Automatica 76 (2017) 222-229

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper Unknown time-varying input delay compensation for uncertain nonlinear systems*

Serhat Obuz, Justin R. Klotz, Rushikesh Kamalapurkar, Warren Dixon

Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, USA

A R T I C L E I N F O

Article history: Received 20 January 2015 Received in revised form 8 April 2016 Accepted 26 August 2016 Available online 8 December 2016

Keywords: Input delay Robust control Nonlinear control

ABSTRACT

A tracking controller is developed for a class of uncertain nonlinear systems subject to unknown time-varying input delay and additive disturbances. A novel filtered error signal is designed using the past states in a finite integral over a constant estimated delay interval. The maximum tolerable error between unknown time-varying delay and a constant estimate of the delay is determined to establish uniformly ultimately bounded convergence of the tracking error to the origin. The controller development is based on an approach which uses Lyapunov–Krasovskii functionals to analyze the effects of unknown sufficiently slowly time-varying input delays. A stability analysis is provided to prove ultimate boundedness of the tracking error signals. Numerical simulation results illustrate the performance of the developed robust controller.

© 2016 Published by Elsevier Ltd.

1. Introduction

Time delay commonly exists in many engineering applications such as master–slave robots, haptic systems, chemical systems and biological systems. The system dynamics, communication over a network, and sensing with associated sensor processing (e.g., image-based feedback) can induce time delays that can result in decreased performance and loss of stability. Time delays in physical systems are often time-varying. For example, the input delay in neuromuscular electrical stimulation applications often changes with muscle fatigue (Downey, Kamalapurkar, Fischer, & Dixon, 2015; Merad, Downey, Obuz, & Dixon, 2016), communication delays in wireless networks change with the distance between the communicating agents, etc. Motivated by such practical engineering challenges, numerous research efforts have focused on designing controllers to compensate time delay disturbances effects.

Research in recent years has focused on developing controllers that provide stability for systems with delays in the closedloop dynamics. Smith's pioneering work Smith (1959), Arstein's model reduction (Artstein, 1982), and the finite spectrum approach (Manitius & Olbrot, 1979) have heavily influenced the methods of designing controllers that compensate the effects of delays.

In recent years, research has focused on systems that experience a known delay in the control input. The works in Lozano, Castillo, Garcia, and Dzul (2004), Normey-Rico, Guzman, Dormido, Berenguel, and Camacho (2009) and Roh and Oh (1999) develop robust controllers which compensate for known input time delay for systems with linear plant dynamics. Compensation of input delay disturbances for nonlinear plant dynamics is addressed in prominent works such as Dinh, Fischer, Kamalapurkar, and Dixon (2013), Fischer (2012), Fischer, Dani, Sharma, and Dixon (2011), Fischer, Dani, Sharma, and Dixon (2013), Fischer, Kamalapurkar, Fitz-Coy, and Dixon (2012), Huang and Lewis (2003), Obuz, Tatlicioglu, Cekic, and Dawson (2012), Sharma, Bhasin, Wang, and Dixon (2011) and Teel (1998) for nonlinear plant dynamics affected by external disturbances and in Henson and Seborg (1994), Jankovic (2006) and Mazenc and Bliman (2006) for plant dynamics without external disturbances. However, the controllers in Dinh et al. (2013), Fischer (2012), Fischer et al. (2011), Fischer et al. (2013), Fischer, Kamalapurkar et al. (2012), Henson and Seborg (1994), Huang and Lewis (2003), Jankovic (2006), Mazenc and Bliman (2006), Obuz et al. (2012), Sharma et al. (2011) and Teel (1998), require exact knowledge of the time delay duration. In practice, the duration of an input time delay can be challenging to determine for some applications, therefore, it is necessary to develop new controllers that do not require exact knowledge of the time delay.

Since uncertainty in the delay can lead to unpredictable closedloop performance (potentially even instabilities), several recent

[†] The material in this paper was not presented at any conference. This paper was recommended for publication in revised form by Associate Editor Hiroshi Ito under the direction of Editor Andrew R. Teel.

E-mail addresses: serhat.obuz@ufl.edu (S. Obuz), jklotz@ufl.edu (J.R. Klotz), rkamalapurkar@ufl.edu (R. Kamalapurkar), wdixon@ufl.edu (W. Dixon).

results have been developed which do not assume that the delay is exactly known. Compensation for unknown input delay is investigated in Bresch-Pietri, Chauvin, and Petit (2010, 2011), Bresch-Pietri, Chauvin, and Petit (2012), Bresch-Pietri and Krstic (2009), Choi and Lim (2010), Herrera, Ibeas, Alcantara, Vilanova, and Balaguer (2008), Li, Gu, Zhou, and Xu (2014), Li, Zhou, and Lin (2014), Polyakov, Efimov, Perruguetti, and Richard (2013), Wang, Wu, and Gao (2005) and Wang, Saberi, and Stoorvogel (2013) for systems with exactly known dynamics and Chen and Zheng (2006), Yue (2004), Yue and Han (2005) and Zhang and Li (2006a,b) for systems with uncertain dynamics. However, all of the controllers in Bekiaris-Liberis and Krstic (2013), Bresch-Pietri et al. (2010, 2011), Bresch-Pietri et al. (2012), Bresch-Pietri and Krstic (2009), Chen and Zheng (2006), Choi and Lim (2010), Herrera et al. (2008), Li, Gu et al. (2014), Li, Zhou et al. (2014), Polyakov et al. (2013), Wang et al. (2013), Wang et al. (2005), Yue (2004), Yue and Han (2005) and Zhang and Li (2006a,b) are developed for linear plant dynamics. The works in Balas and Nelson (2011), Bresch-Pietri and Krstic (2014), Mazenc and Niculescu (2011) and Nelson and Balas (2012) develop controllers for plants with nonlinear dynamics and an unknown input delay, but require exact model knowledge of the nonlinear dynamics. The controller designed in Chiu and Chiang (2009) compensates for Takagi–Sugeno fuzzy systems and unknown actuation delay duration by using a memoryless observer and a fuzzy parallel distributed integral compensator for nonlinear, uncertain dynamics. However, the controller in Chiu and Chiang (2009) is designed for output regulation and does not address the output tracking problem. There remains a need for a tracking controller that can compensate for the effects of unknown time-varying input delays for a class of uncertain nonlinear systems.

When uncertain nonlinear dynamics are present, the control design is significantly more challenging than when linear or exactly known nonlinear dynamics are present. For example, in general, if the system states evolve according to linear dynamics, the linear behavior can be exploited to predict the system response over the delay interval. Exact knowledge of the dynamics facilitates the ability to predict the state transition for nonlinear systems. For uncertain nonlinear systems, the state transition is significantly more difficult to predict, especially if the delay interval is also unknown and/or time-varying. Given the difficulty in predicting the state transition, the contribution in this paper (and in Fischer, Kamalapurkar et al., 2012 and Kamalapurkar, Fischer, Obuz, & Dixon, 2016) is to treat the input delay and dynamic uncertainty as a disturbance and develop a robust controller that can compensate for these effects.

