ESAIM: COCV 26 (2020) 24 ESAIM: Control, Optimisation and Calculus of Variations
https://doi.org/10.1051/cocv/2019074 WWW.esaim-cocv.org

ON REDUCTION OF DIFFERENTIAL INCLUSIONS
AND LYAPUNOV STABILITY*
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Abstract. In this paper, locally Lipschitz, regular functions are utilized to identify and remove infeasi-
ble directions from set-valued maps that define differential inclusions. The resulting reduced set-valued
map is pointwise smaller (in the sense of set containment) than the original set-valued map. The cor-
responding reduced differential inclusion, defined by the reduced set-valued map, is utilized to develop
a generalized notion of a derivative for locally Lipschitz candidate Lyapunov functions in the direc-
tion(s) of a set-valued map. The developed generalized derivative yields less conservative statements of
Lyapunov stability theorems, invariance theorems, invariance-like results, and Matrosov theorems for
differential inclusions. Included illustrative examples demonstrate the utility of the developed theory.
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1. INTRODUCTION

Differential inclusions can be used to model and analyze a large variety of practical systems. For example,
systems that utilize discontinuous control architectures such as sliding mode control, multiple model and sparse
neural network adaptive control, finite state machines, gain scheduling control, etc., are analyzed using the theory
of differential inclusions. Differential inclusions are also used to analyze robustness to bounded perturbations and
modeling errors, to model physical phenomena such as coulomb friction and impact, and to model differential
games [6, 13].

Asymptotic properties of trajectories of differential inclusions are typically analyzed using Lyapunov-like
comparison functions. Several generalized notions of the directional derivative are utilized to characterize the
change in the value of a candidate Lyapunov function along the trajectories of a differential inclusion. Early
results on stability of differential inclusions that utilize nonsmooth candidate Lyapunov functions are based
on Dini directional derivatives [20, 23] and contingent derivatives ([1], Chap. 6). For locally Lipschitz, regular
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candidate Lyapunov functions, stability results based on Clarke’s notion of generalized directional derivatives
have been developed in results such as [2, 9, 28]. In [28], Shevitz and Paden utilize the Clarke gradient to develop
a set-valued generalized derivative along with several Lyapunov-based stability theorems. In [2], Bacciotti and
Ceragioli introduce another set-valued generalized derivative that results in sets that are pointwise smaller than
those generated by the set-valued derivative in [28]; hence, the Lyapunov theorems in [2] are generally less
conservative than their counterparts in [28]. The Lyapunov theorems developed by Bacciotti and Ceragioli have
also been shown to be less conservative than those based on Dini and contingent derivatives, provided locally
Lipschitz, regular candidate Lyapunov functions are employed (cf. [4], Prop. 7).

In this paper, and in the preliminary work in [10], locally Lipschitz, regular functions are utilized to identify
and remove infeasible directions from a set-valued map that defines a differential inclusion to yield a pointwise
smaller (in the sense of set containment) set-valued map that defines an equivalent reduced differential inclusion.
Using the reduced differential inclusion, a novel generalization of the set-valued derivatives in [28] and [2] is
introduced for locally Lipschitz candidate Lyapunov functions. The developed technique yields less conservative
statements of Lyapunov stability results (¢f. [2, 17, 19, 20, 23, 28]), invariance results (cf. [3, 9, 14, 206]),
invariance-like results (¢f. [8], Thm. 2.5, [7]), and Matrosov results (cf. [15, 16, 21, 27, 29]) for differential
inclusions.

The paper is organized as follows. Section 2 introduces the notation. Sections 3 and 4 review differential
inclusions and Clarke-gradient-based set-valued derivatives from [28] and [2], respectively. In Section 5, locally
Lipschitz, regular functions are used to identify the infeasible directions in a set-valued map that defines a
differential inclusion. Section 6 develops a novel generalization of the notion of a derivative in the direction(s)
of a set-valued map. Section 7 states stability theorems, invariance-like results, and Matrosov theorems for
differential inclusions using the developed novel definition of a generalized derivative.' Illustrative examples
where the developed stability theory is less conservative than results such as [2, 28] are presented. Section 8
summarizes the article and includes concluding remarks.

2. NOTATION

The n-dimensional Euclidean space is denoted by R™, u denotes the Lebesgue measure on R™, D denotes
an open and connected subset of R™, and Q := D x [0,00). Elements of R™ are interpreted as column vectors
and ()T denotes the vector transpose operator. The set of positive integers excluding 0 is denoted by N. For
a € R, R>, denotes the interval [a,c0) and R-, denotes the interval (a,00). A set-valued map from A to the
subsets of B is denoted by F': A = B. For a set A, the convex hull, the closed convex hull, the closure, the
interior, and the boundary are denoted by co A, €6A, A, A, and bd (A), respectively. If a € R™ and b € R"

a} e R™*" For ACR™, BCR", theset {[a; b]|a€ A be B}

then [a ; b] denotes the concatenated vector [b

is denoted by {g} or [A; B]. For A,B C R", ATB denotes the set {aTb |la€ Abe B}, A + B denotes the

set {a+beR"|ae A be B}, and A(>) < B implies ||al| (>) < ||b]|, Va € A, and Vb € B. For € R™ and
r,0 >0, the sets {y € R" | |z —y|| <7}, {y e R" | ||z —y[| <7}, and {y € R" | r < |ly|| < I} are denoted by
B(x,7), B(x,7) and D (r,1), respectively. If a € R then |a| denotes the absolute value and if A is a set then
|A| denotes its cardinality. For A C R™ and z € R”, dist (x, A) == inf,c 4 ||z — y||. Essentially bounded, n—times
continuously differentiable, and locally Lipschitz functions with domain A and codomain B are denoted by
Lo (A, B), C™ (A, B), and Lip (A, B), respectively. The zero element of R™ is denoted by 0,,, with the subscript
n suppressed whenever clear from the context. The notation V is reserved for the total derivative of V with
respect to time.

