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Abstract—This letter presents a novel estimator and
predictor framework for target tracking applications that
estimates the pose of a mobile target that intermittently
leaves the field-of-view (FOV) of a mobile agent’s camera.
Specifically, the framework uses an attention deep motion
model network (DMMN) to estimate the dynamics of the
target when the target is in the agent’s FOV and uses the
DMMN to predict the position, orientation, and velocity of
the target when the target is outside the agent’s FOV. A
Lyapunov-based stability analysis is performed to deter-
mine the maximum dwell-time condition on target measure-
ment availability, and experimental results are provided to
demonstrate the performance of the proposed framework.

Index Terms—Adaptive control, deep neural networks,
lyapunov-based analysis.

I. INTRODUCTION

MOBILE target tracking tasks typically require mobile
agents to use sensors such as cameras that have a lim-

ited field-of-view (FOV) which results in intermittent feedback
of the target when it leaves the camera’s FOV (i.e., the tar-
get is not visible to the agent). Intermittent measurements can
occur for multiple reasons; for example, when the target is
occluded by obstacles or other environmental factors. These
obstacles and environmental factors may additionally require a
mobile agent to purposely navigate away from a target, caus-
ing the target to leave the FOV. These conditions resulting in
intermittent measurements which present numerous challenges
to estimating the pose and velocity of the target by a mobile
agent (cf., [1]–[6]).
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Intermittency in measurements has traditionally been
addressed by using probabilistic estimators. Various types of
Kalman filters are widely used approaches that show local
convergence of the mean (cf., [7]–[9]). Another approach
is to use particle filters which show convergence as the
number of samples approaches infinity (cf., [10]–[13]). In
contrast, deterministic estimators typically assume bounded-
ness of uncertainties and disturbances in the analysis, yielding
uniformly ultimately bounded results (cf., [5] and [6]).

The recent work in [6] presented a novel method to han-
dle intermittent target feedback when using multiple agents
to track a single target. In [6], a centralized approach of
modeling the motion of the target (i.e., the target’s dynam-
ics) is developed using a single layer neural network called
the motion model network (MMN) with a fixed basis. The
use of an MMN was motivated by the results in [5]; how-
ever, while [5] showed convergence over a finite number of
cycles of losing and acquiring a target in an agent’s FOV using
an average dwell-time condition, there was no condition pro-
vided to ensure the estimation error didn’t exceed the size of
the agent’s FOV. In practice, reacquiring a target in an agent’s
FOV can be challenging if the estimation error grows beyond
the size of an agent’s FOV. In contrast, [6] considered the size
of the agent’s FOV and developed minimum and maximum
dwell-time conditions which dictate the minimum amount of
time the target must be in the FOV and the maximum amount
of time the target can leave the FOV to ensure the estimation
error doesn’t exceed the size of the FOV.

The approach in [6] develops dwell-time conditions based
on feedback region sizes and was motivated by the results
in [14] where dwell-times were determined for path fol-
lowing in feedback-denied environments. In [14], dwell-time
conditions were developed to determine how long a mobile
agent could remain in a feedback-denied region without the
position estimation error growing beyond the size of the feed-
back region. However, target tracking introduces additional
challenges in developing intermittent feedback dwell-time con-
ditions since a target is typically not directly controlled by
the mobile agent (i.e., a target is typically not cooperative)
and the motion model of the target is unknown. Previous
results have considered methods of indirect control of targets
through unknown interaction models between targets and
agents (cf., [15] and [16]), and developed approaches to learn
and influence a target to follow a desired trajectory; however,
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a target is generally not guaranteed to be influenced by the
relative pose between the target and the agent or that the
agent can always follow the target. Following a target while
relying on local feedback (i.e., feedback from local sensors
such as a camera) to estimate the pose of the target intro-
duces significant challenges over results that assume feedback
is always globally available. Furthermore, the majority of these
methods use a single layer MMN and only estimate the ideal
output layer with a fixed basis which has been shown to reduce
performance (cf., [17]).

In this letter, a novel deep MMN (DMMN) is proposed to
estimate the motion model of a mobile target that intermit-
tently leaves an agent’s FOV and provide dwell-time condi-
tions for the availability of target measurements. Specifically,
motivated by [17], the contribution of this letter is the devel-
opment of a DMMN framework using a deep neural network
(DNN) for the basis (i.e., the underlying dynamics features) in
contrast to a fixed basis (cf., [6]). Furthermore, recent advances
in attention DNNs (cf., [18]–[20]) are incorporated which have
shown improvements in image-based pose estimation tasks
(cf., [19]).

