability analysis

To facilitate the stability analysis an auxiliary tracking error
signal, denoted by r ∈ Rm, is defined as5

r , ėn + Λen + αeu. (11)

The open loop dynamics for r can be obtained by substituting the
first time derivatives of (2) and (8), the second time derivative of
(7) with i = n, and the (n + 1)th time derivative of (3) into (11) as

ṙ = −ḟ

X, Ẋ, t


− ḋ +

n−2
j=0

an,je
(j+2)
1 + x(n+1)

r

− αu̇ + αu̇τ̂ − (1 − τ̇ ) u̇τ + Λėn. (12)

Substituting the first time derivative of the controller in (9) into
(12), the closed-loop error system for r can be obtained as

ṙ = −ḟ

X, Ẋ, t


− ḋ +

n−2
j=0

an,je
(j+2)
1 + x(n+1)

r + Λėn

− αkr + (α − I + τ̇ I) krτ + α (u̇τ̂ − u̇τ ) , (13)

where I ∈ Rm×m is the identity matrix. The stability analysis can
be facilitated by segregating the terms in (13) that can be upper
bounded by a state-dependent function and terms that can be
upper bounded by a constant, such that

ṙ = −αkr + (α − I + τ̇ I) krτ + α (u̇τ̂ − u̇τ ) + Ñ + Nr − en. (14)

The auxiliary functions Ñ ∈ Rm and Nr ∈ Rm are defined as

Ñ , −ḟ

X, Ẋ, t


+ ḟ


Xr , Ẋr , t


+

n−2
j=0

an,je
(j+2)
1

+ Λėn + en, (15)

Nr , −ḟ

Xr , Ẋr , t


− ḋ + x(n+1)

r , (16)

where Xr ,


xTr , ẋTr , . . . ,


x(n−1)
r

TT
∈ Rmn.

Remark 1. Based on Assumptions 2 and 3, Nr is upper bounded as

sup
t∈R

∥Nr∥ ≤ ζNr , (17)

where ζNr ∈ R is a known positive constant.

Remark 2. An upper bound can be obtained for (15) using As-
sumption 1 and the Lemma 5 in Kamalapurkar, Rosenfeld, Klotz,
Downey, and Dixon (2014) asÑ ≤ ρ (∥z∥) ∥z∥ , (18)

where ρ is a positive, radially unbounded,6 and strictly increasing
function, and z ∈ R(n+2)m is a vector of error signals defined as

z ,

eT1, eT2, . . . , e

T
n, eTu, rT

T
. (19)

To facilitate the subsequent stability analysis, auxiliary bound-
ing constants σ , δ ∈ R are defined as

5 Since ėn is not measurable, r cannot be used in the control design.
6 For some classes of systems, the bounding function ρ can be selected as a

constant. For those systems, a global uniformly ultimately bounded result can be
obtained as described in Remark 3.
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σ , min

1,

1 −

ϵ2

2


,


Λ −


ᾱ

2ϵ1
+

1
2ϵ2


,

k α

8
,
ω2

4τ̂
− ᾱϵ1


, (20)

δ ,
1
2
min

σ

2
,

ω2k3 α (1 − ϕ)

4

k̄ (ᾱ + ϕ − 1)

2 ,
ω2k2ᾱϵ1

4ω2
1 k̄2

,
1

4

¯̃τ + τ̂


 ,

(21)

where Λ, k, α ∈ R denote the minimum eigenvalues of Λ, k, α,
respectively, k̄, ᾱ ∈ R denote the maximum eigenvalues of k and
α, respectively, and ωi, ϵi ∈ R, i = 1, 2, are known, selectable,
positive constants.

Let the functions Q1, Q2, Q3 ∈ R be defined as

Q1 ,


ω1k̄

2
ᾱϵ1

 t

t−τ̂

∥r (θ)∥2 dθ, (22)

Q2 ,


k̄ (ᾱ + ϕ − 1)

2
kα (1 − ϕ)

 t

t−τ

∥r (θ)∥2 dθ, (23)

Q3 ,ω2

 t

t−( ¯̃τ+τ̂)

 t

s
∥u̇ (θ)∥2 dθds, (24)

and let y ∈ R(n+2)m+3 be defined as

y ,

z,

Q1,


Q2,


Q3
T

. (25)

