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Abstract—For a broad class of nonlinear systems, we
formulate the problem of guaranteeing safety with opti-
mality under constraints. Specifically, we define controlled
safety for differential inclusions with constraints on the
states and the inputs. Through the use of nonsmooth anal-
ysis tools, we show that a continuous optimal control
law can be selected from a set-valued constraint captur-
ing the system constraints and conditions guaranteeing
safety using control barrier functions. Our results guaran-
tee optimality and safety via a continuous state-feedback
law designed using nonsmooth control barrier functions.
An example pertaining to obstacle avoidance with a target
illustrates our results and the associated benefits of using
nonsmooth control barrier functions.

Index Terms—Constrained systems, differential inclu-
sions, nonsmooth control barrier functions, optimal con-
trol, safe control.

I. INTRODUCTION

APOWERFUL approach to guarantee safety for a
dynamical system without computing the solutions con-

sists of using barrier functions. Stemming from optimization
theory and seminal work by Nagumo in [1], a barrier function
ensures that, when properly initialized, the solutions of the
dynamical system do not reach an unsafe set. This approach
has been exploited for the study of continuous-time, discrete-
time, and hybrid systems; see, e.g., [2]; [3]; and [4], [5],
respectively. The extension of the barrier function concept
to the case when the system has an input, known as control
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barrier function (CBF), which is instrumented to synthesize
control laws has been pursued in [6], [7] for continuous-
time systems, [3] for discrete-time systems, and in [8], [9]
for differential inclusions. To facilitate finding suitable barrier
functions needed in control applications, the work in [10], [11]
proposed multiple and nonsmooth barrier functions, but does
not consider optimality.

Recent developments in combining optimization techniques
and safety constraints have led to optimization problems that,
when solved numerically, result in a control law that assures
both safety and optimality. In [7], the authors proposed a
quadratic program to find a minimum norm control law that
ensures safety and stability for nonlinear control affine differ-
ential equations. Though powerful, continuity of the resulting
feedback law is not well characterized. In our recent work,
we consider feasibility and continuity of the feedback control
law defined by the multiple continuously differentiable barrier
functions [12]. Here, we consider differential inclusions with
constraints, which are more general than differential equations.
Differential inclusions are effective at modeling dynamical
systems with uncertainty. Nonsmooth barrier functions emerge
naturally in many control problems, such as obstacle avoid-
ance. The work in [8] and [11] consider nonsmooth CBFs
for differential inclusions, but do not guarantee optimality or
continuity of the control law. Motivated by the need for feed-
back controllers that assure safety and optimality with good
regularity properties, we propose methods to design optimal
state-feedback laws using nonsmooth barrier functions that,
notably, are continuous. Specifically, for constrained differen-
tial inclusions, we propose sufficient conditions for selecting
a continuous safe and optimal control law by minimizing a
cost function and using a nonsmooth CBF. More precisely, we
consider differential inclusions with state and input constraints
given as

ẋ ∈ F(x, u) (x, u) ∈ C := Cx × Cu (1)

where F : Rn×R
m ⇒ R

n, Cx ⊂ R
n, Cu ⊂ R

m. Let Xu ⊂ R
n be

unsafe set and Xo ⊂ Cx indicate the desirable initial set. Using
nonsmooth CBFs w.r.t. (Xo, Xu) for constrained differential
inclusions as in (1), we provide sufficient conditions for the
existence of a continuous safe control law that minimizes a
cost function over the set-valued map providing safe inputs
for each state. More precisely, the problem we study consists
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of solving

κ∗(x) = argmin L(x, u)

s.t. u ∈ D(x) (2)

for each x ∈ Cx so as to synthesize the optimal state-feedback
law κ∗ ensuring safety, where L : Rn ×R

m → R denotes the
cost function and the set-valued map D : Rn ⇒ R

m indicates
feasible safe control inputs at the current state.

Contributions: This letter makes the following contribu-
tions:

1) In Theorem 1, we specify sufficient conditions for the
existence of the continuous safe control law using a
nonsmooth CBF for (1).

2) In Lemma 2 and Lemma 3, we specify conditions such
that the resulting map κ∗ in (2) is single valued and
continuous.

3) In Theorem 2, we formulate sufficient conditions to
obtain a continuous and safe state-feedback law that
minimizes the given cost function and meets the safety
constraints.