1An extension of the framework developed in this paper that generalizes LaSalle’s invariance principle for time-invariant
differential inclusions is available in [11].
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3. DIFFERENTIAL INCLUSIONS
Let F': Q = R™ be a set-valued map. Consider the differential inclusion

i€ F(zt). (3.1)

A locally absolutely continuous function x : Z, — D is called a solution to (3.1), with interval of existence
Iy = [to, T), for some 0 <ty < T < o0, if & (t) € F (x (t),t), for almost all ¢t € Z,. ([6], p. 50). A solution is called
complete if T, = R>;, and maximal if it does not have a proper right extension® which is also a solution to
(3.1). If a solution is maximal and if the set {x (¢) | t € Z,;} is compact, then the solution is called precompact.
Similar to ([25], Prop. 1), Zorn’s lemma can be used to show that every solution to (3.1) admits a right extension
that is also a maximal solution to (3.1). Let . (£) denote the set of all maximal solutions to (3.1) such that
(x (to) ,to) € € C Q. The discussion in this article concerns set-valued maps that define differential inclusions
that admit local solutions.

Definition 3.1. Let F: Q = R" be a set-valued map and & C Q. The differential inclusion (3.1) is said to
admit local solutions over & if for all (y,tg) € &, there exists T € Ry, and a locally absolutely continuous
function « : [tg,T") — D such that x (tg) =y and & (¢t) € F (z (t),t) for almost all ¢ € [to,T).

Sufficient conditions for the existence of local solutions to differential inclusions can be found in ([6], Sect. 7,
Thm. 1) and ([6], Sect. 7, Thm. 5). To assert the existence of complete solutions, the following notions of
invariance are utilized in this article.

Definition 3.2. A set A C D is called weakly forward invariant with respect to (3.1) if Vzg € A, Jz () €
& ({zo} X R>¢) such that z(t) € A, Vt € Z,. It is called strongly forward invariant with respect to (3.1) if
every z (-) € .7 (A x Rx) satisfies z (t) € A, Vt € Z,.

Forward invariance of a set A C D in the sense of Definition 3.2 does not imply completeness of any z (-) €
& (A x Rxq) since x (-) can exit D in finite time, resulting in a finite interval of existence Z,. However, the
following Lemma, which is a slight generalization of ([25], Prop. 2), implies that under general conditions on F,
if A is also compact then .% (A x R>() contains complete solutions, and under strong forward invariance of A,
all solutions in . (A x R>¢) are complete.

Lemma 3.3. Let F : Q = R" be a set-valued map such that (3.1) admits local solutions over . Let x (-)
be a mazimal solution to (3.1) such that {x(t) |t € Z,} C D. If the set Uic s F (z (t),t) is bounded for every
subinterval J C I, of finite length, then x (-) is complete.

Proof. For the sake of contradiction, assume that the interval of existence, Z,, is finite. That is, Z,, = [tg,T)
for some ty < T < oo. Boundedness of the set Uicp, ) F (2 (t),t) implies that & (-) € Lo ([to, T) ,R™). Since
x () is locally absolutely continuous on [to,T"), it can be concluded that Vti,ts € [to,T), ||z (t2) —x (t1)], =

‘ :2 @ (1) dTH . Furthermore, # (-) € Lo ([to,T),R™) implies that ‘fttz j?(T)dTH < :2 M dr, where M is a
1 2 1 2 1

positive constant. Thus, ||z (t2) — 2 (t1)|ly < M |ta — 1], and hence, x (-) is uniformly continuous on [to,T').
Therefore, x () admits a continuous extension z’ : [tg, T| — R™ ([24], Chap. 4, Exer. 13). Since 2’ (-) is contin-
uous, D is open, and {x (t) | t € [to,T)} C D, it is clear that 2’ (T') € D. Since (3.1) admits local solutions over
Q, 2’ (+) can be extended into a solution to (3.1) on the interval [tg, T") for some 7" > T, which contradicts the
maximality of x (-). Hence, z (-) is complete. O

Remark 3.4. The hypothesis of Lemma 3.3, that the set Uic 7 F (2 (t),t) needs to be bounded for every
subinterval J C 7, of finite length, is met if, e.g., (x,t) — F (z,t) is locally bounded over © and xz (-) is
precompact (cf. [22], Prop. 5.15).

2A solution y : [to, Ty) — R™ to (3.1) is a (proper) right extension of a solution z : [tg, Tx) — R™ to (3.1) if Ty (>) > T, and
y(t) = (t),Vt € [to, Tx).
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The following section presents a summary of the relevant Lyapunov methods that utilize Clarke’s notion of
generalized directional derivatives and gradients ([5], p. 39) for the analysis of differential inclusions.

4. SET-VALUED DERIVATIVES

Clarke gradients are utilized in [28] by Shevitz and Paden to introduce the following set-valued derivative of
a locally Lipschitz, positive definite (i.e., locally positive definite in the sense of ([30], Sect. 5.2, Def. 3) at (z,t),
for all (z,t) in its domain) candidate Lyapunov function that is regular (i.e., regular at (x,t), in the sense of
([5], Def. 2.3.4), for all (z,t) in its domain).

Definition 4.1. [28] Given a regular function V' € Lip (2, R), and a set-valued map F : Q = R", the set-valued
derivative of V' in the direction(s) F is defined as

y . T F (J:, t)
V(z,t) = P ,V (z,t) € Q,
pe@Qm) [ {1} }

where OV denotes the Clarke gradient of V', defined as (see also, [5], Thm. 2.5.1)
oV (l‘, t) = E{hm \A% (SL‘Z‘, ti) | (.’1%‘7 ti) — (3?, t) s (LL'Z‘, t;) € Q \ (QV @] S)} ,V (3?, t) € Q, (41)

where y is the set of Lebesgue measure zero where the gradient VV of V' is not defined and S C (2 is any
other set of Lebesgue measure zero.