The DMMN framework is an estimator where the out-
put layer weights are updated online while the target is in
the agent’s FOV. Simultaneously, motivated by [17], a replay
buffer of target poses is collected online while the target is in
the agent’s FOV. When a sufficient number of target poses are
collected, batch updates to the DMMN basis are performed to
improve the estimate of the DMMN basis. After a series of
batch updates, the prediction of the target’s velocity switches
to the new basis. Then, when the target leaves the agent’s FOV,
the DMMN is used as a predictor to estimate the target’s pose
and velocity while the target remains outside the agent’s FOV.

A Lyapunov-based dwell-time analysis is performed to deter-
mine the maximum dwell-time condition that ensures the
estimation error of the target’s pose does not grow beyond
the size of the camera’s FOV while the target is outside the
FOV. While it is not possible to ensure these conditions are
satisfied (e.g., since a target is generally not cooperative),
this dwell-time condition can be used to determine when the
prediction error of the pose has grown too large and gives
constraints to subsequently search for the target, improving
the chances of finding the target. Experimental results are pro-
vided to demonstrate the performance of the proposed DMMN
framework using a quadrotor with a downward facing camera
tracking a mobile ground vehicle that intermittently leaves the
agent’s FOV.

II. SYSTEM DYNAMICS

As shown in the schematic in Figure 1, three coordinate
frames are used to describe the tracking objective inside the
tracking environment, denoted as U ⊂ R

3, where U is con-
vex and compact. Since tracking agents are often restricted
by environmental factors (e.g., obstacles and battery life),
the tracking agent is constrained within a specified operat-
ing region denoted as Oc ⊂ U , where O′

c � {p ∈ U | p �∈ Oc}
describes the remaining space outside of Oc in U . Let the
Euclidean space of the target be represented as M ⊂ U (i.e.,
all the 3D feature points on the target). Feedback of the tar-
get’s state is only available when the target is in the tracking
agent camera’s FOV, M ⊂ Vc, where Vc ⊂ Oc denotes the

Fig. 1. Kinematic relationship between cooperative and target agents.

Euclidean space contained in the FOV as shown in Figure 1.
The tracking agent’s camera frame is represented as Fc and
has the origin at the principal point of the camera, denoted
as c, with the basis {xc, yc, zc}, where the zc axis is along the
viewing direction and co-linear with the optical axis, the yc
axis is along the image plane vertical, and the xc axis is along
the image plane horizontal. The frame Fg denotes the iner-
tial frame with an arbitrarily selected origin g with the basis
{xg, yg, zg}. The mobile target frame is represented as Fm and
has an origin located at an arbitrarily selected feature point on
the target, denoted as m, with the basis {xm, ym, zm}.

A. Target Dynamics

The objective of this letter is to provide a motion model
to estimate the pose (i.e., position and orientation) and veloc-
ity (i.e., linear and angular velocity) of the target using the
tracking agent’s camera, despite the target intermittently leav-
ing the FOV. The pose of the tracking agent (i.e., the pose
of Fc with respect to Fg), ηc(t) ∈ R

7, is defined as ηc(t) �[
pg

c(t)� qc(t)�
]�

, where pg
c(t) ∈ R

3 represents the position
of Fc with respect to Fg expressed in Fg, and qc(t) ∈ R

4

is the quaternion parameterization of Rc(t) ∈ R
3×3, the rota-

tion matrix representing the orientation of Fc with respect to
Fg. Rotation matrices can be represented using the quaternion
parameterization, q(t) � [ q0(t) q�

v (t) ]� ∈ S4 which has the
standard basis {1, i, j, k}, where S4 � {x ∈ R

4|x�x = 1},
and q0(t) ∈ R and qv(t) ∈ R

3 represent the scalar and vector
components of q(t), respectively.

Assumption 1: Measurements of the tracking agent’s pose,
ηc(t), are always available using onboard sensors (e.g., an
inertial navigation system).