Notation: For x, y ∈ R
n, x� denotes the transpose of x, |x|

the Euclidean norm of x, and 〈x, y〉 denotes the inner product
between x and y; namely, 〈x, y〉 := x�y. For a set K ⊂ R

n,
we use int(K) to denote its interior, ∂K its boundary, cl(K) its
closure, U(K) to denote an open neighborhood around K, and
co(K) to indicate the convex hull of the set K. For O ⊂ R

n,
K\O denotes the subset of elements of K that are not in O.
For a function f : R

n → R
m, dom f denotes the domain of

definition of f , Graph(f ) indicates graph of f , and if f is con-
tinuously differentiable, ∇f denotes the gradient of f . If f is
locally Lipschitz, ∂Cf denotes Clarke generalized gradient of f .
Let B denote the closed unit ball in R

n centered at the origin.
By F : R

m ⇒ R
n, we denote a set-valued map associating

each element x ∈ R
m into a subset F(x) ⊂ R

n.

II. PRELIMINARIES

A. Basic Definitions
Definition 1 (Sublevel Bounded [13, Definition 1.8]): A

function f : Rn → R ∪ ±∞ is sublevel bounded if for every
finite α ∈ R the set {x ∈ R

n : f (x) ≤ α} is bounded.
Definition 2 (Level Coercive [13, Definition 3.25]): A func-

tion f : Rn → R∪±∞ is level coercive if it is bounded below
on bounded sets and satisfies lim|x|→∞ inf f (x)

|x| > 0.

B. Differential Inclusions
Consider differential inclusions with state constraints

� : ẋ ∈ ˜F(x) x ∈ Cx (3)

where ˜F : R
n ⇒ R

n and Cx ⊂ R
n. Next, solutions to the

constrained differential inclusion � in (3) are defined.
Definition 3 (Concept of Solution to �): The function

x : dom x → R
n, where dom x ⊂ [0,∞), is a solution to

� in (3) if (i) x(0) ∈ cl(Cx), (ii) t �→ x(t) is locally abso-
lutely continuous, (iii) x(t) ∈ Cx for all t ∈ int(dom x), and
(iv) ẋ(t) ∈ ˜F(x(t)) for almost all t ∈ dom x.

A solution t �→ x(t) to � in (3) is said to be complete if
dom x is unbounded. Furthermore, it is said to be maximal if
a solution y to � does not exist such that x(t) = y(t) for all
t ∈ dom x with dom x a proper subset of dom y.

Consider the constrained differential inclusion in (1). Let
U : Cx ⇒ Cu be the set-valued map that provides admissi-
ble values in Cu to each x ∈ Cx, namely, U(x) indicates the
feasible control inputs associated with x. Let �U indicate the
differential inclusion in (1) explicitly constraining u to take
values from the set-valued feedback map U : Cx ⇒ Cu,

�U : ẋ ∈ F(x, u) u ∈ U(x), x ∈ Cx. (4)

Given a selection κ(x) ∈ U(x) for each x ∈ Cx, the (closed-
loop) differential inclusion is given by

�κ : ẋ ∈ F(x, κ(x)) x ∈ Cx. (5)

III. CONTROLLED SAFETY NOTIONS AND CBFS

A. Safety Notions
Given � in (3) and a set K ⊂ Cx following [14], we

employ the following forward pre-invariance and controlled
pre-invariance notions.

Definition 4 (Forward Pre-Invariance): The set K is said to
be forward pre-invariant for the differential inclusion � in (3)
if for each xo ∈ K, each maximal solution x to � starting from
xo satisfies x(t) ∈ K for all t ∈ dom x.

Definition 5 (Controlled Pre-Invariance): A set K is control
pre-invariant for �U in (4) if there exists a selection κ(x) ∈
U(x) for each x ∈ Cx such that K is forward pre-invariant for
the resulting differential inclusion �κ in (5).

Suppose that Xo ∩ Xu = ∅. Safety and controlled safety are
defined as follows.

Definition 6 (Safety): Given � in (3), and Xo ⊂ Cx and
Xu ⊂ R

n such that Xo ∩ Xu = ∅, � is safe with respect to
(Xo, Xu) if for each solution x to � starting from xo ∈ Xo, we
have x(t) ∈ R

n\Xu for all t ∈ dom x.
Definition 7 (Controlled Safety): Given �U in (4), and

Xo ⊂ domU and Xu ⊂ R
n such that Xo ∩ Xu = ∅, �U is con-

trolled safe with respect to (Xo, Xu), if there exists a selection
κ(x) ∈ U(x) for each x ∈ Cx such that the resulting differential
inclusion �κ in (5) is safe with respect to (Xo, Xu).

Remark 1: If we can find a forward pre-invariant (con-
trolled pre-invariant) set K ⊂ R

n for � (respectively, �U ),
such that Xo ⊂ K and K ∩ Xu = ∅, then safety (respectively,
controlled safety) is verified with respect to (Xo, Xu).