Lyapunov stability theorems developed using the set-valued derivative V exploit the property that every
upper bound of the set V (z (t) , t) is also an upper bound of V (z (t) , t), for almost all ¢t where V (z (t) ,t) exists.
The aforementioned fact is a consequence of the following proposition.

Proposition 4.2. [28] Let x : I, — D be a solution to (3.1). If V € Lip (Q,R) is a regular function, then
V (z(t),t) exists for almost all t € T, and V (x (t),t) € V (x (t),t), for almost all t € T,.

Proof. See (28], Thm. 2.2). O

In [2], the notion of a set-valued derivative is further generalized via the following definition.

Definition 4.3. [2] For a regular function V' € Lip (2,R) and a set-valued map F : Q = R", the set-valued
derivative of V' in the direction(s) F is defined as

V(z,t):={a€R|3geF(x,t)|p"[qg; 1] =a,VpedV (z,t)},V(z,t) € Q.

The set-valued derivative in Definition 4.3 results in less conservative sufficient conditions for Lyapunov
stability than Definition 4.1 since it is contained within the set-valued derivative in Definition 4.1 and, as
evidenced by ([2], Exam. 1), the containment can be strict. The Lyapunov stability theorems developed in [2]

exploit the property that Proposition 4.2 also holds for V (see [2], Lem. 1).
Inspired by [2, 28], the following section presents a novel notion of reduced differential inclusions that results
in statements of Lyapunov theorems that are less conservative than those available in the literature.

5. REDUCED DIFFERENTIAL INCLUSIONS
By definition, ?(x,t) C V(x,t), V(z,t) € Q, which, assuming compact values, implies maxv(z,t) <
max V (x,t), V(z,t) € Q. In some cases, max V can be strictly smaller than max V and Lyapunov theorems

based on V can be less conservative than those based on V ([2], Exam. 1). A tighter bound on the evolution of
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V along an orbit of (3.1) can be obtained by examining the following equivalent representation of max ?:3

maxv(x,t) = min max p'[g; 1], (5.1)

pEOV (2,t) q€GE (z,t)

where, for any regular function U € Lip (€2, R), and any set-valued map H : Q = R™, the reduction GH : @ = R"
is defined as

Gf (z,t) ={qe H(z,t)|JaeR|p"[qg; 1] =a,Vp € U (z,t)},¥(z,t) € Q. (5.2)

The representation in (5.1), along with results such as ([2], Thm. 2), suggest that the only directions in F
that affect the stability properties of solutions to (3.1) are those included in G{;, that is, the directions that map
the Clarke gradient of V' to a singleton. The key observation in this paper is that the statement above remains
true even when V is replaced by any arbitrary locally Lipschitz, reqular function U. The following proposition
formalizes the aforementioned observation. For clarity, the proposition is stated here for autonomous differential
inclusions. The analysis of nonautonomous differential inclusions is deferred to Theorem 7.2.

Proposition 5.1. Let F : R®™ = R"™ be a locally bounded map with compact values such that & € F (x) admits
local solutions over R™. Let V' € Lip (R"™,R) be a positive definite and regular function and let U € Lip (R, R)
be any other reqular function. If

min  max plg<0, VaeR"
pEIV () g€G (2)

then @ € F (x) is stable at x = 0.
Proof. The proposition follows from the more general result stated in Theorem 7.2. O

Proposition 5.1 indicates that locally Lipschitz, regular functions help discover the admissible directions in
F. That is, from the point of view of Lyapunov stability, only the directions in Gg are relevant, where U can
be an arbitrary locally Lipschitz, regular function, possibly different from the candidate Lyapunov function V.

In fact, the differential inclusion & € G¥; (,t) is, in a sense, equivalent to the differential inclusion & € F (x,t).
To make the equivalence precise, the following definition of a reduced set-valued map is introduced.

Definition 5.2. Let I': Q = R" be a set-valued map and U := {U;},., C Lip (2, R) be a countable collection
of regular functions, indexed over A" C N. The set-valued map Fy : Q = R”, defined as

Fy(x,t) = ﬂ Gy, (z,t) = n {¢geF(z,t)|3aeR |p[qg; 1] =a,Vp € U;(z,t)},V (z,t) € Q,
ieN iEN

is called the U—reduced set-valued map for F' and the differential inclusion & € Fy (x,t) is called the U—reduced
differential inclusion for (3.1). If U is empty, then Fy; := F.

In other words, the &/—reduced set-valued map collects all directions ¢ in F' that, through the inner product
pT [g; 1], map the Clarke gradient of all functions in I to a singleton. The following theorem demonstrates the
key utility of the reduction in Definition 5.2, i.e., the reduced differential inclusion is found to be sufficient to
characterize the solutions to (3.1).

Theorem 5.3. If x: I, — D is a solution to (3.1), then & (t) € Fy (x (t),t) for almost all t € Z,.

Proof. The theorem can be proved using techniques similar to ([2], Lem. 1). Consider the set of times 7 C Z,
where i (t) is defined, U; (x (t) ,t) is defined Vi € N, and & (t) € F (z (t),t). Since z (-) is a solution to (3.1), N
is countable, and U; € Lip (Q, R), it can be concluded that t — U; (z (t) ,t) is absolutely continuous, and hence,
1 (T, \ T) = 0. The objective is to show that i (t) belongs to € Fy, (x (t),t) on T, not just F (z (t),t).

