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Abstract—Long short-term memory (LSTM) neural
networks excel at capturing short- and long-term
dependencies, making them powerful tools for system
identification and state estimation. Their unique design
improves memory capabilities by retaining important
information and discarding irrelevant data over time.
However, due to mathematical challenges involved in devel-
oping adaptive control methods for LSTMs, their training
is predominantly limited to offline methods. This letter
develops a Lyapunov-based (Lb-) LSTM observer for state
estimation in nonlinear systems. The Lb-LSTM weights
adapt in real-time using Lyapunov-based stability-driven
adaptation laws. A nonsmooth Lyapunov-based stability
analysis ensures state estimation error convergence and
stability of the overall Lb-LSTM architecture. To validate the
developed observer design, simulations were performed
to estimate the unknown angular velocity states of a two-
link robot manipulator. The developed method yielded a
41.13% improvement in the root mean square estimation
error when compared to an adaptive RNN observer.

Index Terms—Long short-term memory, neural networks,
Lyapunov methods, adaptive control, nonlinear control
systems.

I. INTRODUCTION

AKEY element of human learning and cognition is the
ability to remember important information. In an effort

to leverage the pivotal impact of memory, prior work in [1]
proposed a control method to incorporate external memory
within a feedforward neural network (NN)- based controller.
This inclusion of memory into static NN structures has been
shown to accelerate learning and improve function approxi-
mation capabilities. Although a working memory can improve
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the overall performance of NNs, they remain feedforward and
static, and therefore exhibit no dynamic behavior or internal
memory capabilities.

In contrast, recurrent neural networks (RNNs) exhibit
dynamic behavior due to an internal memory inherent to the
architecture’s design. This enables RNNs to capture time-
evolving and cumulative effects in dynamic systems, which
make them capable of learning the internal dynamics of the
system [2], [3], [4]. However, both theoretical and empirical
findings indicate that although conventional RNN structures
can learn general dynamic behavior, they struggle to learn
long-term time dependencies [5]. This limitation is attributed
to the vanishing gradient problem, which in RNNs, causes
the weights associated with long-term state information to
become increasingly small as they are backpropagated through
time.

Aiming to enhance the memory capabilities of RNNs,
long short-term memory (LSTM) NNs are designed using
an explicit memory mechanism and additional gate units.
These features allow LSTMs to excel in learning both short-
and long-term time-dependencies and demonstrate superior
memory capabilities and performance compared to their tra-
ditional RNN counterparts. Thus, LSTMs are well-suited for
estimating dynamical systems where an accurate representa-
tion of accumulative effects is advantageous. Moreover, the
additional gating mechanisms augment learning of the internal
dynamics and state estimation [6]. However, the implementa-
tion of LSTMs is largely dependent either on offline training
methods [7], [8], [9], [10], [11], or training methods that
only update a portion of the weights online [12], whereas
adaptive control results are mostly restricted to simpler NN
architectures [2], [3], [13], [14], [15], [16]. Although offline
training techniques have well-established empirical success,
they often require extensive and sufficiently rich datasets.
Furthermore, they struggle to adapt to disturbances in real-time
due to their lack of continual learning. Compared to offline
learning approaches, online stability-driven methods consider
real-time data in a closed-loop framework and provide stability
guarantees. Our previous work in [6] develops Lyapunov-
based stability-driven weight adaptation laws for all weights of
the LSTM cell. However, this result only considers a tracking
control problem and assumes full-state feedback. Thus, an
adaptive LSTM architecture for real-time state estimation has
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not been considered. Developing an adaptive LSTM-based
observer is technically challenging since the observer error is
unknown and cannot be used in the adaptation laws.

