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Data-Based Learning for Uncertain 
Robotic Systems

Anup Parikh,1,* Rushikesh Kamalapurkar2 and Warren E. Dixon1

ABSTRACT

An adaptive controller based on the concurrent learning method is developed for 
uncertain Euler-Lagrange systems. Using a Lyapunov-based analysis, it is shown 
that this design achieves the tracking objective, as well as identifi es the uncertain 
parameters, without requiring the well-known and restrictive persistence of 
excitation condition. Simulation results are provided to demonstrate faster 
convergence compared to gradient based adaptive controllers without concurrent 
learning. 
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INTRODUCTION

Robot manipulators have been used for a variety of motion control applications, and 
therefore high precision control of robot manipulators has been of interest in the 
control community for a number of decades. The general equations of motion for 
robot manipulators (i.e., Euler-Lagrange system) can be used to describe the dynamics 
for a variety of electromechanical systems, and therefore have become a benchmark 
system for novel control design techniques, e.g., adaptive control, robust control, output 
feedback, and control with limited actuation (Lewis et al. 2003, Behal et al. 2009). 
Adaptive control refers to a number of techniques for achieving a tracking or regulation 

1 Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville FL 
32611-6250.

2 School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater OK 
74078.

* Corresponding author



Data-Based Learning for Uncertain Robotic Systems 41

control objective while compensating for uncertainties in the model by estimating 
the uncertain parameters online. It is well known that least-squares or gradient based 
adaptation laws rely on persistence of excitation (PE) to ensure parameter convergence 
(Ioannou and Sun 1996, Narendra and Annaswamy 1989, Sastry and Bodson 1989), a 
condition which cannot be guaranteed a priori for nonlinear systems, and is diffi cult 
to check online, in general. 

Motivated by the desire to learn the true parameters, or at least to gain the increased 
robustness (i.e., bounded solutions in the presence of disturbances) and improved 
transient performance (i.e., exponential tracking versus asymptotic tracking of many 
adaptive controllers) that parameter convergence provides, a new adaptive update 
scheme known as concurrent learning (CL) was recently developed in the pioneering 
work of (Chowdhary and Johnson 2011, Chowdhary 2010, Chowdhary et al. 2013). The 
principle idea of CL is to use recorded input and output data of the system dynamics 
to apply batch-like updates to the parameter estimate dynamics. These updates yield 
a negative defi nite, parameter estimation error term in the stability analysis, which 
allows parameter convergence to be established provided a fi nite excitation condition is 
satisfi ed. The fi nite excitation condition is a weaker condition than persistent excitation 
(since excitation is only required for a fi nite amount of time), and can be checked 
online by verifying the positivity of the minimum singular value of a function of the 
regressor matrix. 

In this chapter, a concurrent learning based adaptation law for general Euler-
Lagrange systems is developed. We also demonstrate faster tracking error and parameter 
estimation error convergence compared to a gradient based adaptation law through a 
simulation. 

CONTROL DEVELOPMENT

Consider robot manipulator equations of motion of the form (Lewis et al. 2003, Spong 
and Vidyasagar 1980) 

M (q) q̈ + Vm (q, q̇) q̇ + Fd q̇ + G (q) = τ  (1)

where q(t), q̇(t), q̈(t)  n represent the measurable link position, velocity and 
acceleration vectors, respectively, M : n → n×n represents the inertial matrix, Vm : 
n × n → n×n represents centripetal-Coriolis effects, Fd  n×n represents frictional 
effects, G : n → n represents gravitational effects and τ(t)  n denotes the control 
input. The system in (1) has the following properties (See Lewis et al. 2003). 

Property 1. The system in (1) can be linearly parameterized, i.e., (1) can be rewritten as 

Y1 (q, q̇, q̈ ) θ = M (q) q̈ + Vm (q, q̇) q̇ + Fd q̇ + G (q) = τ

where Y1 : n × n × n → n×m denotes the regression matrix, and θ  m is a vector 
of uncertain parameters. 