Recently, Fischer et al. presented a robust controller for uncertain nonlinear systems with additive disturbances subject to slowly varying input delay in Fischer, Kamalapurkar et al. (2012), where it is assumed that the input delay duration is measurable and the absolute value of the second derivative of the delay is bounded by a known constant. The approach in this study extends our previous work in Fischer, Kamalapurkar et al. (2012) by using a novel filtered error signal to compensate for an unknown slowly varying input delay for uncertain nonlinear systems affected by additive disturbances. In Fischer, Kamalapurkar et al. (2012), a filtered error signal defined as the finite integral of the actuator signals over the delay interval is used to obtain a delay-free expression for the control input in the closed-loop error system. However, the computation of the finite integral requires exact knowledge of the input delay. In this study, a novel filtered error signal is designed using the past states in a finite integral over a constant estimated delay interval to cope with the lack of delay knowledge, which requires a significantly different stability analysis that takes advantage of Lyapunov–Krasovskii functionals. Techniques used in this study provide relaxed requirements of the delay measurement and obviate the need for a bound of the absolute value of the second derivative of the delay. It is assumed that the estimated input delay is selected sufficiently close to the actual time-varying input delay. That is, there are robustness limitations, which can be relaxed with more knowledge about the time-delay. Because it is feasible to obtain lower and upper bounds for the input delay in many applications (Richard, 2003), it is feasible to select a delay estimate in an appropriate range. New sufficient conditions for stability are based on the length of the estimated delay as well as the maximum tolerable error between the actual and estimated input delay. A Lyapunov-based stability analysis is used to prove ultimate boundedness of the error signals. Numerical simulation results demonstrate the performance of the robust controller.

2. Dynamic system

Consider a class of nth-order nonlinear systems

$$\dot{x}_i = x_{i+1}, \quad i = 1, \dots, n-1,$$

 $\dot{x}_n = f(X, t) + d + u(t - \tau),$ (1)

where $x_i \in \mathbb{R}^m$, i = 1, ..., n are the measurable system states, $X = \begin{bmatrix} x_1^T, x_2^T, ..., x_n^T \end{bmatrix}^T \in \mathbb{R}^{mn}$, $u \in \mathbb{R}^m$ is the control input, $f : \mathbb{R}^{mn} \times [t_0, \infty) \to \mathbb{R}^m$ is an uncertain nonlinear function, $d : [t_0, \infty) \to \mathbb{R}^m$ denotes sufficiently smooth unknown additive disturbance (e.g., unmodeled effects), and $\tau : [t_0, \infty) \to \mathbb{R}$ denotes a time-varying unknown positive time delay,¹ where t_0 is the initial time. Throughout the paper, delayed functions are denoted as

$$h_{\tau} \triangleq \begin{cases} h\left(t-\tau\right) & t-\tau \ge t_0\\ 0 & t-\tau < t_0. \end{cases}$$

The dynamic model of the system in (1) can be rewritten as

$$x_1^{(n)} = f(X, t) + d + u(t - \tau),$$
(2)

where the superscript (n) denotes the *n*th time derivative. In addition, the dynamic model of the system in (1) satisfies the following assumptions.

Assumption 1. The function *f* and its first and second partial derivatives are bounded on each subset of their domain of the form $\Xi \times [t_0, \infty)$, where $\Xi \subset \mathbb{R}^{mn}$ is compact and for any given Ξ , the corresponding bounds are known.²

Assumption 2 (*Fischer, Kan, & Dixon, 2012*). The nonlinear additive disturbance term and its first time derivative (i.e., d, \dot{d}) exist and are bounded by known positive constants.

Assumption 3. The reference trajectory $x_r \in \mathbb{R}^m$ is designed such that the derivatives $x_r^{(i)}$, $\forall i = 0, 1, ..., (n + 2)$ exist and are bounded by known positive constants.

¹ The developed method can be extended to the case of multiple delays. Assumption 4 can be modified for the case of multiple delays by redefining the delayed input vector and using the maximum input delay instead of the actual delay bound such that max{ $\tau_1, \tau_2, ..., \tau_m$ } < Υ . To obviate the requirement of exact knowledge of the time delay dynamics in the stability analysis and introducing new Lyapunov-Krasovskii functionals for each input delay, the closed-loop dynamics can be revised in terms of $\dot{u}_{\hat{\tau}}$, $(\dot{u}_{\tau} - \dot{u}_{\hat{\tau}})$ instead of the terms $\dot{u}_{\hat{\tau}}$, $\dot{u}_{\tau} - \dot{u}_{\hat{\tau}}$). In this paper, single time-varying input delay is considered for ease of exposition.

² Given a compact set $\Xi \subset \mathbb{R}^{mn}$, the bounds of f, $\frac{\partial f(X,t)}{\partial X}$, $\frac{\partial f(X,t)}{\partial t}$, $\frac{\partial^2 f(X,t)}{\partial^2 X}$, $\frac{\partial^2 f(X,t)}{\partial X \partial t}$, $\frac{\partial^2 f(X,t)}{\partial X \partial t}$, $\frac{\partial^2 f(X,t)}{\partial X \partial t}$, and $\frac{\partial^2 f(X,t)}{\partial X \partial t}$ over Ξ are assumed to be known.

Assumption 4. The input delay is bounded such that $\tau(t) < \Upsilon$ for all $t \in \mathbb{R}$, differentiable, and slowly varying such that $|\dot{\tau}| < \varphi < 1$ for all $t \in \mathbb{R}$, where $\varphi, \Upsilon \in \mathbb{R}$ are known positive constants. Additionally, a sufficiently accurate constant estimate $\hat{\tau} \in \mathbb{R}$ of τ is available such that $|\tilde{\tau}| \leq \tilde{\tau}$, for all $t \in \mathbb{R}$, where $\tilde{\tau} \triangleq \tau - \hat{\tau}$, and $\tilde{\tilde{\tau}} \in \mathbb{R}$ is a known positive constant.³ Furthermore, it is assumed that the system in (1) does not escape to infinity during the time interval $[t_0, t_0 + \Upsilon]$.

3. Control development

The objective of the control design is to develop a continuous controller which ensures that the state x_1 of the delayed system in (2) tracks a reference trajectory, x_r .

To quantify the control objective, a tracking error, denoted by $e_1 \in \mathbb{R}^m$, is defined as

$$e_1 \triangleq x_r - x_1. \tag{3}$$

To facilitate the subsequent analysis, auxiliary tracking error signals, denoted by $e_i \in \mathbb{R}^m$, i = 2, 3, ..., n, are defined as Xian, Dawson, de Queiroz, and Chen (2004)

$$e_2 \triangleq \dot{e}_1 + e_1, \tag{4}$$

$$e_3 \triangleq \dot{e}_2 + e_2 + e_1, \tag{5}$$

: $e_n \triangleq \dot{e}_{n-1} + e_{n-1} + e_{n-2}.$ (6)

A general expression of e_i for i = 2, 3, ..., n can be written as

$$e_i = \sum_{j=0}^{i-1} a_{i,j} e_1^{(j)},\tag{7}$$

where $a_{i,j} \in \mathbb{R}$ are defined as⁴ Tatlicioglu (2007)

$$a_{i,0} \triangleq \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{i} - \left(\frac{1-\sqrt{5}}{2} \right)^{i} \right), \quad \forall i = 2, 3, \dots, n,$$

$$a_{i,j} \triangleq \sum_{p=1}^{i-1} a_{i-p-j+1,0} a_{p+j-1,j-1}, \\ \forall i = 3, 4, \dots, n, \ \forall j = 1, 2, \dots, (i-2).$$

To obtain a delay-free control expression for the input in the closed-loop error system, an auxiliary tracking error signal, denoted by $e_u \in \mathbb{R}^m$, is defined as

$$e_{u} \triangleq -\int_{t-\hat{\tau}}^{t} \dot{u}\left(\theta\right) d\theta.$$
(8)

It should be emphasized that the estimate of τ , denoted by $\hat{\tau}$, is required instead of exact knowledge of τ in the control design. For example, the constant estimate $\hat{\tau}$ may be selected to best approximate the mean of τ . Based on the subsequent stability analysis, the following continuous robust controller is designed as

$$u \triangleq k \left(e_n - e_n \left(t_0 \right) \right) + \upsilon, \tag{9}$$

where $e_n(t_0) \in \mathbb{R}^m$ is the initial error signal and $\upsilon \in \mathbb{R}^m$ is the solution to the differential equation

$$\dot{\upsilon} = k \left(\Lambda e_n + \alpha e_u \right), \tag{10}$$

where $k, \Lambda, \alpha \in \mathbb{R}^{m \times m}$ are constant, diagonal, positive definite gain matrices.