B. CBFs
Following [6], we define control barrier candidates and

CBFs.
Definition 8 (Barrier Function Candidate): A function

B : Rn → R is said to be a barrier function candidate with
respect to (Xo, Xu) if

B(x) > 0 ∀x ∈ Xu, B(x) ≤ 0 ∀x ∈ Xo. (6)

The zero sublevel set of B is defined as Ke := {x ∈
R

n : B(x) ≤ 0}. Consider �U in (4). Suppose B is a bar-
rier function candidate with respect to (Xo, Xu). Let the set K
be defined as

K := Ke ∩ Cx. (7)

If K is controlled pre-invariant for �U , then according to
Remark 1, �U is controlled safe.

Definition 9 (Control Barrier Function): A locally
Lipschitz barrier function candidate B with respect to (Xo, Xu)
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is a CBF for �U in (4) if there exists a neighborhood of
the boundary of the set K, U(∂K), where K is defined in (7),
such that the following condition holds:

inf
u∈U(x)

sup
η∈F(x,u),ζ∈∂CB(x)

〈ζ, η〉 ≤ 0

∀x ∈ (U(∂K)\ int(K)) ∩ Cx. (8)

Let the function B be a CBF for �U in (4) with respect
to (Xo, Xu), defining the set K in (7). Suppose B is locally
Lipschitz. We define the function g : Cx × Cu → R as

g(x, u) := sup{〈ζ, η〉 : ζ ∈ ∂CB(x), η ∈ F(x, u)}. (9)

For some continuous function γ : Cx → R, we define the
set-valued map Dγ : Cx ⇒ Cu as

Dγ (x) := {u ∈ U(x) : g(x, u) + γ (x) < 0}. (10)

The set-valued map D for each x gives the set of all feasible
control inputs that makes the function g + γ negative; there-
fore, it provides the possible control inputs for which the CBF
decreases along the solutions.

Assumption 1: The set C = Cx × Cu is closed.
Assumption 2: The map F : C ⇒ R

n is upper semicontin-
uous and F(x, u) is nonempty, compact, and convex for all
(x, u) ∈ C.

Assumptions 1 and 2 are known as tight requirements in
the literature for the existence of solutions and the structural
properties for the set of solutions of differential inclusion; see
[15], [16], [17]. For Assumption 4, see [18, Sec. 3.4].

Assumption 3: The feedback map U : Cx ⇒ Cu is lower
semicontinuous with nonempty, closed, and convex values.

Assumption 4: The map F is convex in u.
Based on Michael’s Theorem [18, Th. 2.18], Assumption 3

guarantees the essential requirement to find a continu-
ous selection from U . In the following lemma, we indi-
cate the regularity of the maps g and Dγ under the said
assumptions.

Lemma 1: Consider �U in (4) such that Assumptions 1-3
hold. Let B : Rn → R be locally Lipschitz and γ : Cx → R be
a continuous function. Suppose the set-valued map Dγ : Cx ⇒
Cu is defined in (10) and g : Cx × Cu → R is defined in (9).
Then, the following hold:

1.a The function g is upper semicontinuous,
1.b The map Dγ is lower semicontinuous,
1.c When Assumption 4 holds, for each x ∈ Cx the function

u �→ g(x, u) is convex and lower semicontinuous.
Proof: To prove 1.a, using Assumption 2, we obtain that

F has nonempty compact values, and using [19, Proposition
2.6.2], we conclude that ∂CB is nonempty and has convex
compact values. Therefore, g is well-defined. Since B is locally
Lipschitz, from [20, Lemma 4.6] we conclude that g is upper
semicontinuous.

To prove 1.b, from 1.a, we have that g is upper semicon-
tinuous and since γ is continuous, we conclude that g + γ is
upper semicontinuous. Since, by Assumption 3, U is a lower
semicontinuous, [18, Corollary 2.13] implies that Dγ is lower
semicontinuous.

To prove 1.c, first we show that g is convex in u. Using
Assumption 4, for each θ ∈ [0, 1], x ∈ Cx, and u1, u2 ∈ Cu,

we have

g(x, θu1 + (1 − θ)u2) ≤ θ sup
ζ∈∂CB(x), η1∈F(x,u1)

〈ζ, η1〉
+ (1 − θ) sup

ζ∈∂CB(x), η2∈F(x,u2)

〈ζ, η2〉
≤ θg(x, u1) + (1 − θ)g(x, u2)

To prove that g is lower semicontinuous, let h : R
n ×

R
m × R

n → R be defined as h(x, u, ζ ) := supη∈F(x,u)〈η, ζ 〉.
For fixed ζ , the map η �→ 〈η, ζ 〉 is continuous and convex.
Furthermore, since F has bounded values and ∂CB is bounded,
we conclude that h is bounded. Then, [21, Th. 9.4] implies
that u �→ h(x, u, ζ ) is lower semicontinuous. Therefore,
since g(x, u) = supζ∈∂CB(x) h(x, u, ζ ), u �→ g(x, u) is lower
semicontinuous for each x ∈ Cx.