In this letter, an adaptive Lyapunov-based (Lb-) LSTM
architecture is designed and implemented in an observer to
estimate unmeasurable states in a class of nonlinear systems.
Specifically, the developed observer leverages the dynamic
structure of LSTMs to produce an adaptive estimate of the
unknown system states. Since the unknown observer error is
not available for online learning, a dynamic filter is designed to
construct an auxiliary error that is implementable in the weight
adaptation law. Despite the challenges posed by the complex
structure of the LSTM cell, a continuous-time representation
of the LSTM architecture is constructed, and a Lyapunov
stability-driven adaptation law is developed for all weights of
the LSTM. To do so, Jacobians are computed of the LSTM
cell dynamics with respect to the weights. Compared to typical
offline LSTM methods (which can be used to provide an initial
condition for the observer), the developed method provides
lifelong, continued learning using an analytical adaptation
law, thereby providing significantly more robustness against
changes in parameters or reference signal. Thus, the developed
Lb-LSTM observer is able to learn the system dynamics
in real-time and adapt to model uncertainties without any
offline training requirements. A nonsmooth Lyapunov-based
stability analysis is performed that guarantees asymptotic
convergence of the estimation errors and stability of the Lb-
LSTM architecture. To validate the developed observer design,
simulations were performed to estimate the angular velocity
states of a two-link robot manipulator. The Lb-LSTM observer
yielded a 41.13% improvement in the estimation error when
compared to the adaptive shallow RNN observer in [2].

II. PROBLEM FORMULATION

Notation and Preliminaries: An identity matrix of size n is
denoted by In ∈ R

n×n. The Kronecker product is denoted ⊗.
The Hadamard (element-wise) product is denoted by � and
satisfies the following properties [17, Definition 9.3.1]. Given
any b, c ∈ R

n, b � c = Dbc and therefore, ∂
∂c (b � c) = Db,

where Db ∈ R
n×n denotes a diagonal matrix with the vector

b as its main diagonal. The function composition operator is
denoted by ◦, i.e., given appropriate functions f (·) and g(·),
f ◦ g(x) = f (g(x)). The notation

a.a.t.
(·) denotes the relation (·)

holds for almost all time (a.a.t.). Let h : R
n × R≥0 → R

n

denote a Lebesgue measurable and locally essentially bounded
function. The function y : I → R

n is called a Filippov solution
of ẏ = h(y, t) on the interval I ⊆ R≥0 if y is absolutely

continuous on I and ẏ
a.a.t.∈ K[h](y, t), where K[ · ] denotes

Filippov’s differential inclusion [18]. Given some functions f
and g and some w ∈ R, the notation f (w) = Om(g(w)) means
that ‖f (w)‖ ≤ M‖g(w)‖m for all w ≥ w0, where M ∈ R>0
and w0 ∈ R denote constants. The vectorization operator is
denoted by vec(·), i.e., given A � [ai,j] ∈ R

n×m, vec(A) �
[a1,1, . . . , a1,m, . . . , an,1, . . . , an,m]�. The p-norm is denoted
by ‖ · ‖p, where the subscript is suppressed when p = 2,
and the Frobenius norm is denoted by ‖ · ‖F � ‖vec(·)‖.
The vectorization operator satisfies the following properties
[17, Proposition 7.1.9]. Given any A ∈ R

n×m, B ∈ R
m×p,

and C ∈ R
p×r, vec(ABC) = (C� ⊗ A)vec(B), and therefore

∂
∂vec(B)vec(ABC) = C� ⊗ A.

A. System Dynamics

Consider a second-order nonlinear system modeled as1

ẋ1 = x2,

ẋ2 = g(x, u), (1)

where x � [x�
1 x�

2 ]� : R≥0 → R
2n and u : R≥0 → R

m

denote the generalized state and control input of the system,
respectively, and g : R

2n × R
m → R

n denotes an unknown
function. The following assumptions facilitate the subsequent
observer development.

Assumption 1: The unknown function g is continuously
differentiable.

Assumption 2: The system is assumed to be bounded-
input bounded-output stable. Furthermore, the control input
is assumed to be sufficiently smooth such that ‖u‖ ≤ u
and ‖u̇‖ ≤ u̇, where u, u̇ ∈ R>0 denote known constants.
Therefore, the state can be bounded as ‖x‖ ≤ x, and there is
a known, compact set Z ⊆ R

2n ×R
m such that z ∈ Z , where

z � [x� u�]� and x ∈ R>0 denotes a known constant.
Assumption 3: The system dynamics in (1) are observable.
Assumption 4: The state x1 is assumed to be known.