4. Stability analysis

To facilitate the stability analysis an auxiliary tracking error signal, denoted by $r \in \mathbb{R}^m$, is defined as⁵

$$r \triangleq \dot{e}_n + \Lambda e_n + \alpha e_u. \tag{11}$$

The open loop dynamics for *r* can be obtained by substituting the first time derivatives of (2) and (8), the second time derivative of (7) with i = n, and the (n + 1)th time derivative of (3) into (11) as

$$\dot{r} = -\dot{f}\left(X, \dot{X}, t\right) - \dot{d} + \sum_{j=0}^{n-2} a_{n,j} e_1^{(j+2)} + x_r^{(n+1)} - \alpha \dot{u} + \alpha \dot{u}_{\hat{\tau}} - (1 - \dot{\tau}) \dot{u}_{\tau} + \Lambda \dot{e}_n.$$
(12)

Substituting the first time derivative of the controller in (9) into (12), the closed-loop error system for *r* can be obtained as

$$\dot{r} = -\dot{f} \left(X, \dot{X}, t \right) - \dot{d} + \sum_{j=0}^{n-2} a_{n,j} e_1^{(j+2)} + x_r^{(n+1)} + \Lambda \dot{e}_n - \alpha kr + (\alpha - I + \dot{\tau} I) kr_\tau + \alpha \left(\dot{u}_{\hat{\tau}} - \dot{u}_\tau \right),$$
(13)

where $I \in \mathbb{R}^{m \times m}$ is the identity matrix. The stability analysis can be facilitated by segregating the terms in (13) that can be upper bounded by a state-dependent function and terms that can be upper bounded by a constant, such that

$$\dot{r} = -\alpha kr + (\alpha - I + \dot{\tau}I) kr_{\tau} + \alpha (\dot{u}_{\hat{\tau}} - \dot{u}_{\tau}) + \tilde{N} + N_r - e_n.$$
(14)

The auxiliary functions $\tilde{N} \in \mathbb{R}^m$ and $N_r \in \mathbb{R}^m$ are defined as

$$\tilde{N} \triangleq -\dot{f} (X, \dot{X}, t) + \dot{f} (X_r, \dot{X}_r, t) + \sum_{j=0}^{n-2} a_{n,j} e_1^{(j+2)} + \Lambda \dot{e}_n + e_n,$$
(15)

$$N_r \triangleq -\dot{f}\left(X_r, \dot{X}_r, t\right) - \dot{d} + x_r^{(n+1)}, \tag{16}$$

where
$$X_r \triangleq \left[x_r^T, \dot{x}_r^T, \ldots, \left(x_r^{(n-1)}\right)^T\right]^T \in \mathbb{R}^{mn}$$
.

Remark 1. Based on Assumptions 2 and 3, N_r is upper bounded as

$$\sup_{t\in\mathbb{R}}\|N_r\|\leq\zeta_{N_r},\tag{17}$$

where $\zeta_{N_r} \in \mathbb{R}$ is a known positive constant.

Remark 2. An upper bound can be obtained for (15) using Assumption 1 and the Lemma 5 in Kamalapurkar, Rosenfeld, Klotz, Downey, and Dixon (2014) as

$$\left\|\tilde{N}\right\| \le \rho\left(\|z\|\right) \|z\|,\tag{18}$$

where ρ is a positive, radially unbounded,⁶ and strictly increasing function, and $z \in \mathbb{R}^{(n+2)m}$ is a vector of error signals defined as

$$z \triangleq \begin{bmatrix} \boldsymbol{e}_1^T, \ \boldsymbol{e}_2^T, \dots, \boldsymbol{e}_n^T, \ \boldsymbol{e}_u^T, \ \boldsymbol{r}^T \end{bmatrix}^T.$$
(19)

To facilitate the subsequent stability analysis, auxiliary bounding constants σ , $\delta \in \mathbb{R}$ are defined as

³ Since the maximum tolerable error, $\tilde{\tilde{t}}$, and the estimate of actual delay, $\hat{\tau}$, are known, the maximum tolerable input delay can be determined. Because the bounds on the input delay are feasible to obtain in many applications (Richard, 2003), Assumption 4 is reasonable.

⁴ It should be noted that $a_{i,i-1} = 1, \forall i = 1, 2, ..., n$.

⁵ Since \dot{e}_n is not measurable, *r* cannot be used in the control design.

⁶ For some classes of systems, the bounding function ρ can be selected as a constant. For those systems, a global uniformly ultimately bounded result can be obtained as described in Remark 3.

$$\sigma \triangleq \min\left\{1, \left(1 - \frac{\epsilon_2}{2}\right), \left(\underline{\Lambda} - \left(\frac{\bar{\alpha}}{2\epsilon_1} + \frac{1}{2\epsilon_2}\right)\right), \frac{\underline{k}\,\underline{\alpha}}{8}, \left(\frac{\omega_2}{4\hat{\tau}} - \bar{\alpha}\epsilon_1\right)\right\},\tag{20}$$

$$\delta \triangleq \frac{1}{2} \min \left\{ \frac{\sigma}{2}, \frac{\omega_2 \underline{k}^3 \underline{\alpha} (1-\varphi)}{4 \left(\bar{k} \left(\bar{\alpha} + \varphi - 1 \right) \right)^2}, \frac{\omega_2 \underline{k}^2 \bar{\alpha} \epsilon_1}{4 \omega_1^2 \bar{k}^2}, \frac{1}{4 \left(\bar{\tilde{\tau}} + \hat{\tau} \right)} \right\},$$
(21)

where $\underline{\Lambda}, \underline{k}, \underline{\alpha} \in \mathbb{R}$ denote the minimum eigenvalues of Λ, k, α , respectively, $\bar{k}, \bar{\alpha} \in \mathbb{R}$ denote the maximum eigenvalues of k and α , respectively, and ω_i , $\epsilon_i \in \mathbb{R}$, i = 1, 2, are known, selectable, positive constants.

Let the functions $Q_1, Q_2, Q_3 \in \mathbb{R}$ be defined as

$$Q_{1} \triangleq \frac{\left(\omega_{1}\bar{k}\right)^{2}}{\bar{\alpha}\epsilon_{1}} \int_{t-\hat{\tau}}^{t} \left\| r\left(\theta\right) \right\|^{2} d\theta,$$
(22)

$$Q_{2} \triangleq \frac{\left(\bar{k}\left(\bar{\alpha}+\varphi-1\right)\right)^{2}}{\underline{k\alpha}\left(1-\varphi\right)} \int_{t-\tau}^{t} \|r\left(\theta\right)\|^{2} d\theta,$$
(23)

$$Q_3 \triangleq \omega_2 \int_{t-\left(\bar{\bar{\tau}}+\hat{\tau}\right)}^t \int_s^t \|\dot{u}\left(\theta\right)\|^2 \, d\theta \, ds,\tag{24}$$

and let $v \in \mathbb{R}^{(n+2)m+3}$ be defined as

$$\mathbf{y} \triangleq \left[z, \sqrt{\mathbf{Q}_1}, \sqrt{\mathbf{Q}_2}, \sqrt{\mathbf{Q}_3} \right]^T.$$
(25)

