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Approximate Optimal Indirect Regulation of an
Unknown Agent With a Lyapunov-Based

Deep Neural Network
Wanjiku A. Makumi , Zachary I. Bell , and Warren E. Dixon , Fellow, IEEE

Abstract—An approximate optimal policy is developed
for a pursuing agent to indirectly regulate an evading agent
coupled by an unknown interaction dynamic. Approximate
dynamic programming is used to design a controller for
the pursuing agent to optimally influence the evading agent
to a goal location. Since the interaction dynamic between
the agents is unknown, integral concurrent learning is
used to update a Lyapunov-based deep neural network
to facilitate sustained learning and system identification.
A Lyapunov-based stability analysis is used to show uni-
formly ultimately bounded convergence. Simulation results
demonstrate the performance of the developed method.

Index Terms—Deep neural networks, reinforcement
learning, adaptive control, Lyapunov methods, nonlinear
control systems.

I. INTRODUCTION

THIS letter considers a class of indirect control problems
where the states of a dynamic system are regulated by an

influencing agent through an interaction dynamic. Specifically,
this letter considers indirect herding as a subset of this class
of problems. Unlike classical pursuit-evasion problems where
the goal is achieved upon capture, herding problems consist of
a pursuing agent intercepting and regulating an evading agent
to a desired goal location, such as in [1], [2], [3], [4], [5].

Optimal solutions for indirect herding problems are sought
in [6], [7], [8] using tools such as dynamic programming and
calculus of variations. Drawbacks of such methods include
computational inefficiency, due to the curse of dimensional-
ity, and the need for known dynamics. Approximate dynamic
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programming (ADP) is an alternative approach that approxi-
mates the optimal value function, and thus the optimal control
policy, via the Hamilton Jacobi Bellman (HJB) equation [9].
The solution to the HJB equation is typically estimated online
using function approximation methods such as neural networks
(NNs). A measure of suboptimality known as the bellman error
(BE) is used as feedback to update the NNs and enhance the
value function approximation online.

In the presence of model uncertainty, the BE can use an
approximation of the model dynamics to update the value
function approximation. The previous ADP indirect herding
result in [10] used a NN to approximate the unknown drift
dynamics; however, recent evidence shows that using a deep
neural network (DNN) for system identification results in
improved tracking performance [11].

Previously, [11] used a Lyapunov-based (Lb-) DNN for
a control affine system with concurrent learning (CL). CL
is an adaptive update scheme that uses input/output data to
guarantee parameter convergence without requiring persistent
excitation. CL requires estimates of the state derivatives if
the true values are not known or measurable. In this letter,
we are generalizing to a larger class of systems that are not
control affine, and not even directly controlled, by using inte-
gral concurrent learning (ICL) to remove the need to measure
the state derivatives. In existing literature, DNNs have never
been used within an ICL-based system identification tech-
nique. The result in [10] used ICL solely for the output weights
in a single-layer NN, but now we develop a framework that
uses the integral data to additionally train the Lb-DNN inner
features by optimizing an integral form of the loss.

In this letter, a multi-timescale Lb-DNN, similar to the one
introduced in [11] and [12], is used for system identifica-
tion. A multi-timescale framework is used to merge typically
offline deep learning techniques with online adaptation to
result in real-time deep learning. In contrast to those previous
works, this multi-timescale framework consists of output-
layer weights being updated in real-time via an ICL-based
adaptive update law and inner-layer features being updated
concurrent to real-time via iterative batch updates training on
integrated data sets. The challenges associated with applying
this framework to the ADP-based indirect herding problem
include piecewise-in-time discontinuities in the dynamics’ esti-
mate, adaptation laws, and closed-loop error system from the
iterative updates of the inner-layer features. These challenges
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restrict the adaptive update law used in [12] from being used
in this problem, resulting in a new analysis used in this letter
that considers piecewise-in-time discontinuities.