The pose of the target (i.e., the pose of Fm with respect to
Fg), ηm(t) ∈ R

7, is defined as ηm(t) �
[
pg

m(t)� qm(t)�
]�

,

where pg
m(t) ∈ R

3 represents the position of Fm with respect
to Fg expressed in Fg, qm(t) ∈ R

4 is the quaternion param-
eterization of Rm(t) ∈ R

3×3, the rotation matrix representing
the orientation of Fm with respect to Fg. The pose of the target
cannot be directly measured and instead the pose of the cam-
era is used with the measurable relative pose of the target with
respect to the camera (i.e., Fm with respect to Fc expressed in
Fc), ηmc(t) ∈ R

7, is defined as ηmc(t) �
[
pc

mc(t)
� qmc(t)�

]�
,

where pc
mc(t) ∈ R

3 represents the position of Fm with
respect to Fc expressed in Fc, qmc(t) ∈ R

4 is the quater-
nion parameterization of Rmc(t) ∈ R

3×3, the rotation matrix
representing the orientation of Fm with respect to Fc. Using
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Fig. 2. Generalized schematic of the target tracking objective.

ηc(t) and ηmc(t), the target position is described as illustrated
in Figure 1 as

pg
m(t) = pg

c(t) + Rc(t)p
c
mc(t), (1)

and the orientation of Fm with respect to Fg is

qm(t) = qc(t) · qmc(t), (2)

where qc · qmc =
[

qc0 − q�
cv

qcv qc0I3 + q×
cv

]
qmc, and qc0(t) ∈ R and

qcv(t) ∈ R
3 are the scalar and vector components of qc(t),

respectively.
The target’s velocity in the target frame (i.e., velocity

of Fm expressed in Fm), ϕm(t) ∈ R
6, is represented as

ϕm(t) �
[
vm(t)� ωm(t)�

]�
, where vm(t), ωm(t) ∈ R

3 are the
linear and angular velocity of Fm expressed in Fm, respec-
tively. Using ϕm(t), the time derivative of ηm(t) yields the
velocity of Fm with respect to Fg expressed in Fg as

η̇m(t) = fm(t)ϕm(t), (3)

where fm(t) �
[

Rm(t) 03×3

04×3
1
2 B(qm(t))

]
∈ R

7×6, and B(qm(t)) �
[ −q�

mv
qm0I3 + q×

mv

]
∈ R

4×3, with the pseudo-inverse property

B(qm(t))�B(qm(t)) = I3×3 and (·)× : R3 → R
3×3 represents

the skew operator, and qm0(t) ∈ R and qmv(t) ∈ R
3 are the

scalar and vector components of qm(t), respectively (cf., [5]).
Assumption 2: Measurements of ηm(t) and η̇m(t) are only

available when the target is in the FOV (i.e., M ⊂ Vc).

III. ESTIMATION DESIGN

To achieve the objective, a method for estimating the pose
of the target agent is developed that uses the target’s pose
as feedback while the target is in the FOV and predicts the
pose and velocity of the target when the target intermittently
leaves the FOV. Figure 2 illustrates the target tracking objec-
tive where the target enters the tracking agent camera’s FOV
(left image) and leaves the FOV (right image). To accom-
plish the tracking objective, an estimator and predictor are
developed to estimate the target’s pose ηm(t). Specifically, a
DMMN is used to estimate the target’s velocity, ϕm(t), when
feedback of ηm(t) is available (i.e., M ⊂ Vc). The DMMN is
also used to propagate the pose estimates through time when
feedback is unavailable (i.e., M �⊂ Vc) which occurs when
the target is occluded or the target leaves the operating region,
M �⊂ Oc. Let ρc(t) ∈ {a, u} be a switching signal indicating
if feedback of the target is available (i.e., ρc(t) = a when
M ⊂ Vc) or unavailable (i.e., ρc(t) = u when M �⊂ Vc).

Assumption 3: The pose of the target ηm(t) ∈ � is bounded,
where � ⊂ R

7 is a convex and compact set since pg
m(t) ∈ U

and qm(t) ∈ S4 are convex and compact.