For use in the following stability analysis, let

$$\mathscr{D}_{1} \triangleq \left\{ y \in \mathbb{R}^{(n+2)m+3} | \|y\| < \chi_{1} \right\},$$
(26)

where $\chi_1 \triangleq \inf \left\{ \rho^{-1} \left(\left[\sqrt{\frac{\sigma k \, \alpha}{2}}, \infty \right) \right) \right\}$. Provided $||z(\eta)|| < \gamma, \forall \eta \in [t_0, t], (14)$ and the fact that $\dot{u} = kr$ can be used to conclude that $\ddot{u} < M$, where γ and M^7 are positive constants. Let $\mathscr{D} \triangleq \mathscr{D}_1 \cap (B_{\nu} \cap \mathbb{R}^{(n+2)m+3})$ where B_{ν} denotes a closed ball of radius γ centered at the origin and let

$$\mathscr{S}_{\mathscr{D}} \triangleq \{ y \in \mathscr{D} | \| y \| < \chi_2 \}$$
(27)

denote the domain of attraction, where⁸ $\chi_2 \triangleq \sqrt{\frac{\min\{\frac{1}{2}, \frac{\omega_1}{2}\}}{\max\{1, \frac{\omega_1}{2}\}}}$ inf

$$\left\{\rho^{-1}\left(\left[\sqrt{\frac{\sigma\underline{k}\,\underline{\alpha}}{2}},\infty\right)\right)\right\}.$$

 $\limsup \|e_1(t)\|$

Theorem 1. Given the dynamics in (1), the controller given in (9) and (10) ensures uniformly ultimately bounded tracking in the sense that

$$\leq \left(\sqrt{\frac{\max\left\{1,\frac{\omega_{1}}{2}\right\}}{\min\left\{\frac{1}{2},\frac{\omega_{1}}{2}\right\}}} \cdot \sqrt{\frac{\left(2\zeta_{N_{r}}^{2} + \underline{\alpha}\,\underline{k}\bar{\alpha}\,\bar{\tilde{\tau}}^{2}M^{2}\right)}{2\underline{\alpha}\,\underline{k}\delta}}\right),\tag{28}$$

provided that $y(t_0) \in \mathscr{S}_{\mathscr{D}}$ and that the control gains are selected sufficiently large based on the initial conditions of the system such that the following sufficient conditions are satisfied⁹¹⁰

$$\omega_{2} > 4\bar{\alpha}\epsilon_{1}\hat{\tau},$$

$$\underline{\Lambda} > \frac{\bar{\alpha}}{2\epsilon_{1}} + \frac{1}{2\epsilon_{2}}, 2 > \epsilon_{2},$$

$$\left(\frac{\frac{\alpha}{8} \underline{k}}{2\epsilon_{1}} - \frac{2(\omega_{1}\bar{k})^{2}}{\bar{\alpha}\epsilon_{1}} - \frac{(\bar{k}(\bar{\alpha}+\varphi-1))^{2}}{\underline{\alpha}\underline{k}(1-\varphi)}}{\omega_{2}\bar{k}^{2}} - \frac{\omega_{2}\hat{\tau}\bar{k}^{2} + \frac{\bar{\alpha}}{2}}{\omega_{2}\bar{k}^{2}}\right) \geq \bar{\tilde{\tau}},$$

$$\chi_{2} > \left(\frac{2\zeta_{N_{r}}^{2} + \underline{\alpha}\underline{k}\bar{\alpha}\bar{\tau}^{2}M^{2}}{2\underline{\alpha}\underline{k}\delta}\right)^{\frac{1}{2}}.$$
(29)

Proof. Let $V : \mathscr{D} \to \mathbb{R}$ be a continuously differentiable Lyapunov function candidate defined as

$$V \triangleq \frac{1}{2} \sum_{i=1}^{n} e_i^T e_i + \frac{1}{2} r^T r + \frac{\omega_1}{2} e_u^T e_u + \sum_{i=1}^{3} Q_i.$$
(30)

In addition, the following upper bound can be provided for Q_3

$$Q_{3} \leq \omega_{2} \left(\tilde{\tilde{\tau}} + \hat{\tau} \right) \sup_{s \in \left[t - (\tilde{\tilde{\tau}} + \hat{\tau}), t \right]} \left[\int_{s}^{t} \|\dot{u}(\theta)\|^{2} ds, \right]$$
$$\leq \omega_{2} \left(\tilde{\tilde{\tau}} + \hat{\tau} \right) \int_{t - (\tilde{\tilde{\tau}} + \hat{\tau})}^{t} \|\dot{u}(\theta)\|^{2} d\theta.$$
(31)

By applying Leibniz Rule, the time derivatives of (22)-(24) can be obtained as

$$\dot{Q}_{1} = \frac{\left(\omega_{1}\bar{k}\right)^{2}}{\bar{\alpha}\epsilon_{1}} \left(\|r\|^{2} - \|r_{\hat{\tau}}\|^{2}\right),$$
(32)

$$\dot{Q}_{2} = \frac{\left(\bar{k}\left(\bar{\alpha} + \varphi - 1\right)\right)^{2}}{\underline{k}\,\underline{\alpha}\,(1 - \varphi)}\left(\|r\|^{2} - (1 - \dot{\tau})\,\|r_{\tau}\,\|^{2}\right),\tag{33}$$

$$\dot{Q}_3 = \omega_2 \left(\left(\tilde{\tilde{\tau}} + \hat{\tau} \right) \bar{k} \|r\|^2 - \int_{t - \left(\tilde{\tilde{\tau}} + \hat{\tau} \right)}^t \|\dot{u}\left(\theta\right)\|^2 d\theta \right).$$
(34)

Based on (30), the following inequalities can be developed:

$$\min\left\{\frac{1}{2}, \frac{\omega_1}{2}\right\} \|y\|^2 \le V(y) \le \max\left\{1, \frac{\omega_1}{2}\right\} \|y\|^2.$$
(35)

The time derivative of the first term in (30) can be obtained by using (4)–(6), (11), and the definition of e_i in (7) for i = n, as

$$\sum_{i=1}^{n} e_i^T \dot{e}_i = -\sum_{i=1}^{n-1} e_i^T e_i - e_n^T \Lambda e_n + e_{n-1}^T e_n - e_n^T \alpha e_u + e_n^T r.$$
(36)

By using (8), (14), (32)–(34), and (36), the time derivative of (30) can be determined as

$$\dot{V} = -\sum_{i=1}^{n-1} e_i^T e_i - e_n^T \Lambda e_n + e_{n-1}^T e_n - e_n^T \alpha e_u + e_n^T r$$

+ $r^T (-\alpha kr + (\alpha - I + \dot{\tau}I) kr_{\tau} + \alpha (\dot{u}_{\hat{\tau}} - \dot{u}_{\tau}))$
+ $r^T (\tilde{N} + N_r - e_n) + \omega_1 e_u^T (kr_{\hat{\tau}} - kr)$

⁷ The subsequent analysis does not assume that the inequality $\ddot{u} < M$ holds for all time. The subsequent analysis only exploits the fact that provided $\| z\left(\eta
ight) \| \, < \,$ $\gamma, \forall \eta \in [t_0, t]$, then $\ddot{u} < M$. ⁸ For a set *A*, the inverse image $\rho^{-1}(A)$ is defined as $\rho^{-1}(A) \triangleq \{a \mid \rho(a) \in A\}$.

 $^{^9}$ To achieve a small tracking error for the case of a large value of $\zeta_{N_r}(\text{i.e., fast}$ dynamics with large disturbances), large gains, small delay, and a better estimate of the delay are required.