The primary contribution of this letter is the development
of the indirect herding pursuit-evasion problem using an ICL-
based multi-timescale Lb-DNN system identification approach
to approximate the agents’ unknown interaction dynamics
online. The integral data collected online is used to update
the output-layer weights and optimize the inner-layer fea-
tures of the Lb-DNN in a new ICL-based deep learning
technique. The deep learning and approximate optimal archi-
tecture is informed by a Lb-analysis that ensures uniformly
ultimately bounded (UUB) convergence of the states as well
as estimation of the control policy to within a neighborhood
of the optimal control policy. Simulation results demonstrate
the performance of the developed method and the improved
function approximation compared to a single-layer NN.

II. PROBLEM FORMULATION

The problem is formulated as a pursuing agent tasked with
optimally intercepting and escorting an uncooperative evading
agent to a desired goal state using unknown interaction dynam-
ics between the pursuer and evader.1 The evader dynamics
are

ż = f (z, η), (1)

where z : R≥t0 → R
n denotes the state of the evader,

η : R≥t0 → R
n denotes the state of the pursuer, t0 ∈ R≥0

denotes the initial time, and f : Rn×R
n → R

n denotes the non-
affine, unknown locally Lipschitz interaction function. While
the evader dynamics in (1) cannot be directly controlled, the
evader can be influenced through interaction with the pursuer,
which is directly controllable. The pursuer dynamics are

η̇ = h(z, η) + g(η)u, (2)

where h : Rn×R
n → R

n denotes an unknown locally Lipschitz
function representing the pursuer drift dynamics, g : R

n →
R

n×mη denotes the known control effectiveness matrix, and
u : R≥t0 → R

mη is the pursuer’s control input.
To quantify the control objective, a regulation error denoted

by ez : R≥t0 → R
n is defined as

ez � z − zg, (3)

where zg ∈ R
n denotes a fixed user-defined goal location that is

only known to the pursuer. It is not possible to directly control
the error in (3). To address this, a backstepping formulation is
used to design a virtual desired state that enables the pursuer
to indirectly minimize (3) by tracking a virtual desired state
denoted by ηd : R≥t0 → R

n.2 To quantify the pursuer’s ability
to track the virtual desired state, an auxiliary error eη : R≥t0 →
R

n is defined as

eη � η − ηd. (4)

1This problem formulation follows the development in [10], including
Assumptions 1 and 2 on the agent dynamics.

2Traditional backstepping cannot be used due to the nonlinear relationship
in the dynamics; hence, additional error system development is motivated by
backstepping approaches.

To quantify the virtual desired state objective, an additional
auxiliary error ed : R≥t0 → R

n is defined as

ed � ηd − zg − kdez, (5)

where kd ∈ R denotes a positive control gain. The time deriva-
tive of the virtual desired state ηd is designed as η̇d � μd,
where μd : R≥t0 → R

n is the subsequently designed vir-
tual input that minimizes (5). To facilitate the minimization
of (3)-(5), let x � [e�

z , e�
d , e�

η ]� and xd � [e�
z , e�

d , 01×n]�
denote the concatenated state and desired concatenated state,
respectively. Additionally, the mappings s1, s2 : R3n → R

n are
defined as s1(x) � ez+zg and s2(x) � eη+ed+kdez+zg. Using
the error systems in (3)-(5), the evader and pursuer states are
represented as z = s1(x) and η = s2(x), respectively.

Following the problem formulation in [10], a composite
autonomous error system can be written as

ẋ = F(x) + G(x)μ, (6)

where μ � [ μ�
η μ�

d ]� ∈ R
m is the total vector of control poli-

cies with m = mη + n, where μη : R≥t0 → R
mη is defined as

μη � u−ud, ud : R≥t0 → R
mη denotes a desired input defined

as ud � g+(ηd)(μd −h(z, ηd)) where locally Lipschitz pseudo
inverse g+ : Rn → R

mη×n is defined as g+ � (g�g)−1g�, and
F : R3n → R

3n and G : R3n → R
3n×m are defined as

F(x) �

⎡
⎣

f (s1(x), s2(x))
−kdf (s1(x), s2(x))

h(s1(x), s2(x)) − Fsd(x)

⎤
⎦,

and

G(x) �

⎡
⎣

0n×mη 0n×n

0n×mη In

g(s2(x)) Gsd(x)

⎤
⎦,

where Fsd(x) � g(s2(x))g+(s2(xd))h(s1(x), s2(xd)), and
Gsd(x) � g(s2(x))g+(s2(xd)) − In. The pursuer’s objective
is achieved if η → ηd and z, ηd → zg; hence, ez, eη, and
ed → 0.