For use in the following stability analysis, let

D1 ,

y ∈ R(n+2)m+3

| ∥y∥ < χ1

, (26)

where χ1 , inf

ρ−1


[


σk α

2 , ∞)


. Provided ∥z (η)∥ <

γ , ∀ η ∈ [t0, t], (14) and the fact that u̇ = kr can be used to
conclude that ü < M , where γ and M7 are positive constants. Let
D , D1∩


Bγ ∩ R(n+2)m+3


where Bγ denotes a closed ball of radius

γ centered at the origin and let

SD , {y ∈ D| ∥y∥ < χ2} (27)

denote the domain of attraction, where8 χ2 ,


min


1
2 ,

ω1
2


max


1, ω1

2

 inf
ρ−1


[


σk α

2 , ∞)


.

Theorem 1. Given the dynamics in (1), the controller given in (9) and
(10) ensures uniformly ultimately bounded tracking in the sense that

lim sup
t→∞

∥e1 (t)∥

≤




max

1, ω1

2


min

 1
2 ,

ω1
2

 ·


2ζ 2

Nr
+ α kᾱ ¯̃τ

2
M2


2α kδ

 , (28)

provided that y (t0) ∈ SD and that the control gains are selected
sufficiently large based on the initial conditions of the system such that

7 The subsequent analysis does not assume that the inequality ü < M holds for
all time. The subsequent analysis only exploits the fact that provided ∥z (η)∥ <

γ , ∀η ∈ [t0, t], then ü < M .
8 For a set A, the inverse image ρ−1 (A) is defined as ρ−1 (A) , {a | ρ (a) ∈ A}.
the following sufficient conditions are satisfied910

ω2 > 4ᾱϵ1τ̂ ,

Λ >
ᾱ

2ϵ1
+

1
2ϵ2

, 2 > ϵ2, α k
8 −

2(ω1 k̄)
2

ᾱϵ1
−

(k̄(ᾱ+ϕ−1))
2

α k(1−ϕ)

ω2k̄2
−

ω2τ̂ k̄2 +
ᾱ
2

ω2k̄2

 ≥ ¯̃τ ,

χ2 >

2ζ 2
Nr

+ α kᾱ ¯̃τ
2
M2

2α kδ

 1
2

. (29)

Proof. Let V : D → R be a continuously differentiable Lyapunov
function candidate defined as

V ,
1
2

n
i=1

eTi ei +
1
2
rT r +

ω1

2
eTueu +

3
i=1

Qi. (30)

In addition, the following upper bound can be provided for Q3

Q3 ≤ ω2


¯̃τ + τ̂


sup

sϵ

t−( ¯̃τ+τ̂),t


 t

s
∥u̇ (θ)∥2 ds,



≤ ω2


¯̃τ + τ̂

  t

t−( ¯̃τ+τ̂)
∥u̇ (θ)∥2 dθ. (31)

By applying Leibniz Rule, the time derivatives of (22)–(24) can be
obtained as

Q̇1 =


ω1k̄

2
ᾱϵ1


∥r∥2

− ∥rτ̂∥2 , (32)

Q̇2 =


k̄ (ᾱ + ϕ − 1)

2
k α (1 − ϕ)


∥r∥2

− (1 − τ̇ ) ∥rτ∥2 , (33)

Q̇3 = ω2


¯̃τ + τ̂


k̄ ∥r∥2

−

 t

t−( ¯̃τ+τ̂)
∥u̇ (θ)∥2 dθ


. (34)

Based on (30), the following inequalities can be developed:

min

1
2
,
ω1

2


∥y∥2

≤ V (y) ≤ max

1,

ω1

2


∥y∥2 . (35)

The time derivative of the first term in (30) can be obtained by
using (4)–(6), (11), and the definition of ei in (7) for i = n, as

n
i=1

eTi ėi = −

n−1
i=1

eTi ei − eTnΛen + eTn−1en − eTnαeu + eTnr. (36)

By using (8), (14), (32)–(34), and (36), the time derivative of (30)
can be determined as

V̇ = −

n−1
i=1

eTi ei − eTnΛen + eTn−1en − eTnαeu + eTnr

+ rT (−αkr + (α − I + τ̇ I) krτ + α (u̇τ̂ − u̇τ ))

+ rT

Ñ + Nr − en


+ ω1eTu (krτ̂ − kr)