Assumption 4: The target’s velocity, ϕm(t), is described by
a locally Lipschitz function of the target’s pose, which is
not explicitly time dependent. Specifically, vm(t) = ϕ1(ηm(t))
and ωm(t) = ϕ2(ηm(t)), where vm(t) and ωm(t) are bounded,
supηm(t)∈�{‖vm(t)‖} ≤ vm ∈ R>0 and supηm(t)∈�{‖ωm(t)‖} ≤
ωm ∈ R>0, implying ϕ1,ϕ2 ∈ R

3 are bounded (cf., [5]).
Assumption 4 guarantees there exists a function that can

be approximated, using universal function approximators (e.g.,
neural networks), that describes vm(t) and ωm(t) to an arbitrary
level of accuracy via the Stone–Weierstrass Theorem [21].
Furthermore, the Stone–Weierstrass Theorem only ensures
the approximation is accurate over a closed interval. Thus,
dependence on ηm(t) is allowed since it is bounded via
Assumption 3. Specifically, from Assumption 4, ϕm(t) =[
vm(t)� ωm(t)�

]� = [
ϕ1(ηm(t))� ϕ2(ηm(t))�

]�
can be

approximated using a DNN, that is, the approximation of the
DMMN is

ϕm(t) = W�σ(�(ηm(t))) + ε(ηm(t)), (4)

where W ∈ R
L×6 denotes the constant unknown bounded

ideal output layer weight matrix, σ ∈ R
L denotes the known

bounded activation functions corresponding to the output layer,
L ∈ Z>0 denotes the user-defined number of neurons used in
the output layer, ε ∈ R

6 denotes the unknown bounded func-
tion reconstruction error, and � ∈ R

L denotes a function that
contains the inner layer ideal weights and activation functions
of the DNN. Specifically,

�(ηm(t)) � (φr ◦ φr−1 ◦ · · · φ2 ◦ φ1)(ηm(t)), (5)

where φl = σl(W�
l φl−1 + bl), l ∈ {1, . . . , r} with r ∈ Z≥1

denoting the user-defined number of inner layers of the DNN,
φ0 = ηm(t) is the input to DNN, σl ∈ R

Ll is the activation
function for the lth inner layer, Wl ∈ R

Ll−1×Ll denotes the ideal
constant weight matrix for the lth inner layer, and bl ∈ R

Ll

denotes the ideal constant bias column matrix.
Assumption 5: There exist known constants

ϕm, σ , σ ∈ R>0, where sup
ηm(t)∈�

{‖ϕm(ηm(t))‖} ≤ ϕm,

inf
ηm(t)∈�

{σ(�(ηm(t)))} ≥ σ , and sup
ηm(t)∈�

{σ(�(ηm(t)))} ≤ σ ,

such that constants W, ε ∈ R>0 can be determined, with
‖W‖ ≤ W and sup

ηm(t)∈�

‖ε(ηm(t))‖ ≤ ε, (cf., [5], [6], and [17]).

Substituting (4) into (3) yields

η̇m(t) = fm(t)W�σ(�(ηm(t))) + fm(t)ε(ηm(t)). (6)

Let η̃m(t) ∈ R
7 quantify the pose error as

η̃m(t) � ηm(t) − η̂m(t), (7)

where η̂m(t) ∈ R
7 is the estimate of ηm(t). Let W̃(t) ∈ R

L×6

quantify the error in the estimate of the ideal output weights
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of the DMMN as

W̃(t) � W − Ŵ(t), (8)

where Ŵ(t) ∈ R
L×6 is the estimate of W.

Since the ideal weights of inner layers of the DNN contained
in �(ηm(t)) are unknown, let �̂k(ηm(t)) ∈ R

L, k ∈ {1, 2, . . .},
represent the kth iterative update to approximate �(ηm(t)).
Furthermore, let Tk ∈ R≥0 represent the time when �̂k(ηm(t))
is used to approximate (4), since �̂k(ηm(t)) is updated at a
slower timescale using a subsequently defined loss function,
(cf., [17]).

A. Target Pose Estimator

While ρc(t) = a (i.e., the target is in the FOV and measure-
ments of the target pose, ηm(t), are available), an estimator
is designed to update the pose estimate; however, a predic-
tor must be used while ρc(t) = u (i.e., the target is outside
the FOV and measurements of the target pose, ηm(t), are
unavailable). Let taj ∈ R≥0 represent the jth instance in time
when ρc(t) = a (i.e., the jth time the target enters the FOV)
and let tuj ∈ R>0 represent the jth instance in time when
ρc(t) = u (i.e., the jth time the target leaves the FOV), where
j ∈ {1, 2, . . .}. Since the objective is to track and predict
the target’s trajectory, dwell-times are defined to quantify the
amount of time the target is inside or outside of the FOV.
Specifically, let �taj � tuj − taj and �tuj � taj+1 − tuj represent
the jth amount of time ρc(t) = a and ρc(t) = u, respectively.