Remark 2: In general, when B is not continuously differen-
tiable, Dγ is not necessarily outer semicontinuous, therefore,
Dγ is not continuous. Since the Clarke generalized gradient
of the locally Lipschitz function B, ∂CB, is upper semicontin-
uous, with correct regularity of F, the function g can only be
upper semicontinuous. In general, Dγ cannot be continuous
without continuity of g.

IV. SUFFICIENT CONDITIONS FOR SAFETY

Theorem 1: Consider �U in (4) such that Assumptions 1-4
hold. Let B : Rn → R be a locally Lipschitz CBF with respect
to (Xo, Xu) ⊂ R

n ×R
n defining the set K in (7). Suppose there

exists a neighborhood of ∂K, denoted by U(∂K) , such that the
set-valued map Dγ : Cx ⇒ Cu defined in (10) for γ identically
zero is nonempty on (U(∂K) \int(K))∩Cx. Then, there exists a
continuous control law κ : Cx → Cu that makes �U controlled
safe with respect to (Xo, Xu).

Proof: Let g : Cx×Cu → R be defined in (9), and from (10),
let the map D0 : Cx ⇒ Cu for x �→ γ (x) = 0 be defined as

D0(x) := {u ∈ U(x) : g(x, u) < 0}. (11)

Since B is a CBF for �U , suppose U1(∂K) is a neighbor-
hood such that (8) holds. Let U2(∂K) be a neighborhood such
that U2(∂K) ⊂ U1(∂K) and U2(∂K) ⊂ U(∂K). From 1.a
and 1.c in Lemma 1, we have that g is continuous in u;
therefore, for each x, its sublevel sets are closed. Then, since
also for each x ∈ Cx, U(x) has closed values, we obtain
that cl(D0(x)) = {u ∈ U(x) : g(x, u) ≤ 0} =: D̄0. Let
S = cl((U2(∂K)\K) ∩ Cx). To prove that there exists a con-
tinuous selection from D̄0 on S, based on [18, Th. 2.18],
we show that D̄0 is lower semicontinuous and nonempty
on S, with closed convex values. Since Assumptions 1-3
hold, 1.b in Lemma 1 implies that D0 is lower semicontinu-
ous. Using [22, Proposition 2.3], we conclude that D̄0 is lower
semicontinuous. Furthermore, D̄0 is nonempty on S and has
closed values. Finally, using Assumption 3, we obtain that
x �→ U(x) has convex values and using the assumption that
u �→ g(x, u) is convex, we conclude that D̄0 has convex values.
Therefore, [18, Th. 2.18] implies that there exists a continuous
selection κ1 : S → Cu such that κ1(x) ∈ D̄0(x) for each x ∈ S.
Furthermore, since for each x ∈ S, we have D̄0(x) ⊂ U(x), then
κ1 is also a selection from U . Then, using Assumption 3 and
[22, Proposition 1.4], κ1 can be extended continuously to the
entire Cx. Let κ:Cx → Cu be the extension of κ1. Finally, to
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prove that �κ as defined in (5) is safe with respect to (Xo, Xu),
from (8) we have

sup
η∈F(x,κ(x)),ζ∈∂CB(x)

〈ζ, η〉 ≤ 0 ∀x ∈ U2(∂K)\K.

Therefore, 〈ζ, η〉 ≤ 0 for each x ∈ U2(∂K) \K, ζ ∈ ∂CB(x),
and for each η ∈ F(x, κ(x)). Hence, using Assumption 2 and
the fact that κ is continuous, we conclude that x �→ F(x, κ(x))
is upper semicontinuous with nonempty, compact, and con-
vex values. Using [23, Lemma 5.15], we conclude that upper
semicontinuous maps with compact images are outer semicon-
tinuous and locally bounded set-valued maps. Therefore, based
on [5, Th. 4], K is forward pre-invariant for �κ . Then, �κ is
safe with respect to (Xo, Xu). Therefore, �U is controlled safe
with respect to (Xo, Xu).

Remark 3: For a continuously differentiable function B and
single-valued function f : Cx × Cu → R

n, the condition

inf
u∈U

〈∇B(x), f (x, u)〉 ≤ −α(B(x)) (12)

has been used in the literature; see, e.g., [8] and [24], where
α : R → R is an extended class K∞ function; namely, α(0) =
0 and α is strictly increasing. Note that condition (8) is more
general than (12), in the sense that the inequality in (8) does
not need to hold on the entire set Cx; however, in (12), the
safety constraint is imposed globally, though it may get relaxed
in the interior of the safe set. Another advantage of (8) is that
the barrier function needs only to be locally Lipschitz in a
neighborhood of the boundary of K. Furthermore, using the
presented framework, a combination of multiple intersecting
and non-intersecting barriers can be addressed independently.