The goal is to formulate an optimal control problem to reg-
ulate the states based on a given cost function. To minimize
the errors in (3)-(5), μd and μη are designed to minimize the
cost function

J(x, μ) �
∫ ∞

t0
Q(x) + P(x) + μ�Rμ dτ, (7)

where Q : R3n → R≥0 is a user-defined positive-definite (PD)
function that satisfies q‖x‖2 ≤ Q(x) ≤ q‖x‖2 for all x ∈ R

3n,
where q, q ∈ R>0, R � blkdiag{Rη, Rd}, Rη ∈ R

mη×mη and
Rd ∈ R

n×n are user-defined PD symmetric cost matrices, and
P : R

3n → R is a positive semi-definite (PSD) user-defined
penalty function described in [10].3

Following the standard actor-critic-based approximate
optimal control framework (see [9], [13]) in [10], the optimal
value function approximation V̂ : R

3n × R
L → R is

defined as

V̂
(
x, Ŵc

) = Ŵ�
c σ(x), (8)

3In this letter, both the Euclidean norm for vectors and the Frobenius norm
for matrices are denoted by ‖ · ‖.
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where Ŵc ∈ R
L is the critic weight estimate, and σ : R3n →

R
L is a user-selected bounded vector of basis functions. The

control objective is to determine an approximation of the
optimal control policy μ̂ : R3n × R

L → R
m, defined as

μ̂
(
x, Ŵa

) = −1

2
R−1G(x)�∇σ(x)�Ŵa, (9)

where Ŵa ∈ R
L is the actor weight estimate, to minimize the

cost given in (7). Minimizing this cost ensures that the errors
in (3)-(5) are regulated to zero.

III. SYSTEM IDENTIFICATION

A challenge for the control objective is that the approxi-
mate optimal control formulation requires the dynamic model
of the pursuer and the evader. Since the interaction dynam-
ics and pursuer dynamics are unknown, an approximation of
the composite dynamics F(x) must be used to approximate
the solution to the HJB equation. The interaction dynamics
between the pursuer and evader in (1) must be estimated using
data collected online and in real-time to achieve the control
objective since interaction data will often be unavailable a
priori. The result in [10] estimated F(x) online using a sin-
gle layer NN and CL; however, recent evidence has shown
that DNNs can learn more complex features and improve
function approximation performance [14]. The recent results
in [11] and [15] demonstrated a novel method for estimating
dynamics online using a multi-timescale Lb-DNN framework
with CL for system identification and control. Building on the
previous results, this section develops an advanced ICL-based
multi-timescale Lb-DNN framework.

The ICL-based multi-timescale learning framework approx-
imates functions online by pairing a Lb-ICL adaptive update
law for the output-layer weights of a DNN with a concur-
rent to real-time iterative ICL batch update for the inner-layer
features of the DNN. Specifically, data is collected online in
batches and each batch iteratively updates the inner-layer fea-
tures of the Lb-DNN concurrent to real-time control using
integral history stack data in a user-defined loss function and
an optimizer such as Adam [16]. Since the inner-layer features
are updated concurrent to real-time, but not in real-time like
the output-layer weights, the inner-layer features actively used
by the controller are iteratively switched to the most recently
updated inner-layer features after a batch update.