III. OBSERVER DEVELOPMENT

Since only the first state x1 is available for state feedback,
the objective is to design an adaptive Lyapunov-based (Lb-)
LSTM observer to estimate the unknown system dynamics.
Let x̂ � [x̂�

1 x̂�
2 ]� : R≥0 → R

2n denote the observer state esti-
mate. To quantify the objective of the observer, an estimation
error x̃1 : R≥0 → R

n and an auxiliary estimation error
r : R≥0 → R

n are defined as

x̃1 � x1 − x̂1, (2)

r � ˙̃x1 + αx̃1 + η, (3)

respectively, where α ∈ R>0 denotes a user-selected constant
and η : R≥0 → R

n denotes the output of a dynamic filter
designed to compensate for the lack of availability of r since
x2 is unknown. Based on the subsequent stability analysis, the
dynamic filter is designed as [2]

η � p − (α + kr)x̃1,

ṗ � −(kr + 2α)p − ν +
(
(α + kr)

2 + 1
)

x̃1,

ν̇ � p − αν − (α + kr)x̃1, (4)

where kr ∈ R>0, p : R≥0 → R
n, and ν : R≥0 → R

n denote a
user-defined constant, an internal filter variable, and auxiliary
filter output, respectively. The filter variables p and ν are
initialized such that p(0) = (α + kr)x̃1(0) and ν(0) = 0. The
developed dynamic filter in (4) uses x̃1 as an input, yielding
the filter outputs ν and η. The internal variable p of the filter
is utilized to generate the output η, circumventing the need
for the unmeasurable derivative of the estimation error ˙̃x1.

1The development in this letter is restricted to second-order systems for
the ease of illustration, but can be extended for nth order systems using the
observer development in [3].
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Fig. 1. LSTM model in (7), where the box represents the LSTM cell [6].

From (3) and (4), the dynamic filter can be related to the
unmeasurable auxiliary estimation error r as

r = ė + αe, (5)

where e : R≥0 → R
n is an auxiliary error defined as

e � x̃1 + ν. (6)

A. Adaptive Long Short-Term Memory (LSTM)
Architecture

Previous findings demonstrate that incorporating a memory
capable of accessing prior state information in a NN archi-
tecture both reduces data requirements for training and
accelerates learning [1], [19], [20], [21]. Unlike feedforward
NNs, RNNs possess an internal memory enabling them to
capture sequential dependencies and enhance function approx-
imation performance. Traditional RNNs struggle with learning
long-term dependencies, but LSTMs, equipped with three
additional gate units (the input, forget, and output gates), excel
at learning and retaining such dependencies. This makes them
well-suited for estimating dynamic system states, where long-
term memory and accurate representation of accumulative
effects are crucial for making informed predictions. Thus,
integrating an LSTM model into the observer design can
improve predictive accuracy and enable robust modeling.
Based on the design of continuous-time RNNs in works such
as [22], and using Euler’s method, an LSTM NN (see Fig. 1)
can be modeled in continuous-time as2

f
(
ζ,Wf

) = σg ◦ W�
f ζ,

i(ζ,Wi) = σg ◦ W�
i ζ,

c∗(ζ,Wc) = σc ◦ W�
c ζ,

o(ζ,Wo) = σg ◦ W�
o ζ,

ċ = −bcc + bc�c(ζ, c, θ),

ḣ = −bhh + bh�h(ζ, c, θ), (7)

2The LSTM cell architecture introduced in [5] operates in discrete-time
and is transformed into a continuous-time model as depicted in (7). This
conversion aims to adapt the LSTM cell to make it more appropriate for
controlling continuous-time systems. The parameters bc and bh in (7) emerge
from constructing the continuous-time model and can be adjusted to optimize
the performance of the continuous-time LSTM cell.