Assumption 6: The target is in the FOV upon initialization
(i.e., ρc(0) = a, ta1 = 0, and ta1 < tu1), (cf., [5] and [6]).

Based on the subsequent analysis, the pose estimate update
law is designed as

˙̂ηm(t) =
⎧
⎨

⎩

fm(t)ϕ̂m(ηm(t)) + kηη̃m(t)
+kεSGN(̃ηm(t)), ρc(t) = a,

proj
{̂
fm(t)ϕ̂m(̂ηm(t))

}
, ρc(t) = u,

(9)

where SGN(̃ηm(t)) =

⎧
⎪⎨

⎪⎩

1, η̃m(t) > 0,

0, η̃m(t) = 0,

−1, η̃m(t) < 0,

is applied element-

wise since η̃m is a vector, kη, kε∈ R
7×7
>0 are constant control

gains, proj(·) is a continuous projection operator defined
in [22] with state and velocity bounds which are known under
Assumptions 3 and 4, ϕ̂m(̂ηm(t)) � Ŵ�(t)σ (�̂k (̂ηm(t))), and

f̂m(t) �
[

R̂m(t) 03×3

04×3
1
2 B(̂qm(t))

]
.

Remark 1: When the target leaves the FOV, the pose esti-
mate is reset to the last measured pose before predicting
the pose using (9) while ρc(t) = u. This reset reduces the
prediction error while ρc(t) = u and is only used at the first
instances of ρc(t) = u (i.e., at t = tuj , η̂m(tuj ) 
→ ηm(tuj )
implying ‖η̃m(tuj )‖ = 0).

B. Weight Estimator

The weight estimator update laws are designed based on
whether sufficient data has been collected on the trajectory of
the target and whether the target is in the FOV.

1) Output Weight Updates: Motivated by the subsequent
analysis, the output weight update law ˙̂W(t) is designed

vec
( ˙̂W(t)

)
= proj

(
μ(t), vec

(
Ŵ(t)

))
, (10)

where vec(·) is the vectorization operator which stacks (·)
column-wise, and μ ∈ R

6L is

μ(t) =
{

μa
k(t), ρc(t) = a,

06L×1, ρc(t) = u,
(11)

μa
k(t) � vec(�σ(�̂k(ηm(t)))̃η�

m (t)fm(t)), and � ∈ R
L×L
>0 is a

positive definite, constant gain matrix.
2) Inner Weight Updates: The inner weights are updated

periodically while ρc(t) = a by saving tuples of data to a
buffer B(t) = {ηm(th), η̇m(th)}b(t)

h=1 and when b(t) > b, an
optimization is performed to minimize the mean squared error
of the velocity estimates. Specifically, the objective of the
k + 1th batch optimization is to keep Ŵ(t) fixed and update
the kth approximation of �(ηm(t)) using the loss,

Lk+1(t) = 1

b (t)

b(t)∑

h=1

∥∥∥η̇m(th) − Ŵ�(t)σ
(
�̂k(ηm(th))

)∥∥∥
2
,

where Adam [23] is used to perform the optimization.

IV. ANALYSIS

The subsequent Lyapunov-based analysis provides condi-
tions to ensure the tracking and weight estimation errors
remain bounded despite the target intermittently leaving the
FOV. The following provides a maximum dwell-time condi-
tion (i.e., maximum amount of time the target can leave the
FOV) that ensures the target estimation error doesn’t grow
beyond a user-defined threshold.

Consider a stacked error ξ(t) �
[
η̃m(t)� vec(W̃(t))�

]� ∈
R

7+6L and a Lyapunov-based function candidate defined as

V(ξ(t)) � 1

2
η̃�

m (t)̃ηm(t) + 1

2
tr
(

W̃�(t)�−1W̃(t)
)
, (12)

which is bounded as βξ‖ξ(t)‖2 ≤ V(ξ(t)) ≤ βξ‖ξ(t)‖2, βξ �
1
2 min{1, λmin{�−1}}, and βξ � 1

2 max{1, λmax{�−1}}, where
λmin and λmax denote the minimum and maximum eigenvalue
of {·}, respectively.