9 To achieve a small tracking error for the case of a large value of ζNr (i.e., fast
dynamics with large disturbances), large gains, small delay, and a better estimate
of the delay are required.
10 By choosingα close to 1−ϕ, sufficiently smallω1 and ϵ1 , and a sufficiently large
Λ, the gain conditions can be expressed in terms of k, τ̂ , ¯̃τ , ϕ. The gain k can then
be selected provided τ̂ , ¯̃τ , ϕ are small enough.
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+


ω1k̄

2
ᾱϵ1


∥r∥2

− ∥rτ̂∥2
+


k̄ (ᾱ + ϕ − 1)

2
kα (1 − ϕ)


∥r∥2

− (1 − τ̇ ) ∥rτ∥2
+ ω2


¯̃τ + τ̂


k̄2 ∥r∥2

−

 t

t−( ¯̃τ+τ̂)
∥u̇ (θ)∥2 dθ


. (37)

After canceling common terms and using Assumption 4, the
expression in (37) can be upper bounded as

V̇ ≤ −

n−1
i=1

∥ei∥2
− Λ ∥en∥2

+
eTn−1en

+ ᾱ
eTneu

+ ᾱ
rT (u̇τ̂ − u̇τ )

− α k ∥r∥2

+ rT Ñ + ∥r∥ ζNr + k̄ |ᾱ + ϕ − 1|
rT rτ 

+ ω1k̄ (∥eu∥ ∥rτ̂∥ + ∥eu∥ ∥r∥) +


ω1k̄

2
ᾱϵ1


∥r∥2

− ∥rτ̂∥2
+


k̄ (ᾱ + ϕ − 1)

2
k α (1 − ϕ)


∥r∥2

− (1 − τ̇ ) ∥rτ∥2
+ ω2


¯̃τ + τ̂


k̄2 ∥r∥2

−

 t

t−( ¯̃τ+τ̂)
∥u̇ (θ)∥2 dθ


. (38)

UsingYoung’s Inequality the following inequalities can be obtainedeTneu ≤
1
2ϵ1

∥en∥2
+

ϵ1

2
∥eu∥2 , (39)eTn−1en

 ≤
ϵ2

2
∥en−1∥

2
+

1
2ϵ2

∥en∥2 , (40)rT (u̇τ̂ − u̇τ )
 ≤

1
2

∥r∥2
+

1
2

∥u̇τ̂ − u̇τ∥
2 . (41)

After completing the squares for the cross terms containing r and
rτ̂ , substituting the time derivative of (9) and (18), (39)–(41) into
(38), and using Assumption 4, the following upper bound can be
obtained

V̇ ≤ −

n−2
i=1

∥ei∥2
−


1 −

ϵ2

2


∥en−1∥

2

−


Λ −


ᾱ

2ϵ1
+

1
2ϵ2


∥en∥2

+ ᾱϵ1 ∥eu∥2
−

α k
8

∥r∥2

−


α k
8

− κ


∥r∥2

+
1

α k
ρ2(∥z∥) ∥z∥2

+
1

α k
ζ 2
Nr

+
ᾱ ∥u̇τ̂ − u̇τ∥

2

2
− ω2

 t

t−( ¯̃τ+τ̂)
∥u̇ (θ)∥2 dθ, (42)

where κ ,
2(ω1 k̄)

2

ᾱϵ1
+

(k̄(ᾱ+ϕ−1))
2

α k(1−ϕ)
+ ω2


¯̃τ + τ̂


k̄2 +

ᾱ
2 . The

Cauchy–Schwarz inequality is used to develop the following upper
bound

∥eu∥2
≤ τ̂

 t

t−τ̂

∥u̇(θ)∥2 dθ. (43)

Note that using Assumption 4, the inequalities
 t
t−τ

∥u̇ (θ)∥2 dθ ≤

k̄2
 t
t−( ¯̃τ+τ̂) ∥r (θ)∥2 dθ and

 t
t−τ̂

∥u̇ (θ)∥2 dθ ≤ k̄2
 t
t−( ¯̃τ+τ̂) ∥r (θ)∥2

dθ can be obtained. In addition, using the expressions in (22), (23),
(31) and (43), the following inequalities can be obtained

−
ω2

4τ̂
∥eu∥2

≥ −
ω2

4

 t

t−( ¯̃τ+τ̂)
∥u̇ (θ)∥2 dθ, (44)
−
ω2k2ᾱϵ1

4ω2
1 k̄2

Q1 ≥ −
ω2

4

 t

t−( ¯̃τ+τ̂)
∥u̇ (θ)∥2 dθ, (45)