Property 2. The inertia matrix is symmetric and positive defi nite, and satisfi es the 
following inequalities 

m1 ||ξ ||2 ≤ ξT M(q) ξ ≤ m2 ||ξ||
2,   ξ  n
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where m1 and m2 are known positive scalar constants, and ||.|| represents the Euclidean 
norm. 

Property 3. The inertia and centripetal-Coriolis matrices satisfy the following skew 
symmetric relation 

ξT ( 1
2  M

.
(q) – Vm (q, q̇)) ξ = 0,   ξ  n

where Ṁ (q) is the time derivative of the inertial matrix. 
To quantify the tracking objective, the link position tracking error, e (t)  n, and 

the fi ltered tracking error, r(t)  n, are defi ned as 

e = qd − q (2)

r = ė + αe  (3)

where qd(t)  n represents the desired trajectory, whose fi rst and second time derivatives 
exist and are continuous (i.e., qd  C 2). To quantify the parameter identifi cation objective, 
the parameter estimation error, θ̃(t)  m, is defi ned as 

θ̃ = θ − θ̂ (4)

where θ̂(t)  m represents the parameter estimate. 
Taking the time derivative of (3), premultiplying by M (q), substituting in from (1), 

and adding and subtracting Vm (q, q̇)  r results in the following open loop error dynamics

M (q) ṙ = Y2 (q, q̇, qd, q̇d, q̈d) θ − Vm (q, q̇) r − τ  (5)

where Y2 : n × n × n × n × n → n×m is defi ned based on the relation

Y2 (q, q̇, qd, q̇d, q̈d) θ  M (q) q̈d + Vm (q, q̇) (q̇d + αe) + Fdq̇ + G (q) + αM (q) ė .

To achieve the tracking objective, the controller is designed as 

τ (t) = Y2θ̂ + e + k1r (6)

where k1  is a positive constant. To achieve the parameter identifi cation objective, 
the parameter estimate update law is designed as 

θ̂
. 
= ΓY T

2r + k2Γ ∑
N

i=1

 YT
1i(τi – Y1iθ̂ ) (7)

where k2   and Γ  m×m are constant positive defi nite and symmetric control gains, 
Y1i   Y1 (q  (ti), q̇ (ti), q̈(ti)), τi   τ (ti), ti represent past time points, i.e., ti  [0, t], and 
N  0. Using (1), (7) can be rewritten as 

θ̂
. 
= ΓY T

2r + k2Γ ∑
N

i=1

 Y T
1i(Y1iθ – Y1iθ̂ )

   = ΓY T
2r + k2Γ [∑N

i=1

 Y T
1iY1i] θ̃. (8)
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The principal idea behind this design is to use recorded input and trajectory data 
to identify the uncertain parameter vector θ. The time points ti and the corresponding 
τi and Y1i used in the summation in (7) are referred to as the history stack. As shown in 
the subsequent stability analysis, the parameter estimate learning rate is related to the 

minimum eigenvalue of ∑
N

i=1 Y
T
1iY1i, motivating the use of the singular value maximization 

algorithm in (Chowdhary 2010) for adding data to the history stack. It is also important 
to note that although this design uses higher state derivatives which are typically not 
measured (i.e., q̈ ), this data is only required for time points in the past, and therefore 
smoothing techniques can be utilized to minimize noise without inducing a phase shift, 
e.g., (Mühlegg et al. 2012). 