3The minimization in (5.1) serves to maintain consistency of notation, but is in fact, redundant.
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Since each function U; is locally Lipschitz, for ¢ € 7 the time derivative of U; can be expressed as

Us (z () ,1) = lim (Ui(:v(t)—f—h:'c(t),th—i—h)—Ui (x(8),1)

Since each U; is regular, for ¢ > 1,
Us(x(t),t) = Ul ([e(t) 5 1], (6) 5 1) = U7 (@) 5 o, [80) 5 1)) =

Ui(x(t),t) = U_([z(t) 5 8], (1) ; 1])

max
peOU; (x(t),t) P

U () s L@ 1) = min pTE) 5 1],

where U’ (x,v) = limy o w and U (z,v) = limpqyo w denote the right and left directional
derivatives, and U° (z,v) == limsup,_,, 10 w denotes the Clarke-generalized derivative of U. Thus,
pTE(t) 5 1) =U;(x(t),t),VYp € dU; (x (t) ,t), which implies & (t) € G{,, (x (t),t), for each 4. Therefore,  (t) €

Fy (z(t),t), Vt € T. Since pu(Z, \ T) = 0, & (t) € Fy (z (t) ,t), for almost all t € Z,. O

Although not directly related to the current discussion, it is worth mentioning that Theorem 5.3 also expands
the class of differential inclusions that admit solutions, as detailed in the following corollary.

Corollary 5.4. A differential inclusion & € G (x,t), with G : Q = R™, admits local solutions over & C Q) if there
exists: a set-valued map, F : Q@ = R™, such that (3.1) admits local solutions over £; and a countable collection,
U C Lip (2,R), of regular functions, such that G is the U-reduced set-valued map for F.

The following example illustrates the utility of Theorem 5.3.
Example 5.5. Consider the differential inclusion in (3.1), where z € R, and F': R x R>o =2 R is defined as

_[rme-n) 21
et = {[—275] ol =1,

where sgn (x) denotes the sign of x. The function U : R x R>g — R, defined as

<1
S

2zl =1 |z| > 1,

satisfies U € Lip (R X R>¢,R). In addition, since U is convex, it is also regular ([5], Prop. 2.3.6). The Clarke
gradient of U is given by

[1,2] 5 {0}] r=1,
[=2,-1 5 {0} z=-1,

[
[_
U (w,t) = ¢ {sen ()} 5 {0}] O <la| <1,
[
[

{
{2sgn(z)} 5 {0}] |z|>1,
[=1,1] ;5 {0}] z=0.
The set Gg is then given by
{0} |z =1,
GII; (.’L’,t) =30 x =0,

F (z,t) otherwise.
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Theorem 5.3 can then be invoked to conclude that every solution z : Z, — R to (3.1) satisfies & (t) €
Funy (z () ,t) = G (z (1) ,t), for almost all t € Z,.

6. GENERALIZED TIME DERIVATIVES

Given a countable collection & C Lip (©2,R) of regular functions and a set-valued map F : Q = R” with
compact values, Proposition 5.1 and Theorem 5.3 suggest the following notion of a generalized derivative of V'
in the direction(s) F.

Definition 6.1. The U-generalized derivative of V' € Lip (2, R) in the direction(s) F', denoted by Vz,{ Q—R
is defined, V (x,t) € , as

Vyu(z,t) == min max 1], 6.1
u (2,1) peav(”)quM(m)p lq; 1] (6.1)

if V' is regular, and

? r,t) := max max pr s 1, 6.2
u(@:1) pGaV(I»t)qeﬁu(x,t)p la ] (62)

if V is not regular. The U-generalized derivative is understood to be —co when Fy (z,t) is empty.

Definition 6.1 facilitates a unified treatment of Lyapunov stability theory using regular as well as nonregular
candidate Lyapunov functions. A candidate Lyapunov function will be called a Lyapunov function if the U-
generalized derivative is negative.

Definition 6.2. If V € Lip (2, R) is positive definite and if 71,, (x,t) <0,V (z,t) € Q, then V is called a
U-generalized Lyapunov function for (3.1).

If V is regular, then it can be assumed, without loss of generality, that V € ¢/. In this case, Fj; C G@, and
hence, Vy (x,t) < max V (x,t),V (z,t) € Q. Thus, by judicious selection of the functions in U, Vi (z,t) can
be constructed to be less conservative than the set-valued derivatives in [2, 28]. Naturally, if & = {V'} then
Vu=V.

In general, the U-generalized derivative does not satisfy the chain rule as stated in Proposition 4.2. However, it
satisfies the following weak chain rule which turns out to be sufficient for Lyapunov-based analysis of differential
inclusions.

Theorem 6.3. If V € Lip (Q,R) and .77 (Q) # 0, then Vz () € .Z (Q),

V(o)1) € @V .0y [ G0, (6.3

Jor almost allt € I,.. In addition, if there exists a function W : Q@ — R such that % (z,t) < W (z,1), ¥V (z,t) € Q,
then V (x (t),t) < W (x (t),t), for almost all t € I,.

Proof. Let z(-) € . (Q). Consider a set of times 7 C Z, where & (t), V (z (t),t), and U; (z (t),t) are defined
Vi > 0 and & (t) € Fy (x (t),t). Using Theorem 5.3 and the facts that z (-) is absolutely continuous and V is
locally Lipschitz, it can be concluded that u (Z, \ 7) = 0.

If V is regular, then arguments similar to the proof of Theorem 5.3 can be used to conclude that
V(x(t),t) =pT@(t) ; 1],¥p € dV (z(t),t),Vt € T. Thus, (6.1) and Theorem 5.3 imply that V (z (t),t) €

@OV (z(t),1)" [Fu (z(t),1) ; {1}} and V (z (1) ,t) < W (z (£) ,£), for almost all ¢ € Z,.
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If V' is not regular, then ([4], Prop. 4) (see also, [18], Thm. 2) can be used to conclude that, for almost
every t € Z,,, 3po € OV (x (t) ,t) such that V (z (t),t) = pd [# (t) ; 1]. Thus, (6.2) and Theorem 5.3 imply that

V(x(t),t) € AV (x(t),t)" [ﬁu (z(t),1) : {1}} and V (z (t),£) < W (x () ,¢) for almost all € Z,. 0

The following sections develop relaxed Lyapunov-like stability theorems for differential inclusions based on
the properties of the U-generalized derivative hitherto established.