Motivated by improved function approximation, (1) and (2)
can be stacked and represented as

˙̆x = φ(�(x))θ + εθ (x) + Ğ(x, u), (10)

where the concatenated state derivative vector is defined as ˙̆x �
[kdż η̇]� ∈ R

2×n, and Ğ(x, u) � [ 0n×1 g(x)u ]� ∈ R
2×n.4 The

drift dynamics are approximated on a compact set C ⊂ R
n with

a DNN where θ � [ θ�
z θ�

η ]� ∈ R
p×n denotes an unknown

bounded ideal output-layer weight matrix with the subscripts
z and η representing the evader and pursuer dynamics, respec-
tively, and p = pz + pη is the total number of rows of θ .

Additionally, φ(�(x)) �
[

φ�
z (�z(x)) 01×pη

01×pz φ�
η (�η(x))

]
where

4To streamline the subsequent development, a stacked matrix representation
is used rather than a stacked vector representation.

φ : R
2p → R

2×p denotes the user-defined basis functions
and �(x) : R

3n → R
2p denotes a function that represents

the ideal DNN inner-layer features as � � [ ��
z ��

η ]�,
and εθ (x) : R3n → R

2×n denotes the function approximation
errors. The ith DNN-based estimate of the system dynamics is
defined as

ˆ̆̇xi = φ
(
�̂i(x)

)
θ̂ + Ğ(x, u), (11)

where θ̂ ∈ R
p×n is the output-layer ideal weight matrix θ

estimate, and �̂i : R3n → R
2p is the ith iteration selection of

the inner features consisting of estimated inner-layer weights
and user-selected activation functions.

Assumption 1: There is a constant weight matrix θ and
known positive constants θ, φ, ∇xφ, εθ , and ∇xεθ ∈ R≥0,

such that ‖θ‖ ≤ θ, sup
x∈C

‖φ(·)‖ ≤ φ, sup
x∈C

‖∇xφ(x)‖ ≤ ∇xφ,

sup
x∈C

‖εθ (x)‖ ≤ εθ , and sup
x∈C

‖∇xεθ (x)‖ ≤ ∇xεθ [17, Ch. 4].

Assumption 2: The inner-layer features selection of �̂i
ensures that �(x) − �̂i(x) ≤ �̃i(x), where �̃i : R3n → R

2p is
the function approximation error of the ith iteration inner-layer
Lb-DNN features, and sup

x∈C, i∈N
‖�̃i(x)‖ ≤ �̃, where �̃ ∈ R≥0

is a bounded constant for all i. Using the Mean Value Theorem,
‖φ(�(x)) − φ(�̂i(x))‖ ≤ ∇xφ �̃ [11].

Unlike the result in [11], which uses CL to learn the
unknown ideal weights of the DNN, this result uses an
ICL-based weight update policy. Following the ICL strategy
in [18], let 	tθ ∈ R>0 be the time window of integration,
where the integral of (10) at time tj ∈ [	tθ , t] can be rep-
resented as 	x̆j = x̆(tj) − x̆(tj − 	tθ ) = ϕjθ + Ej + Gj

where ϕj = ϕ(�̂i(tj)) �
∫ tj

tj−	tθ
φ(�̂i(x(τ )))dτ, Ej = E(tj) �∫ tj

tj−	tθ
εθ (x(τ ))dτ, and Gj = G(tj) �

∫ tj
tj−	tθ

Ğ(x(τ ), u(τ ))dτ.

An ICL-based parameter estimate update law is designed as

˙̂θ(t) = kθ�θ

M∑
j=1

ϕ�
j

(
	x̆j − Gj − ϕjθ̂

)
, (12)

where kθ , �θ ∈ R>0 are update gains, and M ∈ Z>0 is the
amount of data points saved for the history stack.

Remark 1: The ith approximation of � is updated with the
i + 1th batch optimization using the ICL history stack data in
the loss function

Li+1 = 1

M

M∑
j=1

∥∥	x̆j − Gj − ϕjθ̂
∥∥2

and using Adam for the offline training optimization method.5

Assumption 3: There exists T1 ∈ R>0 such that T1 > 	tθ ,
and there exists a constant λ1 ∈ R>0 that facilitates λ1Ip ≤∑M

j=1 ϕ�
j ϕj, ∀t ≥ T1 [18].