Substituting the controller from (6) into the error dynamics in (5) results in the 
following closed-loop tracking error dynamics 

M (q) ṙ = Y2 (q, q̇, qd, q̇d, q̈ 
d) θ̃ − e − Vm (q, q̇) r − k1r.  (9)

Similarly, taking the time derivative of (4) and substituting the parameter estimate 
update law from (8) results in the following closed-loop parameter estimation error 
dynamics 

θ̃
.
 = –ΓY T

2r – k2Γ [∑N
i=1

 Y T
1iY1i] θ̃. (10)

STABILITY ANALYSIS

To analyze the stability of the closed loop system, two periods of time are considered. 
During the initial phase, insuffi cient data has been collected to satisfy a richness 
condition on the history stack. In Theorem 1 it is shown that the designed controller 
and adaptive update law are still suffi cient for the system to remain bounded for all 
time despite the lack of data. After a fi nite period of time, the system transitions to the 
second phase, where the history stack is suffi ciently rich and the controller and adaptive 
update law are shown, in Theorem 2, to bound the system by an exponentially decaying 
envelope, therefore achieving the tracking and identifi cation objectives. To guarantee 
that the transition to the second phase happens in fi nite time, and therefore the overall 
system trajectories can be bounded by an exponentially decaying envelope, we require 
the history stack be suffi ciently rich after a fi nite period of time, i.e., 

$λ, T > 0 : t ≥ T, λmin {∑N
i=1

 Y T
1iY1i} ≥ λ. (11)

The condition in (11) requires that the system be suffi ciently excited, though is 
weaker than the persistence of excitation condition since excitation is unnecessary 

once ∑
N

i=1 Y
T
1iY1i is full rank. 

Theorem 1. For the system defi ned in (1), the controller and adaptive update law defi ned 
in (6) and (7) ensure bounded tracking and parameter estimation errors.

Proof: Let V : 2n+m →  be a candidate Lyapunov function defi ned as 
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44 Adaptive Control for Robotic Manipulators

V (η) = 
1
2 eT e + 

1
2 rT M (q) r + 

1
2 θ̃

T Γ−1θ̃ (12)

where η  [eT rT θ̃T ]T ∈ 2n+m is a composite state vector. Taking the time derivative of 
(12) and substituting (3), (9), and (10) yields 

V
.
 = eT(r – αe) + 

1
2 rT M

.
(q)r + rT (Y2 (q, q̇, qd, q̇d, q̈ 

d) θ̃ − e 

– Vm (q, q̇) r − k1r) – θ̃TY T
2r – k2θ̃

T [∑N
i=1

 Y T
1iY1i]θ̃.

Simplifying and noting that ∑
N

i=1 Y
T
1iY1i  is always positive semi-defi nite, V̇ can be 

upper bounded as

V̇  ≤ −αeT e − k1r
T r

Therefore, η is bounded based on (Khalil 2002). Furthermore, since V̇ ≤ 0, V (η 

(T )) ≤ V (η (0)) and therefore ||η (T )|| ≤ 2

1

b
b

 ||η (0)||, where β1
  

1
2  min {1, m1, λmin 

{Γ−1}} and β2 
Δ= 

1
2  max {1, m2, λmax {Γ

−1}}.                  

Theorem 2. For the system defi ned in (1), the controller and adaptive update law defi ned 
in (6) and (7) ensure globally exponential tracking in the sense that 

||η(t)|| ≤ (β2

β1
) exp (λ1T) ||η (0)|| exp (–λ1t),  t [0, ∞) (13)

where λ1
  

1
2β2

min {α, k1, k2λ}.

Proof: Let V : 2n+m →  be a candidate Lyapunov function defi ned as in (12). Taking 
the time derivative of (12), substituting (3), (9), (10) and simplifying yields 

V̇ = −αeT e − k1r
T r − k2θ̃

T [∑N
i=1

 Y T
1iY1i] θ̃. (14)

From the fi nite excitation condition, λmin { ∑
N

i=1 Y
T
1iY1i} > 0, ∀t ∈ [T, ∞), which implies 

that ∑
N

i=1 Y
T
1iY1i is positive defi nite, and therefore V̇ can be upper bounded as 

V̇  ≤ − αeT e − k1r
T r − k2λ ||θ̃ ||2,  ∀t ∈ [T, ∞).