7. STABILITY

In this section, U-generalized derivatives are used to establish the following forms of uniform and asymptotic
stability.

Definition 7.1. The differential inclusion in (3.1) is said to be (strongly)

(a) uniformly stable at x = 0, if Ve > 0 35 > 0 such that every z (-) € .% (B(0,6) x Rg) is complete and
satisfies z (t) € B (0,¢€), Vt € Rxy,.

(b) globally uniformly stable at = = 0, if it is uniformly stable at z = 0 and Ve > 0 3A > 0 such that every
z(-) €7 (B(0,€) x Rxg) is complete and satisfies z (t) € B(0,A), Vt € Rxy,.

(c) uniformly asymptotically stable at x = 0 if it is uniformly stable at = 0 and 3¢ > 0 such that Ve > 0
3T > 0 such that every z () € . (B(0,¢) x R>¢) is complete and satisfies z () € B (0,€), Vt € Rsyy 1.

(d) globally uniformly asymptotically stable at x = 0 if it is uniformly stable at z = 0 and Ve,e >0 3T > 0
such that every z (-) € . (B(0,¢) x R>¢) is complete and satisfies z () € B (0,€), V¢ € R>yy41-

While the results in this section are stated in terms of stability of the state at the origin and uniformity with
respect to time, they extend in a straightforward manner to partial stability and uniformity with respect to a
part of the state (see, e.g., [8], Def. 4.1), and stability of arbitrary compact sets.

7.1. Lyapunov stability

The following fundamental Lyapunov-based stability result demonstrates the utility of U-generalized
derivatives.

Theorem 7.2. Let 0 € D and let F' : Q = R™ be a locally bounded set-valued map with compact values such that
(3.1) admits local solutions over §). If there exists a positive definite function V € Lip (Q,R), a pair of positive
definite functions W ,W € C° (D,R), and a countable collection U C Lip (Q,R) of regular functions, such that

W(x) <V (z,t) SW(z), V(x,t)€Q,
% (xz,t) <0, forall z €D, and almost all ¢t € Rx, (7.1)

then (3.1) is uniformly stable at x = 0. In addition, if there exists a positive definite function W € C° (D, R)
such that

Vi (2,8) < —W (2), (7.2)

for all x € D and almost all t € Rxq, then (3.1) is uniformly asymptotically stable at x = 0. Furthermore, if
D =R" and if the sublevel sets {x € R™ | W (z) < ¢} are compact Ve € R>q, then (3.1) is globally uniformly
asymptotically stable at x = 0.

Proof. Select r > 0 such that B (0,r) C D. Let # (-) € % (2. X R>) where 2. := {z € B(0,7)|W (z) < ¢} for
some ¢ € [0, min|‘w||2zrw(:1:)). Using Theorem 6.3 and ([7], Lem. 2),

V(2 (to) . to) >V (z(t),t), Vte. (7.3)
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U1 (ZE, t)

FIGURE 1. A snapshot of the function U : R? x R>o — R.

Using (7.3) and arguments similar to ([12], Thm. 4.8), it can be shown that every x (-) € . (£2. x R>¢) satisfies
x (t) € B(0,7), for all t € Z,.. Therefore, all solutions = (-) € % (2. x Rx() are precompact, and as a consequence
of Lemma 3.3, complete. Since W is continuous and positive definite, 36 > 0 such that B (0,5) C §2.. Since § is
independent of ¢, uniform stability of (3.1) at # = 0 is established. The rest of the proof is identical to ([30],
Sect. 5.3.2), and is therefore omitted. O

In the following example, tests based on V and V are inconclusive, but Theorem 7.2 can be invoked to
conclude global uniform asymptotic stability of the origin.

Example 7.3. Let H : R = R be defined as

_ J{0} lyl # 1,
H@): {[—5,5] =1,

and let F : R? x R>g = R? be defined as

{—21+22(1+g(t)}+ H (22) 2

F(x,t) = t)eR* xR

(z,1) { {21 — 2o} + H (21) V(1) € X R>0,

where g € C!' (R>0,R), 0 < g(t) < 1,Vt € Rsg and ¢ (t) < g(t),Vt € R>g. Consider the differential inclusion
in (3.1) and the candidate Lyapunov function V : R? x R>q — R defined as V (z,t) == 23 + (1 + g (¢)) 23.
the candidate Lyapunov function satisfies ||a:||§ < Vix,t) <2 ||x||§ ,V (z,t) € R? x R>q. In this case, since

V € C! (R? x R, R), similar to ([12], Exam. 4.20), the set-valued derivatives V in [2] and V in [28] satisfy the

bound V (z,t),V (x,1) < {227 — 223} + 221 H (22) +2x2h (t) H (1), where h (t) := 1+ g (t) and the inequality
24 2¢(t) — g (t) > 2 is utilized. Therefore, neither V (z,t) nor V (z,t) can be shown to be negative semidefinite
everywhere.

The function U : R? x R>¢ — R, defined as (see Fig. 1)

Ui (z,t) = max ((x; — 1),0) — min ((z1 + 1),0) + max ((zo — 1),0) — min ((x3 + 1),0),V (z,t) € R? x R(ZO, :
7.4



10 R. KAMALAPURKAR ET AL.

satisfies Uy € Lip (R? x R>¢, R). In addition, since Uy is convex, it is also regular ([5], Prop. 2.3.6). With

sen 1 (y) = 0 -l<y<l,
sntl = sgn (y) otherwise,

the Clarke gradient of U; is given by

[{senl(z1)} ; {sgnl(z2)} ; {0}] 1] # LA fa2] # 1,
Uy (o, 1) = 4 (010 sen(z)} s fsenlwa)} 5 {0} [ = LA Jao] £ 1,
[{sgn1(z1)} ; ©0{0,sgn (z2)} ; {0}] 21| # LA |2 =1,
[€6{0,sgn (z1)} ; ©0{0,sgn (x2)} 5 {0} [21] = LA |2af =1,

The {U; }-reduced set-valued map corresponding to F' is given by

Z5{U1} (z,t) = {g(x,t) |z1| # 1A |xo| #1,

otherwise.