IV. ONLINE LEARNING

A. Bellman Error

The optimal value function V∗ : R3n → R≥0 and optimal
control policy μ∗ : R3n → R

m satisfy the HJB equation

0 = ∇V∗(x)
(
F + Gμ∗)+ Q(x) + P(x) + μ∗�Rμ∗, (13)

5The estimates �̂i are not computed a priori. Concurrent to real-time learn-
ing, input-output data is saved in a history stack, and then �̂ is recomputed
during the batch update.
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where V∗(0) = 0. While (13) represents the HJB equation
under optimal conditions, substituting the approximate terms
from (8), (9), and (11), yields the BE

δ
(
x, θ̂ , Ŵc, Ŵa

)
� Q(x) + P(x) + μ̂�Rμ̂

+ ∇V̂
(
x, Ŵc

)(
F̂i
(
x, θ̂

)+ G(x)μ̂
(
x, Ŵa

))
, (14)

where

F̂i
(
x, θ̂

)
�
[(

1

kd
θ̂�

z φz
(
�̂z,i(x)

))�
,
(
−θ̂�

z φz
(
�̂z,i(x)

))�
,

(
θ̂�
η φη

(
�̂η,i(x)

))� −
(

g
(
xη

)
g+(ηd

)
θ̂�
η φη

(
�̂η,i(xd)

))�]�

and μ̂(x, Ŵa) � [μ̂�
η (x, Ŵa), μ̂

�
d (x, Ŵa)]� from (9). The pur-

suer controller is û(x, θ̂ , Ŵa) � μ̂η(x, Ŵa) + ûd(x, θ̂ , Ŵa),

where ûd(x, θ̂ , Ŵa) � g+(ηd)(μ̂d(x, Ŵa) − θ̂T
η φη(�̂η,i(xd))).

To facilitate the subsequent stability analysis, the BE can
also be expressed in terms of the error W̃c � W − Ŵc and
W̃a � W−Ŵa. Subtracting (14) from (13) and, substituting (8)
and (9), the BE in (14) can be rewritten as

δ = −ω�W̃c + 1

4
W̃�

a Gσ W̃a − W�∇σ F̃i + O (15)

where ω � ∇σ(F̂i + Gμ̂), F̃i � F − F̂i, Gσ � ∇σGR∇σ�,

GR � GR−1G�, and O is uniformly bounded over the compact
set �.

As explained in [19], the user-selected state xe can be used
to evaluate the BE in (14) at off-trajectory points within the
state space �. The extrapolated BEs are evaluated as δe �
δ(xe, θ̂ , Ŵc, Ŵa).

B. Actor and Critic Weight Update Laws

The on and off-trajectory BEs are used in the subsequently
defined adaptive update laws to improve the actor and critic
weight approximations online. The critic weight update law is
defined as

˙̂Wc � −�c

(
kc1

ω

ρ2
δ + kc2

N

N∑
e=1

ωe

ρ2
e
δe

)
, (16)

and the least-squares gain matrix update law is defined as

�̇c � βc�c − �ckc1
ωω�
ρ2 �c − �c

kc2
N

N∑
e=1

ωeω
�
e

ρ2
e

�c, (17)

where ρ � 1+γ1ω
�ω, ρe � 1+γ1ω

�
e ωe, ωe � ω(δe, θ̂ , Ŵa),

and kc1, kc2, γ1, βc ∈ R>0 are user-defined learning gains. The
actor weight update law is defined as

˙̂Wa � −Kaka1
(
Ŵa − Ŵc

)+ Ka
kc1

4
G�

σ Ŵa
ω�

ρ2
Ŵc

− Kaka2Ŵa + Ka
kc2

4N

N∑
e=1

G�
σeŴa

ω�
e

ρ2
e

Ŵc, (18)

where ka1, ka2 ∈ R≥0 are user-defined learning gains, and Ka ∈
R

L×L is a user-defined positive-definite symmetric matrix.
Assumption 4: There exist constants T2, c1, c2, c3 ∈ R≥0

such that

c1IL ≤ inf
t∈R≥t0

1

N

N∑
e=1

ωeω
�
e

ρ2
e

,

c2IL ≤
∫ t+T2

t

(
1

N

N∑
e=1

ωe(τ )ω�
e (τ )

ρ2
e (τ )

)
dτ, ∀t ∈ R≥t0 ,

c3IL ≤
∫ t+T2

t

(
ω(τ)ω�(τ )

ρ2(τ )

)
dτ, ∀t ∈ R≥t0 ,

where T2 and at least one of the constants c1, c2, or c3 is
strictly positive [20].