where bc, bh ∈ R>0 denote user-selected constants. The
concatenated state vector ζ ∈ R

l1 is augmented with a 1 to
incorporate a bias term and is defined as ζ � [z�, h�, 1]�,
where z ∈ R

2n+m denotes the LSTM input, h ∈ R
l2 denotes

the hidden state, l1 � 2n + m + l2 + 1, and l2 ∈ R>0
denotes the user-selected number of neurons in the weight
matrices. The cell state is denoted by c ∈ R

l2 , where
c(0) = h(0) = 0, and the sigmoid and tanh activation
functions are denoted by σg : R

l2 → R
l2 and σc : R

l2 →
R

l2 , respectively. The forget gate, input gate, cell gate,
and output gate of the LSTM are denoted by f (ζ,Wf ) ∈
R

l2 , i(ζ,Wi) ∈ R
l2 , c∗(ζ,Wc) ∈ R

l2 , and o(ζ,Wo) ∈
R

l2 , respectively, and the weight matrices are denoted by
W�

c ,W�
i ,W�

f ,W�
o ∈ R

l2×l1 , and W�
h ∈ R

n×l2 , where

θ � [vec(Wc)
�, vec(Wi)

�, vec(Wf )
�, vec(Wo)

�, vec(Wh)
�]�

∈ R
4l2l1+l2n. The functions �c(ζ, c, θ) ∈ R

l2 and �h(ζ, c, θ) ∈
R

l2 in the cell and hidden state dynamics are defined as

�c(ζ, c, θ) � f
(
ζ,Wf

) � c + i(ζ,Wi)� c∗(ζ,Wc),

�h(ζ, c, θ) � o(ζ,Wo)� (σc ◦�c(ζ, c, θ)),

respectively. To ensure the output of the LSTM has the
appropriate dimensions, a fully-connected layer is added to
the LSTM cell using the output weight matrix Wh. Thus, the
output of the LSTM 
(ζ, c, θ) ∈ R

n can be modeled as


(ζ, c, θ) = W�
h �h(ζ, c, θ). (8)

Let C(Z) denote the space of continuous functions over the
set Z . The universal function approximation property states
that the function space of (7) is dense in C(Z) [23, Th. 1.1],
and therefore, for any prescribed ε ∈ R>0, there exist ideal
weight matrices θ such that ‖g(x, u)−
(ζ, c, θ)‖ ≤ ε. Hence,
the system dynamics g(x, u) can be modeled using the LSTM
architecture in (7) as g(x, u) = 
(ζ, c, θ) + ε(z), where
ε : R2n+m → R

n denotes a function reconstruction error that
can be bounded as ‖ε‖z∈Z ≤ ε, where ε ∈ R>0 denotes
a bounding constant. The ideal weights are assumed to be
bounded as ‖Wj‖F ≤ W for all j ∈ {c, i, f , o, h}, where W ∈
R>0 denotes a known constant [6]. Therefore, taking the time-
derivative of (3) and using (1) and (2) yields

ṙ = 
(ζ, c, θ)+ ε(z)− ˙̂x2 + α ˙̃x1 + η̇, (9)

where η̇ can be determined by taking the time derivative of η
and using (3) and (4) to yield

η̇ = −(α + kr)r − αη + x̃1 − ν. (10)

B. Observer Design

While LSTMs have improved memory capabilities com-
pared to other NN architectures, their application has not been
explored for real-time state estimation. Offline approaches
remain static and do not allow updates of the NN weights
irrespective of system performance, resulting in a lack of
robustness to uncertainty in the dynamics. In contrast, adaptive
NN-based observers dynamically update the weights online
through stability-driven methods. Motivated by the adaptabil-
ity to changing conditions and improved robustness of adaptive
NN architectures, a Lb-LSTM using the shorthand notation