Invoking (Khalil 2002), η is globally exponentially stable, i.e., ∀t ∈ [T, ∞),

||η(t)|| ≤ 2

1

b
b

 ||η(T)|| exp (−λ1 (t − T )).

The composite state vector can be further upper bounded using the results of 
Theorem 1, yielding (13).                     
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Remark 1. Although the analysis only explicitly considers two periods, i.e., before 
and after the history stack is suffi ciently rich, additional data may be added into the 

history stack after T as long as the data increases the minimum eigenvalue of ∑
N

i=1 Y
T
1iY1i. 

By using the data selection algorithm in (Chowdhary 2010), the minimum eigenvalue 

of ∑
N

i=1 Y
T
1iY1i is always increasing, and therefore the Lyapunov function derivative upper 

bound in (14), is valid for all time after T. Hence (12) is a common Lyapunov function 
(Liberzon 2003). 

SIMULATION

A simulation of this control design applied to a two-link planar robot was performed. 
The dynamics of the two-link robot are given as 

1 3 2 2 3 2 3 2 2 3 2 1 2 11 1 1 1

2 3 2 2 2 3 2 1 2 2 2 2

( ) ( , )

2 s s ( ) 0

s 0 0

t
t

é ù é ù é ùé ù é ù é ù é ù+ + - - +ê ú ê ú ê úê ú ê ú ê ú ê ú+ + =ê ú ê ú ê úê ú ê ú ê ú ê+ ë û ë û ë û ë ûë û ë û ë û  
m d

d

d

M q V p q F

p p c p p c p q p q q fq q q

p p c p q p q q f q ú..
.. .

.
. . .

.
.
.

q, q
.

where c2 denotes cos (q2) and s2 denotes sin (q2). The nominal parameters are given by

p1 = 3.473 fd1 = 5.3
p2 = 0.196  fd2 = 1.1
p3 = 0.242

and the controller gains were selected as 

α = 1.0    Γ = 0.1I5

k1 = 0.1    k2 = 0.1.

The desired trajectory was selected as 

qd1  = (1 + 10 exp (−2t)) sin (t),
qd2  = (1 + 10 exp (−t)) cos (3t),

and a history stack of up to 20 data points was used in the adaptive update. The tracking 
and parameter estimation error trajectories are show in Figs. 1 and 2. From Fig. 2, it 
is clear that the system parameters have been identifi ed. A comparison simulation 
was also performed without concurrent learning (i.e., setting k2 = 0), representing 
a typical control design that asymptotically tracks the desired trajectory based on 
Theorem 1, with error trajectories shown in Figs. 3 and 4. In comparison to a typical 
gradient based adaptive controller that yields the trajectories in Figs. 3 and 4, the 
contribution of the concurrent learning method is evident by the exponential trajectories 
in Figs. 1 and 2. It is also important to note that a number techniques have been developed 
for improving transient performance of adaptive control architectures such as the 
gradient based adaptive update law simulated here (e.g. (Duarte and Narendra 1989, 
Krstić et al. 1993, Yucelen and Haddad 2013, Pappu et al. 2014, Yucelen et al. 2014)), 
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46 Adaptive Control for Robotic Manipulators

Figure 1. Tracking error trajectory using concurrent learning based control design.

Figure 2. Parameter estimation error trajectory using concurrent learning based control design.
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Figure 3. Tracking error trajectory using traditional gradient based control design.

Figure 4. Parameter estimation error trajectory using traditional gradient based control design.

though cannot guarantee parameter identifi cation, and hence exponential trajectories, 
without persistence of excitation. 

CONCLUSION

In this chapter a novel adaptive controller is developed for Euler-Lagrange systems. The 
concurrent learning based design incorporates recorded data into the adaptive update 
law, resulting in exponential convergence of the tracking and parameter estimation 
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errors. The excitation condition required for convergence is weaker than persistent 
excitation, and is easier to check online. The provided simulation results demonstrate 
the increased convergence rate of this design compared to traditional adaptive controllers 
with gradient based update laws. 
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