¹⁰ By choosing α close to $1 - \varphi$, sufficiently small ω_1 and ϵ_1 , and a sufficiently large A, the gain conditions can be expressed in terms of k, $\hat{\tau}$, $\tilde{\tilde{\tau}}$, φ . The gain k can then be selected provided $\hat{\tau}$, $\bar{\tilde{\tau}}$, φ are small enough.

$$+ \frac{(\omega_{1}\bar{k})^{2}}{\bar{\alpha}\epsilon_{1}} (\|r\|^{2} - \|r_{\hat{\tau}}\|^{2}) + \frac{(\bar{k}(\bar{\alpha} + \varphi - 1))^{2}}{\underline{k\alpha}(1 - \varphi)} (\|r\|^{2} - (1 - \dot{\tau}) \|r_{\tau}\|^{2}) + \omega_{2} \left((\tilde{\bar{\tau}} + \hat{\tau}) \bar{k}^{2} \|r\|^{2} - \int_{t - (\tilde{\bar{\tau}} + \hat{\tau})}^{t} \|\dot{u}(\theta)\|^{2} d\theta \right).$$
(37)

After canceling common terms and using Assumption 4, the expression in (37) can be upper bounded as

$$\begin{split} \dot{V} &\leq -\sum_{i=1}^{n-1} \|e_i\|^2 - \underline{\Lambda} \|e_n\|^2 + |e_{n-1}^T e_n| + \bar{\alpha} |e_n^T e_u| \\ &+ \bar{\alpha} |r^T (\dot{u}_{\hat{\tau}} - \dot{u}_{\tau})| - \underline{\alpha} \underline{k} \|r\|^2 \\ &+ r^T \tilde{N} + \|r\| \zeta_{N_r} + \bar{k} |\bar{\alpha} + \varphi - 1| |r^T r_{\tau}| \\ &+ \omega_1 \bar{k} (\|e_u\| \|r_{\hat{\tau}}\| + \|e_u\| \|r\|) + \frac{(\omega_1 \bar{k})^2}{\bar{\alpha} \epsilon_1} (\|r\|^2 - \|r_{\hat{\tau}}\|^2) \\ &+ \frac{(\bar{k} (\bar{\alpha} + \varphi - 1))^2}{\underline{k} \underline{\alpha} (1 - \varphi)} (\|r\|^2 - (1 - \dot{\tau}) \|r_{\tau}\|^2) \\ &+ \omega_2 \left((\bar{\tilde{\tau}} + \hat{\tau}) \bar{k}^2 \|r\|^2 - \int_{t - (\bar{\tilde{\tau}} + \hat{\tau})}^t \|\dot{u} (\theta)\|^2 d\theta \right). \end{split}$$
(38)

Using Young's Inequality the following inequalities can be obtained

$$|e_n^T e_u| \le \frac{1}{2\epsilon_1} ||e_n||^2 + \frac{\epsilon_1}{2} ||e_u||^2,$$
 (39)

$$\left|e_{n-1}^{T}e_{n}\right| \leq \frac{\epsilon_{2}}{2} \left\|e_{n-1}\right\|^{2} + \frac{1}{2\epsilon_{2}} \left\|e_{n}\right\|^{2},$$
 (40)

$$\left| r^{T} \left(\dot{u}_{\hat{\tau}} - \dot{u}_{\tau} \right) \right| \leq \frac{1}{2} \, \| r \|^{2} + \frac{1}{2} \, \| \dot{u}_{\hat{\tau}} - \dot{u}_{\tau} \|^{2} \,. \tag{41}$$

After completing the squares for the cross terms containing r and $r_{\hat{\tau}}$, substituting the time derivative of (9) and (18), (39)–(41) into (38), and using Assumption 4, the following upper bound can be obtained

$$\begin{split} \dot{V} &\leq -\sum_{i=1}^{n-2} \|e_i\|^2 - \left(1 - \frac{\epsilon_2}{2}\right) \|e_{n-1}\|^2 \\ &- \left(\underline{\Lambda} - \left(\frac{\bar{\alpha}}{2\epsilon_1} + \frac{1}{2\epsilon_2}\right)\right) \|e_n\|^2 + \bar{\alpha}\epsilon_1 \|e_u\|^2 - \frac{\underline{\alpha}\,\underline{k}}{8} \|r\|^2 \\ &- \left(\frac{\underline{\alpha}\,\underline{k}}{8} - \kappa\right) \|r\|^2 + \frac{1}{\underline{\alpha}\,\underline{k}} \rho^2 (\|z\|) \|z\|^2 \\ &+ \frac{1}{\underline{\alpha}\,\underline{k}} \zeta_{N_r}^2 + \frac{\bar{\alpha}\,\|\dot{u}_{\hat{\tau}} - \dot{u}_{\tau}\|^2}{2} - \omega_2 \int_{t-(\bar{\tau}+\hat{\tau})}^t \|\dot{u}\left(\theta\right)\|^2 \,d\theta, \end{split}$$
(42)

where $\kappa \triangleq \frac{2(\omega_1 \bar{k})^2}{\bar{\alpha} \epsilon_1} + \frac{(\bar{k}(\bar{\alpha} + \varphi - 1))^2}{\underline{\alpha} \underline{k}(1 - \varphi)} + \omega_2 (\bar{\tilde{\tau}} + \hat{\tau}) \bar{k}^2 + \frac{\bar{\alpha}}{2}$. The Cauchy–Schwarz inequality is used to develop the following upper bound

$$\|e_u\|^2 \le \hat{\tau} \int_{t-\hat{\tau}}^t \|\dot{u}(\theta)\|^2 \, d\theta.$$
(43)

Note that using Assumption 4, the inequalities $\int_{t-\tau}^{t} \|\dot{u}(\theta)\|^2 d\theta \le \bar{k}^2 \int_{t-(\bar{\tau}+\hat{\tau})}^{t} \|r(\theta)\|^2 d\theta$ and $\int_{t-\hat{\tau}}^{t} \|\dot{u}(\theta)\|^2 d\theta \le \bar{k}^2 \int_{t-(\bar{\tau}+\hat{\tau})}^{t} \|r(\theta)\|^2 d\theta$ can be obtained. In addition, using the expressions in (22), (23), (31) and (43), the following inequalities can be obtained

$$-\frac{\omega_2}{4\hat{\tau}} \|e_u\|^2 \ge -\frac{\omega_2}{4} \int_{t-(\tilde{\tau}+\hat{\tau})}^t \|\dot{u}(\theta)\|^2 \, d\theta, \tag{44}$$

$$-\frac{\omega_{2}\underline{k}^{2}\bar{\alpha}\epsilon_{1}}{4\omega_{1}^{2}\bar{k}^{2}}Q_{1} \geq -\frac{\omega_{2}}{4}\int_{t-(\bar{\tau}+\hat{\tau})}^{t}\|\dot{u}\left(\theta\right)\|^{2}d\theta,$$
(45)

$$-\frac{\omega_2 \underline{k}^3 \,\underline{\alpha} \left(1-\varphi\right) \, \mathsf{Q}_2}{4 \left(\bar{k} \left(\bar{\alpha}+\varphi-1\right)\right)^2} \ge -\frac{\omega_2}{4} \int_{t-(\bar{\tilde{\tau}}+\hat{\tau})}^t \|\dot{u}\left(\theta\right)\|^2 \, d\theta,\tag{46}$$

$$-\frac{1}{4\left(\bar{\tilde{\tau}}+\hat{\tau}\right)}Q_{3} \geq -\frac{\omega_{2}}{4}\int_{t-\left(\bar{\tilde{\tau}}+\hat{\tau}\right)}^{t}\|\dot{u}\left(\theta\right)\|^{2}d\theta.$$
(47)