̂ � 
(ζ̂ , ĉ, θ̂ ) is constructed and an observer is designed as

˙̂x1 � x̂2,

˙̂x2 = 
̂+ kssgn(e)+ χ, (11)
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where ks ∈ R>0 denotes a user-selected con-
stant, ζ̂ � [ẑ�, ĥ�, 1]� : R≥0 → R

l1 , ẑ �
[x̂� u�]� : R≥0 → R

2n+m denotes the input of the LSTM
estimate, θ̂ � [vec(Ŵc)

�, vec(Ŵi)
�, vec(Ŵf )

�, vec(Ŵo)
�,

vec(Ŵh)
�]� : R≥0 → R

4l2l1+l2n denotes the adaptive weight
estimates, and χ ∈ R

n denotes an auxiliary term defined as
χ � −(3α + kr)η + (α2 + 2)x̃1 − ν. Thus, using the LSTM
model in (7) and the adaptive weight estimates θ̂ , the estimated
cell state ĉ and estimated hidden state ĥ evolve according to

˙̂c = −bcĉ + bc

(
f
(
ζ̂ , Ŵf

)
� ĉ + i

(
ζ̂ , Ŵi

)
� c∗(ζ̂ , Ŵc

))
,

(12)
˙̂h = −bhĥ + bh

(
o
(
ζ̂ , Ŵo

)
� σc ◦�c

(
ζ̂ , ĉ, θ̂

))
, (13)

respectively. Substituting the observer in (11) into (9) and
adding and subtracting 
(ζ̂ , ĉ, θ) yields

˙̃x1 = ẋ1 − ˙̂x1,

ṙ = 
̃+ ε(z)− kssgn(e)− χ + α ˙̃x1 + η̇ + N1, (14)

where 
̃ � 
(ζ̂ , ĉ, θ)− 
̂ and N1 � 
(ζ, c, θ)−
(ζ̂ , ĉ, θ).
Using the bounds on the tanh and sigmoid activation functions,
the auxiliary function N1 can be bounded as ‖N1‖ ≤ C1, where
C1 � 2W

√
l2.

C. Weight Adaptation Laws

Based on the subsequent stability analysis, the weight
adaptation law is designed as

˙̂
θ � 
̂′�e, (15)

where  ∈ R
(4l1l2+l2n)×(4l1l2+l2n) denotes a user-selected

positive-definite adaptation gain matrix and the short-hand
notation 
̂′ denotes the Jacobian 
̂′ � ∂
̂

∂θ̂
.

The Jacobian 
̂′ can be represented as 
̂′ �
[
̂′

Wc
, 
̂′

Wi
, 
̂′

Wf
, 
̂′

Wo
, 
̂′

Wh
], where 
̂′

Wj
� ∂
̂

∂vec(Ŵj)
for all j ∈

{c, i, f , o, h}. Using (8) and the chain rule, the Jacobians 
̂′
Wj

and 
̂′
Wh

can be expressed as 
̂′
Wj

= Ŵ�
h �̂

′
h,Wj

and 
̂′
Wh

=
In ⊗ ��

h (ζ̂ , ĉ, θ̂ ), for all j ∈ {c, i, f , o}, respectively, where

�̂ ′
h,Wj

� ∂�h(ζ̂ ,ĉ,θ̂ )
∂vec(Ŵj)

∀j ∈ {c, i, f , o}. Using (7), (12), and (13),
the properties of the Hadamard product, the properties of the
vectorization operator, and the chain rule, the terms �̂ ′

h,Wj
and

�̂ ′
h,Wo

can be expressed as

�̂ ′
h,Wj

= diag
(
σg

(
Ŵ�

o ζ̂
))
σ ′

c

(
�c

(
ζ̂ , ĉ, θ̂

))
�̂ ′

c,Wj
,

�̂ ′
h,Wo

= diag
(
σc

(
�̂c

))(
σ ′

g

(
Ŵ�

o ζ̂
))(

Il2 ⊗ ζ̂�)
,

for all j ∈ {c, i, f }, respectively, where �̂ ′
c,Wj

� ∂�c(ζ̂ ,ĉ,θ̂ )
∂vec(Ŵj)