The {U; }-generalized derivative of V' in the direction(s) F' is then given by

v (x,t) ma ( oV (x t))T [¢; 1],¥(z,t) e R* xR
1 ’ = - X ) ) ) ) >0,
o 0Py (@0 \O (2,1)
_ (221 22k (t)  §(t)a] [—x1+a2h(t) 3 —21 — a2 5 1] |za| # 1A |o| #1,
—00 otherwise,

< =2|z]|3,V (z,t) € R? X Rxq.

Theorem 7.2 can then be invoked to conclude that (3.1) is globally uniformly asymptotically stable at 2 = 0.

7.2. Invariance-like results

In applications such as adaptive control, Lyapunov methods commonly result in semidefinite Lyapunov
functions (i.e., candidate Lyapunov functions with time derivatives bounded by a negative semidefinite function
of the state). The following theorem establishes the fact that if the function W in (7.2) is positive semidefinite
then t — W (z (t)) asymptotically decays to zero. If the differential inclusion is time-invariant, stronger results
similar to LaSalle’s invariance principle can also be established using U/-generalized derivatives (see [11]).

Theorem 7.4. Let 0 € D, select r > 0 such that B(0,7) C D, and let F : Q = R" be a set-valued map with
compact values that is locally bounded, uniformly in t, over Q,* such that (3.1) admits local solutions over (.
If there exists a positive definite function V € Lip (,R), a positive semidefinite function W € C° (D,R), a pair
of positive definite functions W W € C° (D, R), and a countable collection U C Lip (2, R) of regular functions
such that (7.1) and (7.2) hold, then every solution z (-) € . (£2c x Rx), with 2. = {x € B(0,7) | W (z) < ¢}
and ¢ € [O,minumugzrw(x)), is complete, bounded, and satisfies lims_, oo W (x (t)) = 0.

Proof. Similar to the proof of ([7], Cor. 1), it is established that the bounds on V- in (6.1) and (6.2) imply that V'
is nonincreasing along all the solutions to (3.1). The nonincreasing property of V' is used to establish boundedness
of z (+), which is used to prove the existence and uniform continuity of complete solutions. Barbalat’s lemma
([12], Lem. 8.2) is then used to conclude the proof.

4A set-valued map F : R™ x R = R" is locally bounded, uniformly in ¢, over D x J for some D C R™ and J C R, if for every
compact K C D, there exists M > 0 such that V (z,t,y) such that (z,t) € K x J, and y € F (z,t), ||lylly < M.
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Let z (1) € (2. X R>¢). Using Theorem 6.3 and ([7], Lem. 2), V (x (to),t0) > V (z (t).t), ¥Vt € I,.
Arguments similar to ([12], Thm. 4.8) can then be used to show that every x(-) € . (£2. x R>() satisfies
z (t) € B(0,r),Vt € Z,. Therefore, all solutions  (-) € . (£2. x R>p) are precompact, and as a consequence of
Lemma 3.3, complete.

To establish uniform continuity of the solutions, it is observed that since F' is locally bounded, uniformly
in ¢, over Q, and z (t) € B(0,7) on Rxy,, the map ¢ — F (x (t),t) is uniformly bounded on R>;,. Hence, i €

Loo (R>4,, R™). Since z (+) is locally absolutely continuous, Vt1,ta € Rxy,, ||z (t2) — 2z (t1)]], = Hfttf & (1) d’TH2.
Since & € Lo (R>y,, R™), fttf x(r) dTH2 < fttf M dr, where M is a positive constant. Thus, ||z (t2) — 2 (t1)]|, <

M |tz — t1], and hence, z (-) is uniformly continuous on R>,. B
Since z — W (z) is continuous and B (0, r) is compact, z — W (x) is uniformly continuous on B (0, 7). Hence,

t — W (z(t)) is uniformly continuous on R, . Furthermore, ¢ — ft’; W (x (7)) dr is monotonically increasing
and from (7.2), [ W (z(r))dr <V (z(to) ., to) = V (z (1) ,t) < V (z (o) ,to). Hence, lim;o0 [} W (z (7)) dr
exists and is finite. By Barbélat’s Lemma ([12], Lem. 8.2), limy;_,oo W (x (¢)) = 0. O

In the following example V and V do not have a negative semidefinite upper bound, but Theorem 7.4 can
be invoked to conclude partial stability.

Example 7.5. Let H : R = R be defined as in Example 7.3 and let F: R? x R>o = R? be defined as

_ [z (T+g ()} + H (22)
F(z.t) = {2—371 — x2} —I-H(am)2 ’

where g € C!' (R>0,R), 0 < g(t) < 1,Vt € R>g and ¢ (t) < g(t),Vt € R>. Consider the differential inclusion
in (3.1) and the candidate Lyapunov function V : R? x R>g — R defined as V (z,t) == 2% + (1 + g (¢)) 23.
The candidate Lyapunov function satisfies ||$H§ <V(zx,t) <2 ||gc||§ ,V (z,t) € R? x R>g. In this case, since
V € C* (R? x Rxo,R), the set-valued derivatives V in [2] and V in [28] are bounded by

V (2,1),V (2,t) < {222} + 25k (t) H (1) + 220 H (z2) ,V (x, 1) € R? x R,

where h (t) := 14 ¢ (t) and the inequality 2 + 2¢ (t) — ¢ (¢) > 2 is utilized. Thus, neither V nor V are negative
semidefinite everywhere.
Let U; be defined as in (7.4). The {U; }-reduced set-valued map corresponding to F' is given by

F (z,1) |z1] # 1A |z2| # 1,
10 ((-1h+ [ 3)] 0= 1w =0
{0} ; ({1} +[-3.3))] 1 =—1AN22=0,
0 otherwise.