By using (44)–(47), (42) can be upper bounded as

$$\begin{split} \dot{V} &\leq -\sum_{i=1}^{n-2} \|e_i\|^2 - \left(1 - \frac{\epsilon_2}{2}\right) \|e_{n-1}\|^2 \\ &- \left(\underline{A} - \left(\frac{\bar{\alpha}}{2\epsilon_1} + \frac{1}{2\epsilon_2}\right)\right) \|e_n\|^2 \\ &- \left(\frac{\omega_2}{4\hat{\tau}} - \bar{\alpha}\epsilon_1\right) \|e_u\|^2 - \frac{\alpha k}{8} \|r\|^2 \\ &- \left(\frac{\alpha k}{8} - \kappa\right) \|r\|^2 + \frac{1}{\underline{\alpha} \underline{k}} \rho^2 (\|z\|) \|z\|^2 \\ &+ \frac{1}{\underline{\alpha} \underline{k}} \zeta_{N_r}^2 + \frac{\bar{\alpha} \|\dot{u}_{\hat{\tau}} - \dot{u}_{\tau}\|^2}{2} \\ &- \frac{\omega_2 \underline{k}^2 \bar{\alpha} \epsilon_1}{4\omega_1^2 \bar{k}^2} Q_1 - \frac{\omega_2 \underline{k}^3 \underline{\alpha} (1 - \varphi)}{4 \left(\bar{k} (\bar{\alpha} + \varphi - 1)\right)^2} Q_2 \\ &- \frac{1}{4 \left(\bar{\tilde{\tau}} + \hat{\tau}\right)} Q_3. \end{split}$$
(48)

Note that the Mean Value Theorem can be used to obtain the inequality $\|\dot{u}_{\hat{\tau}} - \dot{u}_{\tau}\| \leq \|\ddot{u}(\Theta(t, \hat{\tau}))\| |\tilde{\tau}|$, where $\Theta(t, \hat{\tau})$ is a point in time between $t - \tau$ and $t - \hat{\tau}$. Furthermore, using the gain conditions in (29), the definition of σ in (20), and the inequality $\|y\| \geq \|z\|$, the following upper bound can be obtained

$$\begin{split} \dot{V} &\leq -\left(\frac{\sigma}{2} - \frac{1}{\underline{\alpha} \underline{k}}\rho^{2}\left(\|\boldsymbol{y}\|\right)\right) \|\boldsymbol{z}\|^{2} - \frac{\sigma}{2} \|\boldsymbol{z}\|^{2} \\ &+ \frac{1}{\underline{\alpha} \underline{k}}\zeta_{N_{r}}^{2} + \frac{\bar{\alpha}\bar{\tilde{\tau}}^{2} \|\ddot{\boldsymbol{u}}\left(\boldsymbol{\Theta}\left(t,\,\hat{\tau}\right)\right)\|^{2}}{2} \\ &- \frac{\omega_{2}\underline{k}^{2}\bar{\alpha}\epsilon_{1}}{4\omega_{1}^{2}\bar{k}^{2}}Q_{1} - \frac{\omega_{2}\underline{k}^{3}\underline{\alpha}\left(1-\varphi\right)}{4\left(\bar{k}\left(\bar{\alpha}+\varphi-1\right)\right)^{2}}Q_{2} - \frac{1}{4\left(\bar{\tilde{\tau}}+\hat{\tau}\right)}Q_{3}. \end{split}$$

$$(49)$$

Provided $y(\eta) \in \mathcal{D} \ \forall \eta \in [t_0, t]$, then from the definition of δ in (21), the expression in (49) reduces to

$$\dot{V} \le -\delta \|y\|^2, \quad \forall \|y\| \ge \left(\frac{2\zeta_{N_r}^2 + \underline{\alpha}\,\underline{k}\bar{\alpha}\,\bar{\tilde{\tau}}^2 M^2}{2\underline{\alpha}\,\underline{k}\delta}\right)^{\frac{1}{2}}.$$
(50)

Using techniques similar to Theorem 4.18 in Khalil (2002) it can be concluded that *y* is uniformly ultimately bounded in the sense that $\limsup_{t\to\infty} \|y(t)\| \leq \sqrt{\frac{\max\left\{1, \frac{\omega_1}{2}\right\}\left(2\zeta_{N_r}^2 + \underline{\alpha} \underline{k} \overline{\alpha} \overline{\overline{\tau}}^2 M^2\right)}{\min\left\{\frac{1}{2}, \frac{\omega_1}{2}\right\}2\underline{\alpha} \underline{k} \delta}}$ provided *y* (*t*₀) $\in \mathscr{S}_{\mathscr{D}}$, where uniformity in initial time can be concluded from

the independence of δ and the ultimate bound from t_0 .

Remark 3. If the system dynamics are such that *N* is linear in *z*, then the function ρ can be selected to be a constant, i.e., $\rho(||z||) = \bar{\rho}$, $\forall z \in \mathbb{R}^{(n+2)m}$ for some known $\bar{\rho} > 0$. In this case, the last

sufficient condition in (29) reduces to

$$\underline{k} \ge \frac{2\bar{\rho}^2}{\sigma\underline{\alpha}},\tag{51}$$

and the result is global in the sense that $\mathscr{D} = \mathscr{S}_{\mathscr{D}} = \mathbb{R}^{(n+2)m+3}$.

Since e_i , r, $e_u \in \mathcal{L}_{\infty}$, i = 1, 2, 3, ..., n, from (2), $u \in \mathcal{L}_{\infty}$. An analysis of the closed-loop system shows that the remaining signals are bounded.

5. Simulation results

To illustrate performance of the developed controller, numerical simulations were performed on a two-link revolute, directdrive robot¹¹ with the following dynamics

$$\begin{bmatrix} u_{1_{\tau}} \\ u_{2_{\tau}} \end{bmatrix} = \begin{bmatrix} p_1 + 2p_3c_2 & p_2 + p_3c_2 \\ p_2 + p_3c_2 & p_2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} \\ + \begin{bmatrix} -p_3s_2\dot{x}_2 & -p_3s_2(\dot{x}_1 + \dot{x}_2) \\ p_3s_2\dot{x}_1 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} \\ + \begin{bmatrix} f_{d_1} & 0 \\ 0 & f_{d_2} \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} + \begin{bmatrix} d_1 \\ d_2 \end{bmatrix},$$
(52)

where $x, \dot{x}, \ddot{x} \in \mathbb{R}^2$. Additive disturbances are applied as $d_1 = 0.2$ sin (0.5*t*) and $d_2 = 0.1$ sin (0.25*t*). Additionally, $p_1 = 3.473$ kg m², $p_2 = 0.196$ kg m², $p_3 = 0.242$ kg m², $p_4 = 0.238$ kg m², $p_5 = 0.146$ kg m², $f_{d1} = 5.3$ Nm s, $f_{d2} = 1$, 1 Nm s, and s_2 , c_2 denote sin (x_2), and cos (x_2), respectively.

The initial conditions for the system are selected as $x_1, x_2 = 0$. The desired trajectories are selected as

$$\begin{aligned} x_{d1}(t) &= (30\sin\left(1.5t\right) + 20)\left(1 - e^{-0.01t^3}\right), \\ x_{d2}(t) &= -(20\sin\left(t/2\right) + 10)\left(1 - e^{-0.01t^3}\right). \end{aligned}$$

Several simulation results were obtained using various timevarying delays and different estimated delays, shown in Table 1, to demonstrate performance of the developed continuous robust controller. Cases 1 and 2 use a high-frequency, low-amplitude oscillating delay for different delay upper-bound estimates. Cases 3 use a low-frequency, high-amplitude oscillating delay for known and unknown delay. Case 4 uses random, uniformly distributed delay between 0 and 120 ms for each time instance.

The controller in (9) and (10) is implemented for each case. The control gains are selected for Cases 1 and 2 as $\alpha = \text{diag}\{1, 1\}, \Lambda =$ diag{50, 20.5}, and $k = \text{diag}{60, 6}$, and for Cases 3 and 4 as $\alpha = \text{diag}\{1, 1\}, \Lambda = \text{diag}\{23, 8\}, \text{ and } k = \text{diag}\{140, 2.75\}.$ The root mean square (RMS) errors obtained for each case are listed in Table 1. By comparing the RMS error for Cases 1 and 2, it is clear that selecting a delay estimate closer to the actual upper bound of the unknown delay yields better tracking performance. Case 3 demonstrates that the performance of the developed controller using a constant estimate of the large unknown delay is comparable to the controller in Fischer, Kamalapurkar et al. (2012) which uses exact knowledge of the time-varying delay.¹² Additionally, the developed controller is reasonably robust even for a constant estimate of the delay when the actual delay is long and time-varying. Although the stability analysis in Section 4 assumes a slowly time-varying input delay, Case 4 shows that the

Table 1

RMS errors for time-varying time-delay rates and magnitudes.