Theorem 1: The tracking and weight error in ξ(t) is uni-
formly ultimately bounded while ρc(t) = a, using the update
laws in (9) and (10), in the sense that

‖ξ(t)‖2 ≤ βξ

βξ

‖ξ
(

tuj
)
‖2 exp

(
−βa

(
t − tuj

))
+ δa

βaβξ

, (13)

where βa � 2λmin{kη}
max{1,λmax{�−1}} and δa � 4λmin{kη}ϕm

2.
Proof: Substituting (6), (9)-(11), and the time derivative

of (7) and (8) into the time derivative of (12), for ρc(t) = a,
using the bounds on (12), Assumptions 3-5, and simplifying
yields

V̇(ξ(t)) ≤ −βaV(ξ(t)) + δa, ρc(t) = a. (14)

Applying the Comparison Lemma [24, Lemma 3.4] to (14),
the bounds on (12), and simplifying yields (13).

Theorem 2: The tracking and weight error in ξ(t) is
bounded while ρc(t) = u, using the update laws in (9)
and (10), in the sense that

‖ξ
(

taj+1

)
‖2 ≤ βξ

βξ

‖ξ
(

tuj
)
‖2 + �tuζu

βξ

, (15)

Authorized licensed use limited to: University of Florida. Downloaded on July 20,2022 at 14:09:07 UTC from IEEE Xplore.  Restrictions apply. 



BELL et al.: TARGET TRACKING SUBJECT TO INTERMITTENT MEASUREMENTS 383

Fig. 3. Overhead view of the quadcopter tracking the ground robot using
a camera with the FOV embedded in the bottom right of the image. The
target is occluded as it passes under the table in the center. The figure
overlays the actual trajectory of the ground robot.

Fig. 4. The estimated and actual x and y positions versus time obtained
from the DMMN and the EKF, respectively. Green regions denote occlu-
sions under the table, gray regions denote occlusions from quadcopter
drift or image dropout, and the black vertical lines denote the time
instances when training occurs.

provided the following maximum dwell-time condition, �tu ∈
R>0, is satisfied

�tu ≤ ζu

4ϕ2
m

, (16)

where ζu ∈ R>0 is a user-defined threshold based on the size
of the tracking agent’s FOV.

Proof: Substituting (6), (9)-(11), and the time derivative
of (7) and (8) into the time derivative of (12), for ρc(t) = u,
using the bounds on (12), Assumptions 3-5, and simplifying
yields

V̇(ξ(t)) ≤ ζu(‖η̃m(t)‖), ρc(t) = u, (17)

where ζu(‖η̃m(t)‖) � 2ϕm‖η̃m(t)‖. For the user-defined
threshold on the error to hold, ζu(‖η̃m(t)‖) ≤ ζu ⇐⇒
‖η̃m(t)‖ ≤ ζ−1

u (ζu) resulting in the maximum dwell-time
condition in (16). Using the maximum dwell-time constraint
in (16), applying the Comparison Lemma [24, Lemma 3.4]
to (17), the bounds on (12), and simplifying yields (15).

Remark 2: The design of ζu can be considered an engi-
neering parameter that is dependent on Oc, Vc, ηmc(t), and
assumptions made about the target (e.g., ϕm).

V. EXPERIMENTS

The performance of the developed estimation and prediction
framework is validated with a quadcopter equipped with a
downward facing camera tracking a mobile ground target as

Fig. 5. Pose error in the DMMN and EKF versus time. Green regions
denote occlusions under the table, gray regions denote occlusions from
quadcopter drift or image dropout, and the black vertical lines denote
the time instances when training occurs.

show in Figure 3. Figure 3 shows the mobile target tracks
a 4 × 1 meter figure-8 trajectory using a motion capture
system and is equipped with an ArUco marker [25] which is a
placeholder for target recognition. The quadcopter is manually
piloted using the REEF Estimator [26] for velocity and altitude
control and when the ArUco marker is detected in the FOV,
the estimator gets the target’s pose ηm(t) using motion capture;
however, as shown in Figure 3, a table occludes the target for
approximately 5 seconds every time the target passes under
the 1 × 1 meter portion in the center of the figure-8, shaded
green in Figures 4 and 5. Additionally, the grayed regions
in Figures 4 and 5 show the target’s ArUco marker is fre-
quently not detected because image distortion from camera
vibrations in-flight or the target leaves the FOV, where the
target remained outside the FOV (i.e., ρ(t) = u) for 65% of
the experiment. It was assumed the altitude, roll, and pitch of
the target were 0, so only the x-y position and yaw of the
target were estimated.