∀j ∈
{c, i, f }. Likewise, using (7), (12), and (13), the terms �̂ ′

c,Wc
,

�̂ ′
c,Wi

, and �̂ ′
c,Wf

can be expressed as

�̂ ′
c,Wc

= diag
(
σg

(
Ŵ�

i ζ̂
))
σ ′

c

(
Ŵ�

c ζ̂
)(

Il2 ⊗ ζ̂�)
,

�̂ ′
c,Wi

= diag
(
σc

(
Ŵ�

c ζ̂
))
σ ′

g

(
Ŵ�

i ζ̂
)(

Il2 ⊗ ζ̂�)
,

�̂ ′
c,Wf

= diag
(
ĉ
)
σ ′

g

(
Ŵ�

f ζ̂
)(

Il2 ⊗ ζ̂�)
,

respectively, where σ ′
j (y) � ∂

∂zσj(z)|z=y, ∀j ∈ {c, g}, y ∈ R
l2 .

IV. STABILITY ANALYSIS

NNs like the LSTM architecture introduced in (7) are
nonlinear with respect to their weights. Furthermore, the
LSTM model introduces increased complexity due to the
inclusion of three gate units within its cell structure. To
address the mathematical issues arising due to the nonlinear
parameterization, a first-order Taylor Series approximation of
the LSTM in (7) and (8) is constructed, given by 
̃ = 
̂′θ̃ +
O2(θ̃), where O2(θ̃) ∈ R

n denotes the higher-order terms.
Thus, substituting this into (14) yields the closed-loop error
system

˙̃x1 = ẋ1 − ˙̂x1,

ṙ = 
̂′θ̃ + N2 − kssgn(e)− χ + α ˙̃x1 + η̇, (16)

where N2 � N1 + O2(θ̃)+ ε(z).
To facilitate the stability analysis, let a candidate Lyapunov

function VL : Rψ → R≥0 be defined as

VL(ξ) �
1

2
η�η + 1

2
ν�ν + 1

2
x̃�

1 x̃1 + 1

2
r�r + P + α

2
θ̃�−1

θ̃ ,

(17)

where the concatenated state vector ξ : R≥0 → R
ψ is defined

as ξ � [x̃�
1 , r�, η�, ν�, θ̃�,

√
P]�, ψ � 4n+4l1l2+l2n+1,

and P : R≥0 → R denotes a subsequently designed P-function.
The candidate Lyapunov function in (17) can be bounded as
β1‖ξ‖2 ≤ VL(ξ) ≤ β2‖ξ‖2, where β1 � min{ 1

2 ,
α
2λmin{}}

and β2 � max{1, α2λmax{}}. Let the open and connected sets
D ⊂ R

ψ and S ⊂ R
ψ be defined as D � {ς ∈ R

ψ : ‖ς‖ <√
β1
β2
ω} and S = {ς ∈ R

ψ : ‖ς‖ < ω}, respectively, where
ω ∈ R>0 denotes a bounding constant. The universal function
approximation property only holds on the compact domain
Z . Therefore, the following stability analysis must guarantee
z(t) ∈ Z for all t ≥ 0 which is achieved by a stability result
that constrains ξ to a compact domain, specifically that ξ(t) ∈
S for all t ≥ 0 by initializing ξ(0) ∈ D.

Taking the time-derivative of VL using the chain rule for
nonsmooth systems in [24, Th. 2.2], substituting in the closed-
loop dynamics in (16), and canceling the coupling terms yields

V̇L
a.a.t.∈ r�(


̂′θ̃ + N2 − ksK
[
sgn

]
(e)− χ + α ˙̃x1 + η̇

)

+x̃�
1

˙̃x1 + η�η̇ + ν�ν̇ + Ṗ − αθ̃�−1 ˙̂
θ. (18)

Substituting (6) and the weight adaptation law in (15) into (18)
yields

V̇L
a.a.t.∈ r�(

N2 − ksK
[
sgn

]
(e)− χ + α ˙̃x1 + η̇ + N1

)

+x̃�
1

˙̃x1 + η�η̇ + ν�ν̇ + Ṗ + ė�
̂′θ̃ . (19)

Using the design of the dynamic filter in (4)-(6) and canceling
like terms yields

V̇L
a.a.t.∈ r�(

N2 − ksK
[
sgn

]
(e)− krr

) − (α + kr)x̃
�
1 x̃1

−αη�η + ν�(αx̃1 − αν)+ ė�
̂′θ̃ + Ṗ. (20)

Convergence of the estimation errors using the developed
adaptive LSTM architecture and overall observer design is
guaranteed in the following theorem.