F{Ul} (Z‘,t) =

The {U; }-generalized derivative of V' in the direction(s) F' is then given by

- oV T
v (z,t) = max < (a:,t)) q; 1],V (z,t) € R? x Rsy,
ton g€Fy 3 (a5t) 0 (z,1) [ ] N

(221 23k (t)  §(t)a3] [w2h(t) 3 —21 — a2 5 1] |za| # 1A |zo| #1,

_ Jmax[2 0 0] [{O} : [%,—%} ; 1} 1 =1Az29=0,
© | max[-2 0 0] [{0}; [L.3] ;1] 71 =—1Az3 =0,
—00 otherwise,

< —223,V (z,t) € R? x Rxy.
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Theorem 7.4 can then be invoked to conclude that t — x1 (t) € Loo (R>4,,R) and limy_,o0 22 (t) = 0.

Theorem 7.4 and its counterparts are widely used in applications such as adaptive control to establish stability
(but not asymptotic stability) of the state and convergence of a part of the state (e.g., tracking errors, but not
parameter estimation errors) to the origin. Under certain excitation conditions, asymptotic stability (and as a
result, convergence of the entire state to the origin) can be established using Matrosov theorems [16].

7.3. Matrosov theorems

In this section, a less conservative generalization of Matrosov results for uniform asymptotic stability of
nonautonomous systems is developed. In particular, the nonsmooth version ([29], Thm. 1) of the nested Matrosov
theorem ([15], Thm. 1) is generalized. The following definitions of Matrosov functions are inspired by [29].

Definition 7.6. Let ,d,A > 0 be constants. A finite set of functions {YJ}JM:1 C C%(B(01m,7) x D(6,A),R)
is said to have the Matrosov property relative to (v,d,A) if Vj € {0,..., M},

((z,2) € B(0p,7) x D (6,A)) A(Y; (2,2) =0,Vi € {0,...,5}) = Yj41(z,2) <0,

where Yy (z,2) = 0 and Y11 (2,2) = 1, V(2,2) € B(0,n,7) x D (4, A).

Definition 7.7. Let §, A > 0 be constants such that D (3, A) C D. Let F': = R™ be a set-valued map with
compact values. The functions {W; }]Ail C Lip (©,R) are said to be U —reduced Matrosov functions for (F,d, A)

if 3 : Q@ = R™, v >0, and {V;}]1, € C° (B (0, 7) x D (5, A),R) such that:

(a) the set of functions {Yj};\il has the Matrosov property relative to (7,4, A),

(b) vje{L,...., M} and ¥ (z,1) € D (3, A) x R, max {|W; (z, )], [¢ (z,1)|} <7, and

(c) Vj € {1,..., M} there exists a collection of regular functions ; C Lip (D (,A) X R>o,R) such that
V(x,t) € D(4,A) x Rxo, Wuj (x,t) <Y, (¢ (z,t),x).

The following technical Lemmas aid the proof of the Matrosov theorem.

Lemma 7.8. Given § > 0, e > 0 such that
((z,2) € B(0m,7) x D(6,A)) A (Y (z,2) =0,Vj € {1,...,M —1}) = Yy (z,2) < —e.
Proof. See ([15], Claim 1). O
Lemma 7.9. Letl e {2,...,M}, €>0, and Y; € C° (R™ x R™,R). If
((z,2) € B(0m,7) x D(8,A)) A(Yj (z,2) = 0,Vj € {1,...,1 - 1}) = Yi(z,2) < —¢,

then AK;_1 > 0 such that

((z,2) € B(0p,7) x D(6,A)) A (Y (z,2) =0,Vj € {1,...,1-2}) = K, 1Y (z,2) + Y (z,2) < —

N | ™

Proof. See ([15], Claim 2). O
The Matrosov theorem can now be stated as follows.

Theorem 7.10. Let 0 € D and let F' : Q@ = R"™ be a set-valued map with compact values such that (3.1) admits
solutions over Q0 and is uniformly stable at x = 0. If, for each pair of numbers 6, A € R, such that 0 < § < A
and D (6, A) C D, there exist U—reduced Matrosov functions for (F,d,A), then (3.1) is uniformly asymptotically
stable at x = 0. If D =R"™ and if (3.1) is uniformly globally stable at x = 0 then (3.1) is uniformly globally
asymptotically stable at x = 0.
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Proof. Select A > 0 such that B (0,A) C D and let r > 0 be such that

z(-) €7 (B(0,r) x Rxg) = z(t) € B(0,A),Vt € Rxy,. (7.5)
Let € € (0,r) and select § > 0 such that

z(-) €. (B(0,0) x Rsg) = z(t) € B(0,€),Vt € Rxy,. (7.6)

By repeated application of Lemmas 7.8 and 7.9 it can be shown that ¥§ > 0, 3¢ > 0 and Ki,...,Kp-1 >0
such that V (z,2) € B(0,7) x D (4, A),

M-1
Z(z,x) = Z K;Y; (z,2) + Ym (z,2) < —2]\571. (7.7)
j=1

Let W € Lip (€2, R) be defined as W (z,t) := ZJM:? K;W; (x,t) + War (z,t) . From Def. 7.7.b,

M—-1
V) <y |1+ D K| =n (7.8)

j=1

Fix (w0,tp) € B(0,7) x R>g and z (-) € .% ({(z0,t0)}). The selection of r in (7.5) implies that the solution x (-)

satisfies z () € B(0,A), Vt € Rxy,. From Definition 7.7.c, Vi, (2,t) < Z (¢ (x,t) ,2), V (2,t) € D (6,A) x R>o,
and hence, from Theorem 6.3,