V. GUARANTEEING CONTINUITY OF THE

OPTIMAL SOLUTION

Given a set-valued map D : R
n ⇒ R

m indicating all safe
and feasible control actions for each x, and the desired cost
function L, an optimal control law is given by solving the
optimization problem in (2). In the following, we give two sets
of conditions concerning the cost function L and the set-valued
map D, such that the optimal control law κ∗ is continuous.

Berge’s Maximum Theorem [25, Maximum Theorem] pro-
vides conditions such that the optimal solution map κ∗ in (2)
is upper semicontinuous and has compact values. In the fol-
lowing lemma, we specify conditions such that the optimal
solution to (2) is single valued and continuous.

Lemma 2: Suppose the function L : R
n × R

m → R is
continuous and strictly convex in its second argument. Let
the set-valued map D : Cx ⇒ Cu be continuous and have
nonempty and compact convex values. Then, the function
κ∗ : Cx → Cu, defined in (2), for each x ∈ Cx is single
valued and continuous.

Proof: Since L is continuous and the set-valued map
D is continuous, and has nonempty compact values, [25,
Maximum Theorem] implies that the set-valued map κ∗ in (2)
is nonempty and upper semicontinuous, with compact values.
Since L is strictly convex in u, [13, Th. 2.6] implies that for
each x, κ∗(x) in (2) has at most one value. Therefore, κ∗ is
nonempty and single valued. Using [23, Lemma 5.15], we con-
clude that upper semicontinuous maps with compact images
are outer semicontinuous with locally bounded values. From
[13, Corollary 5.20], we conclude that κ∗ is continuous.

The following lemma is more general than Lemma 2 in the
sense that in Lemma 3, L can be sublevel bounded in u when
D does not have bounded values.

Lemma 3: Suppose the function L : R
n × R

m → R is
proper, lower semicontinuous, convex, and strictly convex in
its second argument. Let the set-valued map D : Cx ⇒ Cu be
continuous, nonempty and have convex values. Let the func-
tion κ∗ : Cx → Cu be defined in (2) for each x ∈ Cx. If one
of the following conditions holds,

1) L is sublevel bounded in u (see Definition 1);
2) D has bounded values, namely, for each x ∈ Cx, D(x) is

bounded.
then κ∗ is single valued on Cx and continuous on int(Cx).

Proof: To prove the lemma, we use [13, Corollary 7.43].
Let the function δ̃ : Rn × R

m → R̄ be defined as

δ̃(x, u) := δD(x)(u) =
{

0 if x ∈ Cx, u ∈ D(x)
∞ otherwise

for each (x, u) ∈ R
n×R

m. Note that δS is an indicator function
of the set S. Let f : R

n × R
m → R̄ be given by f (x, u) :=

L(x, u) + δ̃(x, u). Then, since D is nonempty, f is proper. The
sublevel sets of f for α ∈ R are defined as

{(x, u) ∈ R
n × R

m : f (x, u) ≤ α}
= Graph(D) ∩ {(x, u) ∈ R

n × R
m : L(x, u) ≤ α}. (13)

Since L is lower semicontinuous, from [13, Th. 1.6] its
sublevel sets are closed. Since Graph(D) is closed, then the
sublevel sets of f in (13) are closed. Thus, from [13, Th. 1.6]
f is lower semicontinuous. Since D has convex values and L
is convex, then f is convex. Furthermore, since L is strictly
convex in u, f is strictly convex in u. If either D has bounded
values or the sublevel sets of L in u are bounded, then the
level sets of f in u are bounded. Namely, let B ⊂ Cx be a
bounded set and let L = {(x, u) : x ∈ B, u ∈ D(x)}, for
α ∈ R. The sublevel sets of f in u are defined by {(x, u) ∈
B ×R

m : f (x, u) ≤ α} = L ∩ {(x, u) ∈ B ×R
m : L(x, u) ≤ α}.

Using [13, Corollary 3.27] and the fact that f is sublevel
bounded in u, we conclude that f is level coercive in u. Then,
using [13, Th. 3.26], we conclude that f ∞(0, u) > 0 (see
the horizon function in [13, Definition 3.17]) for all u �= 0.
Then, using [13, Corollary 7.43], we conclude that κ∗ is sin-
gle valued on dom κ∗ and it is continuous on the interior
of its domain. Since f is proper, lower semicontinuous, and
sublevel bounded in u, using [13, Th. 1.9] we conclude that
dom κ∗ = Cx.

VI. GUARANTEEING CONTINUITY OF THE OPTIMAL

SAFE CONTROL LAW

Building from the results in Sections IV and V, we for-
mulate conditions for synthesizing an optimal, safe, and
continuous control law. The constraint map D is induced using
CBF (safety constraint) as well as control and state constraints.