The system ran in real-time at 30Hz and the DNN was
updated asynchronously 9 times over the experiment. The
gains were selected as kη = 20 and � = I10×10. The DMMN
consisted of 3 ReLu layers with 10 basis each, a self-attention
block, and a tanh layer at the output with 10 basis. The
self-attention block looks for interaction between the features
vectors and uses a nonlinear mapping to combine them for
prediction. The performance of the DMMN is compared to an
extended Kalman filter (EKF). The EKF process standard devi-
ation (SD) was 0.1 m/s and 0.1 rad/s, for linear and angular
velocities, respectively. The measurement SD was 0.01 m and
0.02 rad for position and orientation, respectively. The EKF
state covariance was initialized to the respective state element
values (i.e., pose and velocity state elements were initialized to
the measurement and process variance, respectively). Figure 4
shows the individual components of the tracking error over
time starting after the first training cycle which occurred at
around 90 seconds. Figure 5 shows the norm of the error
over that time period. A total of 5 training cycles occurred
over the 2 minutes shown in Figures 4 and 5, indicated by
the black vertical lines. While feedback was available, pose
measurements were stored in a buffer and once 500 measure-
ments were saved, the DMMN was trained as described in
Section III-B2 for 75 epochs yielding a loss less than 10−4.
Once a training cycle was complete, half the measurements
were randomly thrown out and the model was trained after
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collecting another 250 new measurements, saving the 250 old
measurements for each training cycle. Over the 2.5 minutes of
experiment time shown in Figures 4 and 5, the mean squared
error of the position was 0.17 meters with the DMMN and
0.23 meters for the EKF. The results showed the DMMN had
higher robustness to noise (i.e., pose error after converging was
consistently lower), while also performing better overall and
in occluded nonlinear regions of the trajectory; however, the
EKF outperformed in occluded approximately linear regions
since the EKF predicts piece-wise constant velocities. These
results motivate research into deep motion model architectures
that could improve predictions, which is outside the scope of
this result.

For this set of experiments, the user-defined threshold was
approximately 1 meter based on the FOV, and based on
the maximum linear and angular velocity bounds of 0.5 m/s
and 0.5 rad/s, respectively, and the maximum dwell-time was
approximately 1 second based on (16) in the analysis; how-
ever, feedback of the target was frequently unavailable for
longer than 1 second and typically the error didn’t exceed
the user-defined threshold until after 6 seconds of unavail-
able feedback implying the dwell-time was conservative. As
shown by the gray regions in Figures 4 and 5, the norm of
the error was on average approximately 0.1 meters after 1 sec-
ond of unavailable feedback, 0.2 meters after 2 seconds, 0.5
meters after 4 seconds, and 1.1 meters after 6 seconds. This
implies that while the error growth beyond the threshold was
exponential as expected, the self-attention DMMN provided
better than anticipated performance over periods of unavailable
feedback based on the maximum dwell-time. Additionally, the
self-attention DMMN performed well overall since the mean
squared error of the estimate was 0.59 meters which is within
the user-defined threshold of 1 meter.

VI. CONCLUSION

A novel estimation framework was presented that uses self-
attention DNNs to estimate the pose and velocity of a mobile
target that intermittently leaves the FOV of a mobile track-
ing agent equipped with a camera. A Lyapunov-based analysis
was used to determine a maximum dwell-time condition on the
availability of feedback to determine the maximum amount of
time the target could leave the FOV before the estimation error
grew beyond a user-defined threshold. The presented experi-
mental results demonstrated that the proposed self-attention
DMMN performed better than expected by the Lyapunov-
based analysis. Future work will examine methods to improve
maximum dwell-time estimates and determine methods of
extending this framework to developing consensus DMMNs
with cooperative agents.
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