	$\tau_i(t)$ (ms)	$\hat{\tau}(t)$ (ms)	RMS Error	
			<i>x</i> ₁	<i>x</i> ₂
Case 1	$10\sin(5t) + 10$	15	0.1315°	0.1465°
Case 2	$10\sin(5t) + 10$	100	0.4774°	0.2212°
Case 3	$60 \sin(t) + 60$	75	0.7479°	0.9928°
Case 4	rand [0, 120]	75	0.7476°	1.0068°

Fig. 1. Tracking errors, control effort and time-varying delays vs. time for Case 1.

Fig. 2. Tracking errors, control effort and time-varying delays vs. time for Case 3.

developed controller still provides good tracking performance for a discontinuous, high frequency input delay. Results in Figs. 1–3 depict the tracking errors, control effort, time-varying delays and estimated delays for Cases 1, 3 and 4, respectively.

6. Conclusion

Novelty of the controller comes from the fact that a continuous robust controller is developed for a class of uncertain nonlinear systems with additive disturbances subject to uncertain timevarying input time delay. A filtered tracking error signal is designed to facilitate the control design and analysis. A Lyapunov-based analysis is used to prove ultimate boundedness of the error signals through the use of Lyapunov–Krasovskii functionals that

¹¹ Provided the inertia matrix is known, the dynamics in (52) can be described using (1) (Fischer et al., 2013).

¹² The RMS errors for x_1 and x_2 obtained using the controller in Fischer, Kamalapurkar et al. (2012) for the same delay as Case 3 were 0.7544° and 0.9722°, respectively.

Fig. 3. Tracking errors, control effort and time-varying delays vs. time for Case 4.

are uniquely composed of an integral over the estimated delay range rather than the actual delay range. Simulation results indicate the performance of the controller over a range of time varying delays and estimates. The results even illustrate robustness to random delays up to 120 ms. Improved performance may be obtained by altering the design to allow for a time-varying estimate of the delay. Result such as Herrera, Ibeas, Alcántara, de la Sen, and Serna-Garcés (2013) provides possible insights into estimating/identifying delays in future work.

References

- Artstein, Z. (1982). Linear systems with delayed controls: a reduction. IEEE Transactions on Automatic Control, 27(4), 869-879.
- Balas, M., & Nelson, J. (2011). New robustness theorem with application to adaptive control of nonlinear systems with input/output delays. In IEEE int. conf. control appl., CCA (pp. 1437-1442).
- Bekiaris-Liberis, N., & Krstic, M. (2013). Robustness of nonlinear predictor feedback laws to time- and state-dependent delay perturbations. Automatica, 49(6), 1576-1590.
- Bresch-Pietri, D., Chauvin, J., & Petit, N. (2010). Adaptive backstepping controller for uncertain systems with unknown input time-delay. Application to si engines. In Proc. IEEE conf. decis. control (pp. 3680-3687).
- Bresch-Pietri, D., Chauvin, J., & Petit, N. (2011). Adaptive backstepping for uncertain systems with time-delay on-line update laws. In Proc. Am. control conf. (pp. 4890-4897).
- Bresch-Pietri, D., Chauvin, J., & Petit, N. (2012). Adaptive control scheme for uncertain time-delay systems. Automatica, 48(8), 1536-1552.
- Bresch-Pietri, D., & Krstic, M. (2009). Adaptive trajectory tracking despite unknown input delay and plant parameters. Automatica, 45(9), 2074-2081.
- Bresch-Pietri, D., & Krstic, M. (2014). Delay-adaptive control for nonlinear systems. IEEE Transactions on Automatic Control, 59(5), 1203-1218.
- Chen, W.-H., & Zheng, W. X. (2006). Robust stabilization of input-delayed systems subject to parametric uncertainties. In The sixth world congr. on intell. control and autom., Vol. 1 (pp. 2485-2489).
- Chiu, C.-S., & Chiang, T.-S. (2009). Robust output regulation of t-s fuzzy systems with multiple time-varying state and input delays. IEEE Transactions on Fuzzy Systems, 17(4), 962-975.
- Choi, H.-L., & Lim, J.-T. (2010). Output feedback regulation of a chain of integrators with an unknown time-varying delay in the input. IEEE Transactions on Automatic Control, 55(1), 263-268
- Dinh, H. T., Fischer, N., Kamalapurkar, R., & Dixon, W. E. (2013). Output feedback control for uncertain nonlinear systems with slowly varying input delay. In Proc. Am. control conf., Washington, DC, June (pp. 1748-1753).
- Downey, R. J., Kamalapurkar, R., Fischer, N., & Dixon, W. E. (2015). Compensating for fatigue-induced time-varying delayed muscle response in neuromuscular electircal stimulation control. Recent Results on Nonlinear Delay Control Systems: In honor of Miroslav Krstic (pp. 143-161).
- Fischer, N. (2012). Lyapunov-based control of saturated and time-delayed nonlinear systems. (Ph.D. dissertation), University of Florida.