−
ω2k3 α (1 − ϕ)Q2

4

k̄ (ᾱ + ϕ − 1)

2 ≥ −
ω2

4

 t

t−( ¯̃τ+τ̂)
∥u̇ (θ)∥2 dθ, (46)

−
1

4

¯̃τ + τ̂

Q3 ≥ −
ω2

4

 t

t−( ¯̃τ+τ̂)
∥u̇ (θ)∥2 dθ. (47)

By using (44)–(47), (42) can be upper bounded as

V̇ ≤ −

n−2
i=1

∥ei∥2
−


1 −

ϵ2

2


∥en−1∥

2

−


Λ −


ᾱ

2ϵ1
+

1
2ϵ2


∥en∥2

−

ω2

4τ̂
− ᾱϵ1


∥eu∥2

−
αk
8

∥r∥2

−


α k
8

− κ


∥r∥2

+
1

α k
ρ2(∥z∥) ∥z∥2

+
1

α k
ζ 2
Nr

+
ᾱ ∥u̇τ̂ − u̇τ∥

2

2

−
ω2k2ᾱϵ1

4ω2
1 k̄2

Q1 −
ω2k3 α (1 − ϕ)

4

k̄ (ᾱ + ϕ − 1)

2Q2

−
1

4

¯̃τ + τ̂

Q3. (48)

Note that the Mean Value Theorem can be used to obtain the in-
equality ∥u̇τ̂ − u̇τ∥ ≤

ü Θ 
t, τ̂

 |τ̃ |, where Θ

t, τ̂


is a point

in time between t − τ and t − τ̂ . Furthermore, using the gain
conditions in (29), the definition of σ in (20), and the inequality
∥y∥ ≥ ∥z∥, the following upper bound can be obtained

V̇ ≤ −


σ

2
−

1
α k

ρ2 (∥y∥)


∥z∥2
−

σ

2
∥z∥2

+
1

α k
ζ 2
Nr

+
ᾱ ¯̃τ

2 ü Θ 
t, τ̂

2
2

−
ω2k2ᾱϵ1

4ω2
1 k̄2

Q1 −
ω2k3 α (1 − ϕ)

4

k̄ (ᾱ + ϕ − 1)

2Q2 −
1

4

¯̃τ + τ̂

Q3.

(49)

Provided y (η) ∈ D ∀η ∈ [t0, t], then from the definition of δ in
(21), the expression in (49) reduces to

V̇ ≤ −δ ∥y∥2 , ∀ ∥y∥ ≥

2ζ 2
Nr

+ α kᾱ ¯̃τ
2
M2

2α kδ

 1
2

. (50)

Using techniques similar to Theorem 4.18 in Khalil (2002) it can
be concluded that y is uniformly ultimately bounded in the sense

that lim supt→∞ ∥y (t)∥ ≤


max


1, ω1

2


2ζ 2

Nr
+α kᾱ ¯̃τ

2
M2


min

1
2 ,

ω1
2


2α kδ

provided

y (t0) ∈ SD , where uniformity in initial time canbe concluded from
the independence of δ and the ultimate bound from t0.

Remark 3. If the system dynamics are such that Ñ is linear in z,
then the function ρ can be selected to be a constant, i.e., ρ (∥z∥) =

ρ̄, ∀z ∈ R(n+2)m for some known ρ̄ > 0. In this case, the last
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sufficient condition in (29) reduces to

k ≥
2ρ̄2

σα
, (51)

and the result is global in the sense that D = SD = R(n+2)m+3.

Since ei, r, eu ∈ L∞, i = 1, 2, 3, . . . , n, from (2), u ∈ L∞.
An analysis of the closed-loop system shows that the remaining
signals are bounded.