Remark 2: See [10] for insight into Assumption (4).

V. STABILITY ANALYSIS

Let Bζ ⊂ R
3n+2L+np represent a closed ball with

a radius ζ ∈ R>0 centered at the origin. Let Z ∈
R

3n+2L+np denote a concatenated state vector defined as
ZL � [ x�, W̃�

c , W̃�
a , Z�

θ ]� where Zθ = vec(θ̃) and θ̃ � θ−θ̂ .
Let VL :R3n+2L+np ×R≥t0 → R denote a candidate Lyapunov
function defined as

VL(ZL, t) � V∗(x, t) + 1

2
W̃�

c �−1
c (t)W̃c + 1

2
W̃�

a K−1
a W̃a

+ Vθ (Zθ , t), (19)

where Vθ (Zθ , t) � 1
2 tr(θ̃��−1

θ (t)θ̃), that can be bounded by
class K functions vl, vl : R → R≥0 as

vl(‖ZL‖) ≤ VL(ZL, t) ≤ vl(‖ZL‖) (20)

for all t ∈ R≥t0 where ZL ∈ R
3n+2L+np. The sufficient condi-

tions for ultimate boundedness of Z are derived based on the
subsequent analysis as

kd ≥ 1, λmin{H} > 0,

√
l

κ
≤ v−1

l (vl(ζ )), (21)

where H �

⎡
⎢⎣

(
ka1+ka2

3 − ϕa) −ϕac
2 0

−ϕac
2

kc2c
3 −ϕcθ

2
0 −ϕcθ

2
kθ λmin[�θ ]

2

⎤
⎥⎦,

κ � min{ 1
2 q, 1

4 kθλmin[�θ ], 1
6 kc2c, 1

6 (ka1 + ka2)},
c � (

βc

2kc2�c
+ c1

2 ), ϕa � (kc1+kc2)
4 ‖Gσ ‖ kρ√

γ1
‖W‖ +

1
2

1
λmin{Ka} ‖∇WGR∇σ�‖, �θ � [

∑M
j=1 ϕ�

j ϕj],

ϕac � ka1 + kc1+kc2
4 ‖Gσ ‖‖W‖ kρ√

γ1
+ 1

2
1
�c

‖∇W‖‖GR‖‖∇σ�‖,

ϕcθ � (kc1 + kc2)
kρ√
γ1

(‖W�‖‖∇σ‖‖φ‖(1 + 1
kd

+ ‖g‖‖g+‖)),
and l ∈ R>0 is a constant that depends on the bounded NN
constants.

In contrast to the result in [10], the multi-timescale Lb-DNN
identifier introduces piecewise-in-time discontinuities in the
dynamics which complicates the stability analysis in the sense
that common actor-critic methods cannot be readily applied in
the stability analysis of the closed-loop system. The following
theorem contains a Lyapunov-like stability analysis which con-
siders functions containing discontinuities that are piecewise
continuous in time.

Theorem 1: Provided all assumptions are satisfied, and con-
ditions in (21) are met, then the error state x, the critic weight
estimate error W̃c, the actor weight estimate error W̃a, and the
parameter estimation error θ̃ are UUB. Hence, the approximate
control policy μ̂ converges to a neighborhood of the optimal
control policy μ∗.
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Proof: Taking the time derivative of (19), and substitut-
ing (13), V̇∗(x) = ∇V∗(F(x) + G(x)μ), ˙̃Wc � Ẇ − ˙̂Wc,˙̃Wa � Ẇ − ˙̂Wa, and Ẇ � ∇W(x)(F(x) + G(x)μ) yields

V̇L = ∇V∗(F + Gμ) + V̇θ (Zθ ) − 1

2
W̃�

c

(
�−1

c �̇c�
−1
c

)
W̃c

+ W̃�
c �−1

c

(
∇W(F + Gμ) − ˙̂Wc

)

+ W̃�
a K−1

a

(
∇W(F + Gμ) − ˙̂Wa

)
.