To facilitate the subsequent stability analysis, let N3 � 
̂′θ̃ .
Using Assumptions 1 and 2, Lemma 1 in [6], and the facts
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that N2 + N3 = g(x, u) − 
(ζ̂ , ĉ, θ̂ ) and the LSTM 
 is
continuously differentiable by design, the bounds

‖N2‖ ≤ κ1, ‖N3‖ ≤ κ2,
∥∥Ṅ2 + Ṅ3

∥∥ ≤ κ3, (21)

hold when ξ ∈ S , where κ1, κ2, κ3 ∈ R>0 are known positive
bounding constants.

Theorem 1: Consider the system in (1). Let Assumptions
1-4 hold. The Lb-LSTM observer in (11) and the weight
adaptation law in (15) ensure asymptotic estimation error
convergence in the sense that ‖x2 − x̂2‖ → 0 as t → ∞,
provided ξ(0) ∈ D, the following gain condition is satisfied.

ks ≥ κ1 + κ2 + 1

α − 1
(ακ2 + κ3),

α > 1. (22)

Proof: Consider the Lyapunov candidate function in (17).
The P-function in (17) is designed as

P(t) � e−t ∗
(
(α − 1)

(
ks‖e‖1 − e�(N2 + N3)

))
+ ks‖e‖1

+e−t ∗
(
αe�N3 + e�(

Ṅ2 + Ṅ3
)) − e�(N2 + N3).

(23)

Using [25, Lemma 4] and (21), it can be shown that P(t) ≥ 0
for all t ≥ 0, provided the sufficient gain conditions in (22)
are satisfied.

Therefore, substituting the time-derivative of (23) into (20)
and using Young’s inequality, (20) can be further bounded as

V̇L
a.a.t.≤ −λ‖y‖2,

when ξ ∈ S , where λ � min{kr,
α
2 + kr, α,

α
2 , 1} and y �

[r�, x̃�
1 , η

�, ν�,
√

P]� denotes a concatenated state vector.

To show ξ ∈ S for all t ≥ 0, using the fact that V̇L(ξ(t))
a.a.t.≤ 0

and (17) implies ξ(t) can be bounded as ‖ξ(t)‖ ≤
√
β2
β1

‖ξ(0)‖
when ξ ∈ S . Thus, if ‖ξ(0)‖ ≤ ω

√
β1
β2
, then ‖ξ(t)‖ ≤ ω for

all t ≥ 0. Therefore, if the states ξ are initialized such that
ξ(0) ∈ D, then ξ ∈ S for all t ≥ 0. Since ξ ∈ S when
ξ(0) ∈ D, the bounds in (21) hold. To show z ∈ Z and the
universal function approximation property holds, let the open
and connected set ϒ ⊆ Z be defined as ϒ = {ς ∈ Z : ‖ς‖ <
x+ (3+α)ω+u}. Using the fact that ‖ξ(t)‖ ≤ ω for all t ≥ 0,
it can be shown that ‖x̃1(t)‖ ≤ ω, ‖η(t)‖ ≤ ω, and ‖r(t)‖ ≤ ω

for all t ≥ 0. Hence, using (2) and (3), ẑ can be bounded
as ‖ẑ‖ ≤ x + (3 + α)ω + u. Therefore, if ξ(0) ∈ D, then