A. Continuous, Safe, and Optimal Control Law
As indicated in Theorem 1, to ensure safety, the selection of

the control law in the outer neighborhood of the zero sublevel
set of the CBF should be restricted appropriately. Let the set-
valued map D : Cx ⇒ Cu be defined as

D(x) :=
{

D̄0(x) if x ∈ S1
U(x) otherwise,

(14)
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where D̄0 ⊂ U is given in the proof of Theorem 1
and indicates all safe feedback control laws on the set
S1, and S1 := cl(U(K)\K ∩ Cx) indicates the correspond-
ing outer neighborhood of the set K. Then, the set-valued
map D contains all feasible and safe feedback control laws.
To select a continuous control law from D by minimiz-
ing a cost function, based on Lemma 3, D should be
continuous.

As explained in Remark 2, the map D̄0 generally is not
continuous. Here, we construct a continuous set-valued map
˜U from D. To do this, we should design ˜U such that it is a
subset of D̄0 when x ∈ S1 and also it blends smoothly with
the set-valued map U on the boundary of S.

Assumption 5: The set-valued map U is outer semicontin-
uous.

In the following result, we formulate conditions guarantee-
ing the selection of a continuous control law by minimizing a
cost function and simultaneously ensuring safety.

Theorem 2: Consider �U in (4) such that Assumptions 1-5
hold. Let B : Rn → R be a locally Lipschitz CBF with respect
to (Xo, Xu) ⊂ R

n × R
n defining the set K in (7). Suppose

1) The function g : Cx × Cu → R defined in (9) is convex
in u,

2) There exists a neighborhood of ∂K such that the set-
valued map D0 : Cx ⇒ Cu defined in (11) for γ

identically zero is nonempty.
Let S1 = cl(U(K)\K ∩Cx) be a neighborhood of ∂K such that
D0 is nonempty and (8) holds. Suppose ˜U : Cx ⇒ Cu satisfies
the following properties:

3) ˜U is continuous with nonempty, closed, and convex
values,

4) For each x ∈ S1, ˜U(x) ⊂ D̄0(x),
5) For each x ∈ Cx, ˜U(x) ⊂ U(x).

Let L : Rn×R
m → R be proper, lower semicontinuous, convex

in both arguments, and strictly convex in its second argument.
Let κ∗ : Cx → Cu be defined by

κ∗(x) = argmin L(x, u)

s.t. u ∈ ˜U(x). (15)

If one of the following conditions holds
1) L is sublevel bounded in u;
2) The set-valued map ˜U has bounded values,

then κ∗ is continuous on int(Cx), and the resulting differential
inclusion �κ∗ is safe with respect to (Xo, Xu), namely, κ∗ is
the optimal safe control law.

Proof: Lemma 3 implies that κ∗ is single valued on Cx and
continuous on int(Cx). Since κ∗ is a continuous selection from
a subset of D̄0 on U(∂K)\K, then �κ∗ satisfies 〈ζ, η〉 ≤ 0
for each x ∈ (U(∂K)\K) ∩ Cx, ζ ∈ ∂CB(x), and for each
η ∈ F(x, κ∗(x)). Therefore, [5, Th. 4] implies that K is forward
pre-invariant for �κ∗ . Then, �κ∗ is safe w.r.t. (Xo, Xu).

B. A Sample Construction of ˜U
Because D consists of two set-valued maps D̄0 and U , to

construct the continuous set-valued map ˜U from D, we need to
apply two types of blending. In general, D̄0 is not continuous,
as a result of discontinuity in g with respect to x. In obstacle
avoidance, for example, when the barrier function is defined
as the minimum or maximum of some hyperplanes, there are
discontinuities in g as different constraints are active in the

different regions around the obstacle. First, we should find
some continuous map Ds

0 : S1 → Cu such that Ds
0(x) ⊂ D̄0(x)

for each x ∈ S. Second, we must blend continuously two
continuous maps, Ds

0 and U .
In Example 1, we present an approach to smoothen D̄0 when

the unsafe set is defined as a system of linear inequalities,
and the barrier function is defined as the minimum of the
hyperplanes corresponding to the unsafe set.

Here, we present an approach for continuously blending two
continuous maps using the Minkowski sum. Let S ⊂ R

n and
ε : S → R>0 be continuous. The ε-neighborhood of S, Uε(S),
is defined as Uε(S) := ⋃

x∈S(x + ε(x)B).
Lemma 4: Consider a closed set K ⊂ R

n, and set-valued
maps F1 : K ⇒ R

m and F2 : Uε(∂K) ⇒ R
m that are contin-

uous with closed and convex values, where ε : ∂K → R>0 is
a continuous function such that ε(x) > ε1 for each x ∈ ∂K,
where ε1 ∈ R>0. Then, the set-valued map G : K∪Uε(∂K) ⇒
R

m defined as

G(x) :=
⎧

⎨

⎩

F1(x) if x ∈ K\Uε1(∂K)

F3(x) if x ∈ K ∩ Uε1(∂K)

F2(x) if x ∈ Uε(∂K)\K
(16)

where F3(x) := d(x,∂K)
ε1

F1(x)+(1− d(x,∂K)
ε1

)F2(x), is lower and
outer semicontinuous with closed and convex values.