- Fischer, N., Dani, A., Sharma, N., & Dixon, W. E. (2011). Saturated control of an uncertain Euler-Lagrange system with input delay. In Proc. IEEE conf. decis. control, Orlando, FL (pp. 7587-7592).
- Fischer, N., Dani, A., Sharma, N., & Dixon, W. E. (2013). Saturated control of an uncertain nonlinear system with input delay. Automatica, 49(6), 1741-1747.
- Fischer, N., Kamalapurkar, R., Fitz-Coy, N., & Dixon, W. E. (2012). Lyapunov-based control of an uncertain Euler-Lagrange system with time-varying input delay. In Proc. Am. control conf., Montréal, Canada, June (pp. 3919-3924).
- Fischer, N., Kan, Z., & Dixon, W. E. (2012). Saturated RISE feedback control for Euler-Lagrange systems. In Proc. Am. control conf., Montréal, Canada, June (pp. 244-249).
- Henson, M., & Seborg, D. (1994). Time delay compensation for nonlinear processes. Industrial and Engineering Chemistry Research, 33(6), 1493–1500.
- Herrera, J., Ibeas, A., Alcántara, S., de la Sen, M., & Serna-Garcés, S. (2013). Identification and control of delayed {siso} systems through pattern search methods. Journal of the Franklin Institute, 350(10), 3128-3148
- Herrera, J. A., Ibeas, A., Alcantara, S., Vilanova, R., & Balaguer, P. (2008). Smith predictor based intelligent control of multiple-input-multiple-output systems with unknown delays. In IEEE int. conf. emerg. tech. and fact. autom., Sept (pp. 1059-1062).
- Huang, J., & Lewis, F. (2003). Neural-network predictive control for nonlinear dynamic systems with time-delay. IEEE Transactions on Neural Networks, 14(2), 377_380
- Jankovic, M. (2006). Control of cascade systems with time delay the integral crossterm approach. In Proc. IEEE conf. decis. control, Dec. (pp. 2547-2552).
- Kamalapurkar, R., Fischer, N., Obuz, S., & Dixon, W. E. (2016). Time-varying input and state delay compensation for uncertain nonlinear systems. IEEE Transactions on Automatic Control, 61(3), 834-839.
- Kamalapurkar, R., Rosenfeld, J. A., Klotz, J., Downey, R. J., & Dixon, W. E. (2014). Supporting lemmas for RISE-based control methods. arXiv:1306.3432.
- Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Upper Saddle River, NJ, USA:
- Prentice Hall. Li, Y., Gu, K., Zhou, J., & Xu, S. (2014). Estimating stable delay intervals with a discretized lyapunov-krasovskii functional formulation. Automatica, 50(6), 1691-1697
- Li, Z.-Y., Zhou, B., & Lin, Z. (2014). On robustness of predictor feedback control of linear systems with input delays. Automatica, 50(5), 1497-1506.
- Lozano, R., Castillo, P., Garcia, P., & Dzul, A. (2004). Robust prediction-based control for unstable delay systems: application to the yaw control of a mini-helicopter. Automatica, 40(4), 603-612.
- Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552.
- Mazenc, F., & Bliman, P. (2006). Backstepping design for time-delay nonlinear systems. IEEE Transactions on Automatic Control, 51(1), 149-154.
- Mazenc, F., & Niculescu, S.-I. (2011). Generating positive and stable solutions through delayed state feedback. Automatica, 47, 525–533.
- Merad, M., Downey, R. J., Obuz, S., & Dixon, W. E. (2016). Isometric torque control for neuromuscular electrical stimulation with time-varying input delay. IEEE Transactions on Control Systems and Technology, 24(3), 971–978.
- Nelson, J., & Balas, M. (2012). Model reference adaptive control of spacecraft attitude for a pnp satellite with unknown time varying input/output delays. In IEEE int. syst. conf., March (pp. 1-6).
- Normey-Rico, J. E., Guzman, J. L., Dormido, S., Berenguel, M., & Camacho, E. F. (2009). An unified approach for dtc design using interactive tools. Control Engineering Practice, 17(10), 1234–1244
- Obuz, S., Tatlicioglu, E., Cekic, S. C., & Dawson, D. M. (2012). Predictor-based robust control of uncertain nonlinear systems subject to input delay. In IFAC workshop on time delay syst., Vol. 10, no. 1 (pp. 231-236).
- Polyakov, A., Efimov, D., Perruquetti, W., & Richard, J.-P. (2013). Output stabilization of time-varying input delay systems using interval observation technique. Automatica, 49(11), 3402-3410.
- Richard, J.-P. (2003). Time-delay systems: an overview of some recent advances and open problems. Automatica, 39(10), 1667-1694.
- Roh, Y., & Oh, J. (1999). Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation. Automatica, 35, 1861-1865.
- Sharma, N., Bhasin, S., Wang, Q., & Dixon, W. E. (2011). Predictor-based control for an uncertain euler-Lagrange system with input delay. Automatica, 47(11), 2332-2342
- Smith, O. M. (1959). A controller to overcome deadtime. ISA Journal, 6, 28-33.
- Tatlicioglu, E. (2007). Control of nonlinear mechatronic systems. (Ph.D. dissertation), Clemson University.
- Teel, A. (1998). Connections between razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Transactions on Automatic Control, 43(7), 960-964
- Wang, X., Saberi, A., & Stoorvogel, A. A. (2013). Stabilization of linear system with input saturation and unknown constant delays. Automatica, 49(12), 3632-3640.
- Wang, C.-H., Wu, L.-G., & Gao, H.-J. (2005). Delay-dependent adaptive sliding mode control of uncertain systems with state and input delays. In Proc. int. conf. mach. learn. and cybern., Vol. 1, Aug (pp. 454-460).
- Xian, B., Dawson, D. M., de Queiroz, M. S., & Chen, J. (2004). A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Transactions on Automatic Control, 49(7), 1206–1211.

Yue, D. (2004). Robust stabilization of uncertain systems with unknown input delay. Automatica, 40(2), 331–336.

- Yue, D., & Han, Q.-L. (2005). Delayed feedback control of uncertain systems with time-varying input delay. *Automatica*, 41(2), 233–240.
- Zhang, T., & Li, Y. (2006a). Delay-dependent robust stabilization of uncertain systems with interval time-varying state and input delays. In *IEEE/RSJ int. conf. intell. robots and syst., Oct* (pp. 5001–5006).
- Zhang, T., & Li, Y. (2006b). Robust controller design of uncertain systems with interval time-varying input delay. In Proc. IEEE int. conf. mechatron. and autom., June (pp. 723–728).

Serhat Obuz received Bachelors degree in Electrical and Electronics Engineering from Inonu University, Turkey, in 2007 and his Masters degree in Electrical and Computer Engineering from Clemson University in 2012. His work has been recognized by IEEE Multi-Conference on Systems and Control (M.Sc.) and was awarded Best Student Paper Award in 2015. He was also awarded a scholarship from the Turkish Ministry of National Education for master and doctoral studies in the US. His research is focused on designing robust controller for a class of uncertain nonlinear systems subject to unknown time-varving input

delay. Serhat is currently pursuing a Ph.D. at the University of Florida under the advisement of Dr. Dixon.

Justin R. Klotz received the Ph.D. degree in mechanical engineering from the University of Florida, Gainesville, FL, USA, in 2015, where he was awarded the Science, Mathematics and Research for Transformation (SMART) Scholarship, sponsored by the Department of Defense. His research interests include the development of Lyapunovbased techniques for reinforcement learning-based control, switching control methods, delay-affected control, and trust-based cooperative control.

Rushikesh Kamalapurkar received his M.S. and his Ph.D. degree in 2011 and 2014, respectively, from the Mechanical and Aerospace Engineering Department at the University of Florida. After working for a year as a postdoctoral research fellow with Dr. Warren E. Dixon, he was selected as the 2015–16 MAE postdoctoral teaching fellow. In 2016 he joined the School of Mechanical and Aerospace Engineering at the Oklahoma State University as an Assistant professor. His primary research interest has been intelligent, learning-based control of uncertain nonlinear dynamical systems. His work has been recognized by the

2015 University of Florida Department of Mechanical and Aerospace Engineering Best Dissertation Award, and the 2014 University of Florida Department of Mechanical and Aerospace Engineering Outstanding Graduate Research Award.

Warren Dixon received his Ph.D. in 2000 from the Department of Electrical and Computer Engineering from Clemson University. He was selected as an Eugene P. Wigner Fellow at Oak Ridge National Laboratory (ORNL). In 2004, he joined the University of Florida in the Mechanical and Aerospace Engineering Department. His main research interest has been the development and application of Lyapunov-based control techniques for uncertain nonlinear systems. He has co-authored several books, over a dozen chapters, and approximately 130 journal and 230 conference papers. His work has been

recognized by the 2015 & 2009 American Automatic Control Council (AACC) O. Hugo Schuck (Best Paper) Award, the 2013 Ferd Ellersick Award for Best Overall MILCOM Paper, a 2012-2013 University of Florida College of Engineering Doctoral Dissertation Mentoring Award, the 2011 American Society of Mechanical Engineers (ASME) Dynamics Systems and Control Division Outstanding Young Investigator Award, the 2006 IEEE Robotics and Automation Society (RAS) Early Academic Career Award, an NSF CAREER Award (2006-2011), the 2004 Department of Energy Outstanding Mentor Award, and the 2001 ORNL Early Career Award for Engineering Achievement. He is an ASME Fellow and IEEE Fellow, an IEEE Control Systems Society (CSS) Distinguished Lecturer, and served as the Director of Operations for the Executive Committee of the IEEE CSS Board of Governors (2012-2015). He currently serves as a member of the US Air Force Science Advisory Board. He is currently or formerly an associate editor for ASME Journal of Dynamic Systems, Measurement and Control, Automatica, IEEE Control Systems Magazine, IEEE Transactions on Systems Man and Cybernetics: Part B Cybernetics, and the International Journal of Robust and Nonlinear Control.