5. Simulation results

To illustrate performance of the developed controller, numer-
ical simulations were performed on a two-link revolute, direct-
drive robot11 with the following dynamics
u1τ

u2τ


=


p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2

 
ẍ1
ẍ2


+


−p3s2ẋ2 −p3s2 (ẋ1 + ẋ2)
p3s2ẋ1 0

 
ẋ1
ẋ2


+


fd1 0
0 fd2

 
ẋ1
ẋ2


+


d1
d2


, (52)

where x, ẋ, ẍ ∈ R2. Additive disturbances are applied as d1 = 0.2
sin (0.5t) and d2 = 0.1 sin (0.25t). Additionally, p1 = 3.473 kgm2,
p2 = 0.196 kg m2, p3 = 0.242 kg m2, p4 = 0.238 kg m2,
p5 = 0.146 kg m2, fd1 = 5.3 Nm s, fd2 = 1, 1 Nm s, and s2, c2
denote sin (x2), and cos (x2), respectively.

The initial conditions for the system are selected as x1, x2 = 0.
The desired trajectories are selected as

xd1 (t) = (30 sin (1.5t) + 20)

1 − e−0.01t3


,

xd2 (t) = − (20 sin (t/2) + 10)

1 − e−0.01t3


.

Several simulation results were obtained using various time-
varying delays and different estimated delays, shown in Table 1,
to demonstrate performance of the developed continuous robust
controller. Cases 1 and 2 use a high-frequency, low-amplitude
oscillating delay for different delay upper-bound estimates. Cases
3 use a low-frequency, high-amplitude oscillating delay for known
and unknown delay. Case 4 uses random, uniformly distributed
delay between 0 and 120 ms for each time instance.

The controller in (9) and (10) is implemented for each case. The
control gains are selected for Cases 1 and 2 as α = diag{1, 1}, Λ =

diag{50, 20.5}, and k = diag{60, 6}, and for Cases 3 and 4 as
α = diag{1, 1}, Λ = diag{23, 8}, and k = diag{140, 2.75}. The
root mean square (RMS) errors obtained for each case are listed
in Table 1. By comparing the RMS error for Cases 1 and 2, it is
clear that selecting a delay estimate closer to the actual upper
bound of the unknown delay yields better tracking performance.
Case 3 demonstrates that the performance of the developed
controller using a constant estimate of the large unknown delay
is comparable to the controller in Fischer, Kamalapurkar et al.
(2012) which uses exact knowledge of the time-varying delay.12
Additionally, the developed controller is reasonably robust even
for a constant estimate of the delay when the actual delay is
long and time-varying. Although the stability analysis in Section 4
assumes a slowly time-varying input delay, Case 4 shows that the

11 Provided the inertia matrix is known, the dynamics in (52) can be described
using (1) (Fischer et al., 2013).
12 The RMS errors for x1 and x2 obtained using the controller in Fischer,
Kamalapurkar et al. (2012) for the same delay as Case 3 were 0.7544° and 0.9722°,
respectively.
Table 1
RMS errors for time-varying time-delay rates and magnitudes.

τi (t) (ms) τ̂ (t) (ms) RMS Error
x1 x2

Case 1 10 sin (5t) + 10 15 0.1315° 0.1465°
Case 2 10 sin (5t) + 10 100 0.4774° 0.2212°
Case 3 60 sin (t) + 60 75 0.7479° 0.9928°
Case 4 rand [0, 120] 75 0.7476° 1.0068°

Fig. 1. Tracking errors, control effort and time-varying delays vs. time for Case 1.

Fig. 2. Tracking errors, control effort and time-varying delays vs. time for Case 3.

developed controller still provides good tracking performance for
a discontinuous, high frequency input delay. Results in Figs. 1–3
depict the tracking errors, control effort, time-varying delays and
estimated delays for Cases 1, 3 and 4, respectively.

6. Conclusion

Novelty of the controller comes from the fact that a continuous
robust controller is developed for a class of uncertain nonlinear
systems with additive disturbances subject to uncertain time-
varying input time delay. A filtered tracking error signal is designed
to facilitate the control design and analysis. A Lyapunov-based
analysis is used to prove ultimate boundedness of the error
signals through the use of Lyapunov–Krasovskii functionals that
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Fig. 3. Tracking errors, control effort and time-varying delays vs. time for Case 4.

are uniquely composed of an integral over the estimated delay
range rather than the actual delay range. Simulation results
indicate the performance of the controller over a range of time
varying delays and estimates. The results even illustrate robustness
to random delays up to 120 ms. Improved performance may
be obtained by altering the design to allow for a time-varying
estimate of the delay. Result such as Herrera, Ibeas, Alcántara, de
la Sen, and Serna-Garcés (2013) provides possible insights into
estimating/identifying delays in future work.
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