Proof: Since ∂K is a closed set, then the distance function
x �→ d(x, ∂K) is continuous [13]. Therefore, F3 is continu-
ous. Since F1 and F2 have closed and convex values, using
the Minkowski sum of two closed and convex sets is closed
and convex [26], we conclude that F3 has closed and con-
vex values. For each x ∈ ∂K, F3(x) = F2(x) and for each
x ∈ ∂(K\Uε1(∂K)), F3(x) = F1(x), therefore, G is continuous
with closed and convex values.

Example 1: Consider the system �U : ẋ = Ax + Bu with
x ∈ R

2. Suppose we have a rectangular shape obstacle. Let p0
be the central point of the obstacle and, for each i ∈ {1, . . . , 4},
qi denotes the middle point of each edge of the obstacle.
The unsafe set is defined as the intersection of the halfs-
paces (p0 − qi)

�(x − qi) > 0 for i = 1, . . . , 4. We have
Xu = {x ∈ R

2 : Aux > bu}, where Au = (p0 −q1, p0 −q2, p0 −
q3, p0 − q4)

�, and bu = ((p0 − q1)
�q1, (p0 − q2)

�q2, (p0 −
q3)

�q3, (p0 − q4)
�q4)

�. Let U : R
2 ⇒ R

2 be defined as
U(x) = [−a, a]2, with a > 0.

We set the initial set, Xo, to be the complement of the
unsafe set with an extra buffer distance, as Xo = R

2\{x ∈
R

2 : Aux > bu − d1}, where 1 denotes a vector of
ones, and d denotes the extra distance. Next, we define
K = X0 and the CBF as B(x) := mini∈{1,...,4} Bi(x) for
each x ∈ R

2, where the Bi is given by Bi(x) := (p0 −
qi)

�(x − qi) + d for i ∈ {1, . . . , 4}. Based on [19, Proposition
2.3.12], the Clarke generalized gradient of B is given by
∂CB(x) = {∑i∈I(x) θi∇Bi(x) : θi ≥ 0,

∑

i∈I(x) θi = 1}, where
I : R

2 ⇒ {1, . . . , 4} indicates the active Bis and is defined
as I(x) := {i : B(x) = Bi(x), i ∈ {1, . . . , 4}}. The func-
tion g from Theorem 2 is g(x, u) = sup{〈∑i∈I(x) θi(p0 −
qi), Ax + Bu〉 : θi ≥ 0, i ∈ I(x),

∑

i∈I(x) θi = 1}.
This optimization problem is over θ and of the form has
a linear function over the probability simplex. Therefore,
g(x, u) = max{〈∇Bi(x), Ax + u〉, i ∈ I(x)}. Since g is the
pointwise maximum of affine functions in u, it is convex
in u. Then, D0 in Theorem 2 is given by D0(x) = {u ∈
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Fig. 1. Trajectories of Example 1. The obstacle is the green rect-
angle and the initial set is the area outside of the yellow and green
regions.

[−a, a]2 : 〈p0 − qi, Ax + Bu〉 < 0, ∀i ∈ I(x)}. We observe
that the map D0 is nonempty. First, we want to smoothen
the discontinuities of D̄0, which is induced by changing
the active constraints. We define Iα for some α > 0 as
Iα(x) := {i : |B(x) − Bi(x)| ≤ α, i ∈ {1, . . . , 4}}. When
I(x) = Iα(x), the conditions to satisfy are ∇Bi(x)�(Ax +
Bu) ≤ 0, for each i ∈ I(x). Let φ(x) := π |B(x)−Bj(x)|

2α
for

j ∈ Iα(x)\I(x). Then, for each i ∈ I(x), j ∈ Iα(x)\I(x) we
have (sin(φ(x))∇Bi(x) + cos(φ(x))∇Bj(x))�(Ax + Bu) ≤ 0.
At a point x, where I(x) is not equal to Iα(x), it means
that x is near the area of changing the active constraints.
Using sin and cos functions, we smoothen these transitions.
We define ˜U(x) = {u ∈ [ − a, a]2 : H(x)�u ≤ h(x)}, where
H is defined based on the conditions we explained above as

H(x) =
(

(p0 − qi)
�B

(sin(φ)(p0 − qi) + cos(φ)(p0 − qj))
�B

)

for each

i ∈ I(x), and j ∈ Iα(x)\I(x). The function h is defined as

h(x) =
( −(p0 − qi)