Using (14), the update laws in (12) and (16)-(18) [10, eqs.
(29)-(31)], Ŵa = W − W̃a, Ŵc = W − W̃c, Assumptions 1-4,
and implementing bounding and completing the square yields
V̇L ≤ −κ‖ZL‖2 − κ‖ZL‖2 + l − Z�

v HZv, where Zv �
[ ‖W̃a‖, ‖W̃c‖, ‖Zθ‖ ]�. Specifically, Assumption 2 is used to
bound the system identification parameter estimation term V̇θ

in the Lyapunov function. Provided the sufficient conditions
in (21) are met, then V̇L can be bounded as

V̇L ≤ −κ‖ZL‖2, ∀‖ZL‖ ≥
√

l

κ
> 0. (22)

As a result of the discontinuities in the update laws in (12)
and (16)-(18) being piecewise continuous in time, and by
using (21) and (22), [21, Th. 4.18] can be enforced to con-

clude that ZL is UUB such that ‖ZL‖ ≤ v−1(v(
√

l
κ
)) and μ̂

converges to a neighborhood around the optimal policy μ∗.
Since ZL ∈ L∞, then x, W̃c, W̃a, θ̃ ∈ L∞ and thus μ ∈ L∞.

Moreover, since x ∈ L∞, and since W is a continuous func-
tion of x, it follows that W(x) ∈ L∞. Furthermore, since
x ∈ L∞, then eη, ez, ed ∈ L∞. Using (3)-(5), z ∈ L∞,

and ηd ∈ L∞; hence, η, (z − η) ∈ L∞ follows. Lastly,
since ηd, μ, g+, θ̃ ∈ L∞, it follows that θ̂ , ud ∈ L∞ and
u ∈ L∞.

VI. SIMULATIONS

An example scenario is simulated to illustrate the
performance of the developed ICL-Lb-DNN ADP architecture
where an evader and pursuer are uniformly randomly placed
in a 1000 × 1000 unit area with the goal of position con-
trol (n = 2). The goal region is set to a uniformly random
location within a 100 unit radius of the pursuer while the
evader is uniformly randomly initialized at least 500 units
from the goal region. The pursuer must therefore leave the
goal area to catch the evader, learn the interaction dynam-
ics in real-time using the deep ICL learning architecture, and
approximate the optimal influencing policy using ADP. The
typical performance of the architecture in simulation is shown
in Figure 1 to indirectly control the position of the evader,
where the pursuer is initially in the top-right (blue circle with
white plus) near the goal (orange circle) and the evader is
initially in the bottom-left (orange circle with white plus).

Without loss of generality, the dynamics for the pursuer
were h(z, η) = 02×1 and g(η) = I2×2. The evader dynamics
were f (z, η) = (z − η) exp(− 1

20,000 (z − η)�(z − η)). In the
simulation, the ICL-DNN function approximation was imple-
mented using PyTorch, and all the history stack data was
collected online in real-time (approximately 45 Hz). The ICL-
Lb-DNN and the history stack remained on the graphics card
for optimization using a maximum of approximately 1GB of

Fig. 1. Simulation example where the pursuer is initialized in the
bottom-right (blue circle with white plus), the goal region is to the left
of the pursuer (orange circle), and the evader is initialized in the top-
left (orange circle with white plus). The pursuer trajectory and evader
trajectory over the experiment are shown in blue and orange, respec-
tively. Simulation shows evader initially flees towards top-left; however,
the pursuer approximates the interaction dynamics and optimal policy in
real-time and quickly escorts the evader to the goal region.