V(@ (t),t) < Z(6(x(t).1),2(1)), (79)
for almost all t € 271 (D (6, A)). Using Definition 7.7.b and (7.7),

26 (0),0),2(0) < 5o, (7.10)

for almost all t € x=1 (D (6, A)).
Let T > # The claim is that ||z (¢)|| <€, ¥t € R>y,47. If not, then the selection of § in (7.6) implies that
x(t) € D(4,A), Vt € [to, to + T]. Hence, from (7.9) and (7.10),

¢

T oM-1’

V(z(t),t) < (7.11)
for almost all t € [to,to + 7. Integrating (7.11) and using the bound in (7.8), 2};—& < 27, which contradicts
T> 2MT77 Hence, Ve € (0,7), 3T > 0 such that z (-) € . (B(0,7) X Rxo) = |z ()|| < €, Vt € Ryyoqr, i,
(3.1) is uniformly asymptotically stable at = 0.

If D =R" and if (3.1) is uniformly globally stable at 2 = 0 then r can be selected arbitrarily large, and
hence, the result is global. O

The following example demonstrates an application of the Matrosov theorem.
Example 7.11. Let H : R = R be defined as in Example 7.3 and let F : R? x R>g = R? be defined as in
Example 7.5. Let Uy be defined as in (7.4). Let Wi : R? x R>¢ — R be defined as Wi (z,t) == z% + (1 + g (¢)) 23.

It follows that Wiy, (z,t) < =223, V (,t) € R* X R>o, and uniform global stability of (3.1) at # = 0 can be
concluded from Theorem 7.2.
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Ug(l‘, t)

FIGURE 2. A snapshot of the function Us : R? x R>o — R.

Let ¢ (z,t) =0, V(z,t) € R? x R>g and let Y; (2,2) == —223, V(2,7) € R x R?. Let W» (z,t) :== z122. The
function Us : R? x R>¢ — R, defined as (see Fig. 2)

|1 ] |z1] > |z2| A2 € Sq,
U, (x,t) = |:L’2| |£C1| < |£L’2| Nz € Sq,
14+U*(z,t) = ¢ Sq,

where
U* (2,t) = max ((221 — 2),0) — min (22 + 2),0) +max ((2z9 — 2),0) —min ((2z2 +2),0),Y (2,1) € R* x R

and ‘Sq’ denotes the open unit square centered at the origin, satisfies Uy € Lip (R2 X R>q, ]R). In addition, since
Us is convex, it is also regular ([5], Prop. 2.3.6). The Clarke gradient of U; is given by

[{2sgnl(z1)} ; {2sgnl(z2)} ; {0}] |[w1] # LA Jof # 1,
s (z,1) = 4 [0{0,2sgn (z1)} ; {2sgnl(z2)} ; {0}] |2l =1A |2 #1,
[{2sgnl(z1)} ; ©0{0,2sgn (22)} 5 {0} [22] # LA || = 1,

if o ¢ S,
1] [-1.1] £ {0} @] = 0 A [za] =0,
o s < oy s oy @2l > Jaal,
P02 =1 (10} + sgn () : {0} o] < [z
65 {0,580 (1)) 5 {0,580 (e2)} : {0}] [o1] = [zl > 0.
if x € Sq, and

[co{sgn1(21),2sgn1(z1)} ; CO{sgnl(w2),2sgnl(z2)} ; {0} [aa| # |22f,

Oz (,1) = {[E {sgn (z1),2sgn (x1),0} ; €0 {sgn(x2),2sgn (z2),0} ; {0} |z1| = |z2],
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if € bd (Sq). The {Us}-reduced set-valued map corresponding to F' is given by

Fot) o SaAlul £ 1Alml £1,
Flo.t) o€5qAln| # o,

{0} x € SqA|z1] =0A 22| =0,
1] otherwise.

F{Uz} (xvt) =

The {Usz}-generalized derivative of W3 is then given by

& ¢ SAN |o1] # LA |za| #1

xo x1 O]|z2h(t) ; —x1 —29; 1
- 2o Olfeh (@) 5 == s 4Ly Sy A # ol
Wotuny (z,t) =
0 x € SqA |z1] =0A 22| =0,
—00 otherwise.

That is, WQ{UZ} (z,1) < =23 — 20wy + 223,V (2,t) € RZ X Rxq. If Yo (2,2) == —2F — 0wy + 223,V (2,2) € RxR?
then the functions {Y7, Y2} have the Matrosov property. Furthermore, since Wy, Wo € C° (R2 X RZOJR), V0 <
d < A, 3y > 0 such that [W (z,¢)| <~, ¥V (z,t) € D(5,A) x R>q. Hence, {W;,Ws} are U—reduced Matrosov
functions for (F,d,A), VO < § < A. Hence, by Theorem 7.10, (3.1) is uniformly globally asymptotically stable
at x = 0.

8. CONCLUSION

This paper demonstrates that locally Lipschitz, regular functions can be used to identify infeasible directions
in set-valued maps that define differential inclusions. The infeasible directions can then be removed to yield
a point-wise smaller (in the sense of set containment) set-valued map that defines an equivalent differential
inclusion. The reduction process results in a novel generalization of the set-valued derivative for locally Lipschitz
candidate Lyapunov functions. Statements of Lyapunov stability theorems, invariance theorems, invariance-like
results, and Matrosov theorems for differential inclusions that are less conservative than those available in the
literature are developed using reduced set-valued maps.

The fact that arbitrary locally Lipschitz, regular functions can be used to restrict differential inclusions
to smaller sets of admissible directions indicates that there may be a smallest set of admissible directions
corresponding to each differential inclusion. Further research is needed to establish the existence of such a set
and to find a representation of it that facilitates computation.
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