�Ax
−(sin(φ)(p0 − qi) + cos(φ)(p0 − qj))

�Ax

)

, and we

add max{0,−MB(x)} to every row of h for some sufficiently
large positive number M to make the constraint H(x)�u ≤ h(x)
ineffective when x is in the safe region. We use this method
instead of the one in Lemma 4 since that can result in a set-
valued map with nonconvex values. Considering that all the
constraints defining ˜U are affine with respect to u at each
x, and the constraints with strict inequality are nonempty,
[13, Example 5.10] implies that ˜U is continuous. Furthermore,
˜U has nonempty and compact values. Theorem 2 implies
that if the cost function L is lower semicontinuous, con-
vex and strictly convex in u, then the optimal control law
κ∗ is continuous and safe. Figure 1 shows trajectories using

L(x, u) = 1
2 u�u, V(x) := 1

2 x2, A =
(

0 1
−1 − 1

)

, B = I,

α = 0.01, M = 100, and a = 5. Simulation files available at
https://github.com/HybridSystemsLab/NonSmoothCBF.

VII. CONCLUSION

This letter studies controlled safety of constrained dif-
ferential inclusions using nonsmooth CBFs. We develop
sufficient conditions to select a continuous control law
using CBFs. Furthermore, we study conditions to find
optimal safe control laws while minimizing the cost func-
tion. We illustrate the results in an obstacle avoidance
example.

REFERENCES

[1] M. Nagumo, “Über die lage der integralkurven gewöhnlicher differen-
tialgleichungen,” in Proc. Physico-Math. Soc. Jpn. 3rd Ser., vol. 24,
1942, pp. 551–559.

[2] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems
using barrier certificates,” in Proc. Int. Workshop Hybrid Syst. Comput.
Control, 2004, pp. 477–492.

[3] A. Agrawal and K. Sreenath, “Discrete control barrier functions for
safety-critical control of discrete systems with application to bipedal
robot navigation,” in Proc. Robot. Sci. Syst., vol. 13. Cambridge, MA,
USA, 2017, pp. 1–10.

[4] H. Kong, F. He, X. Song, W. N. Hung, and M. Gu, “Exponential-
condition-based barrier certificate generation for safety verification
of hybrid systems,” in Proc. Int. Conf. Comput.-Aided Verif., 2013,
pp. 242–257.

[5] M. Maghenem and R. G. Sanfelice, “Sufficient conditions for forward
invariance and contractivity in hybrid inclusions using barrier functions,”
Automatica, vol. 124, Feb. 2021, Art. no. 109328.

[6] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proc. Vol., vol. 40, no. 12, pp. 462–467, 2007.

[7] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.

[8] P. Glotfelter, I. Buckley, and M. Egerstedt, “Hybrid nonsmooth barrier
functions with applications to provably safe and composable collision
avoidance for robotic systems,” IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 1303–1310, Apr. 2019.

[9] A. Isaly, B. C. Allen, R. G. Sanfelice, and W. E. Dixon, “Encouraging
volitional pedaling in functional electrical stimulation-assisted cycling
using barrier functions,” Front. Robot. AI, vol. 8, Nov. 2021,
Art. no. 742986.

[10] M. Maghenem and R. G. Sanfelice, “Multiple barrier function certifi-
cates for forward invariance in hybrid inclusions,” in Proc. Amer. Control
Conf. (ACC), 2019, pp. 2346–2351.

[11] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions
with applications to multi-robot systems,” IEEE Contr. Syst. Lett., vol. 1,
pp. 310–315, 2017.

[12] A. Isaly, M. Ghanbarpour, R. G. Sanfelice, and W. E. Dixon, “On the
feasibility and continuity of feedback controllers defined by multiple
control barrier functions for constrained differential inclusions,” in Proc.
Amer. Control Conf. (ACC), 2022, pp. 5160–5165.

[13] R. T. Rockafellar and R. J. B. Wets, Variational Analysis, vol. 317.
Berlin, Germany: Springer, 1997.

[14] J. Chai and R. G. Sanfelice, “Forward invariance of sets for hybrid
dynamical systems (Part II),” IEEE Trans. Autom. Control, vol. 66, no. 1,
pp. 89–104, Jan. 2021.

[15] J.-P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and
Viability Theory, vol. 264. Berlin, Germany: Springer, 2012.

[16] J. P. Aubin, Viability Theory. Cambridge, MA, USA: Birkhäuser Boston
Inc., 1991.

[17] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth
Analysis and Control Theory, vol. 178. New York, NY, USA: Springer,
2008.

[18] R. Freeman and P. V. Kokotović, Robust Nonlinear Control Design:
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