Fig. 2. Function approximation where the true values are shown in
solid lines and the estimated values are shown in dashed lines. The
ICL-DNN estimates quickly converged near the true values using the
data collected online. The left figure shows the ICL-DNN approximation
and right figure shows the ICL-SNN approximation demonstrating that
the ICL-DNN outperforms the ICL-SNN.

memory. At each time step, the data was added to the history
stack which was a sliding buffer containing the most recent
second of data (	tθ = 1.0 second). At each time step the inte-
grals of the data were approximated using the trapezoidal rule
to update the output weights using (12) and update the DNN
inner-layer features using the loss discussed in Remark 1,
where a single optimizer step was performed for each sim-
ulation step on a batch of integral data from the history stack
using Adam with a linearly annealing learning rate (initial-
ized to 0.001 and linearly decayed to 0.0001). To enable online
optimization, the DNN was constrained to 3 inner layers, each
with 64 neurons and hyperbolic tangent activation functions
while the final layer had 64 output weights. The output weights
and inner-layer weights were randomly initialized using a zero
mean and standard deviation of 0.01 (θ̂z(0) ∼ N (0, 0.01))

with �θ = 0.1 and kθ = 1.0. The function approximation
results in Figure 2 show that in the 35 second simulation, the
ICL-DNN function approximation converges to within 10% of
the true value of the nonlinear interaction dynamics while the
loss converges to 0.04. Additionally, the shallow NN (SNN)
from [10], with 256 output weights, converges to within 50%
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Fig. 3. The evader tracking error steadily decays after the evader initially
flees. The auxiliary errors also converge to a small radius of the goal.

of the true value of the dynamics demonstrating the DNN
outperforms the SNN used in [10].

The efficient StaF kernels method from [20] was used
to approximate the optimal policy online in real-time
(approximately 45 Hz) while simultaneously estimating the
dynamics using the ICL-DNN function approximation. The
value function was approximated using 7 StaF kernels
σ(x, c(x)) = [

σ1(x, c1(x)) . . . σ7(x, c7(x))
]� where each

kernel σq(x(t), cq(x(t))) = x�(t)cq(x(t))
‖x(0)‖2 , cq(x(t)) = x(t) +

‖x(0)‖ν(x(t))dq, ν(x(t)) = x�(t)x(t)+0.01‖x(0)‖2

‖x(0)‖2+x�(t)x(t)
, and dq are

the vertices of a 6-simplex. The actor and critic weights
were initialized as Ŵa(0) = 17 and Ŵc(0) = 2Ŵa(0) while
�c(0) = 5I7×7. The gains used to update the weights were
selected as kc1 = 0.9, kc2 = 0.1, Ka = 1.0, ka1 = 0.25,
ka2 = 0.005, βc = 0.001, γ1 = 0.75, and N = 10 extrap-
olation points were selected within a radius of ν(x) of x.
The cost and control gains selected were Q = 0.0001I6×6,
R = 0.01, and kd = 1.3. Using the selected gains resulted
in excellent tracking performance as shown by the tracking
errors in Figure 3 where the tracking error ez → 0. These
results demonstrate that the DNN-ICL-based ADP architec-
ture is an excellent approach for real-time approximation of
the optimal policy when dynamics are unknown and highly
nonlinear.

VII. CONCLUSION

A deep ICL-based implementation of ADP is presented to
achieve an approximate optimal online solution to the indirect
regulation herding problem for unknown agents. An ICL-based
system identifier is facilitated by a Lb-DNN to estimate the
unknown interaction dynamic between the pursuer and evader.
A Lb-analysis is provided to prove UUB convergence of the
evader to the desired goal location known by the pursuer. The
simulation shows that the pursuer is able to intercept and reg-
ulate the evader towards the desired goal location and that the
Lb-DNN system identifier outperforms the SNN system identi-
fier. Further investigations into directly learning the Q-function
are motivated from offline learning results such as [22]. Other
potential future work includes investigating the optimality of
the evader’s behavior.
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