ẑ ∈ ϒ ⊆ Z . Using (17) and the fact that V̇L
a.a.t.≤ 0 implies

x̃1, ν, η, r,P, θ̃ ∈ L∞. Therefore, the observer x̂ ∈ L∞ and
θ̂ ∈ L∞. Since x̂, θ̂ ∈ L∞ and the function 
 is continuously
differentiable, ˙̂

θ ∈ L∞. The extension of LaSalle-Yoshizawa
corollary in [26, Corollary 1] can be invoked to show ‖x̃1‖ →
0, ‖ν‖ → 0, ‖η‖ → 0, and ‖r‖ → 0 as t → ∞. Therefore,
using (3) and (4), it can be further shown that ‖x2 − x̂2‖ → 0
as t → ∞.

V. SIMULATION RESULTS

Comparative simulations were performed to demonstrate the
performance of the developed Lb-LSTM observer, where the
results were compared to the adaptive shallow RNN observer
in [2]. Simulations were performed to estimate the unknown

TABLE I
PERFORMANCE COMPARISON

Fig. 2. Plot of the estimate x̂2 of the first robot link over time for the
developed Lb-LSTM observer compared to the adaptive shallow RNN
observer in [2]. For visual clarity, only the first 10 s of the simulation are
shown.

angular velocity states of a two-link robot manipulator, which
is modeled as [27, eq. (80)]

ẋ1 = x2

ẋ2 = M−1(x1)((−V(x1, x2)− Fd)x2 + u)− Fs(x2), (24)

where x1 � [x11 x12]� : R≥0 → R
2 and x2 �

[x21 x2]� : R≥0 → R
2 denote the angular position and velocity

of the two links, respectively, and Fd ∈ R
2×2, Fs : R

2 →
R

2×2, M : R
2 → R

2×2, and V : R
4 → R

2×2 denote
the dynamic friction, static friction, inertia matrix and the
centripetal-Coriolis matrix, respectively, as defined in [27]. A
proportional derivative (PD) controller was selected as u =
15(x1 − x1d) + 5(x̂2 − x2d) to track the desired position tra-
jectory xd,1 = [ π6 sin(π2 t) π6 sin(π2 t) ]�. Each simulation was
performed for 50 seconds with a step size of 0.001 seconds,
and noise was added to the joint angle measurements from
a uniform distribution U(−0.5, 0.5) [deg]. The observer and
dynamic filter gains in (3), (4), and (11) were selected as
kr = 20, ks = 0.05, α = 60, and bc = bh = 10. For a
fair comparison, the same robust gains and dynamic filter was
used for both observers, and the comparative observer was
constructed by replacing the LSTM estimate in (11) with the
adaptive shallow RNN estimate developed in [2]. The LSTM
and RNN estimates were composed of l2 = 12 neurons each
with l1 = 19 for the LSTM. The LSTM and RNN weights
were randomly selected from a uniform distribution U(−2, 2),
with learning gains of  = 20 · I4l1l2+l2n for the LSTM and
Wf = 20 · I24 and Vf 1 = 20 · I96 for the shallow RNN.
The performance results of the two simulations are shown in
Table I and Figures 2 and 3.

The developed Lb-LSTM observer yielded a 41.13%
improvement in the root mean square estimation error. While
the estimation errors settled for both observers after approx-
imately 1 s, the Lb-LSTM observer yielded a significant
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Fig. 3. Plot of the estimation error norm ‖x̂2 − x2‖ over time for the
developed Lb-LSTM observer compared to the adaptive shallow RNN
observer in [2].

improvement in the steady state performance. As evident from
Figure 3, the adaptive shallow RNN observer produced small,
frequent spikes in the estimation error, which contributed to
a higher root mean square estimation error. Ultimately, the
developed Lb-LSTM architecture and adaptive observer design
resulted in significant improvements in estimation accuracy of
the unknown state x2 when compared to the baseline adaptive
shallow RNN observer.

VI. CONCLUSION

In this letter, an Lb-LSTM observer is designed for
nonlinear system state estimation. The developed Lb-LSTM
architecture adapts in real-time through Lyapunov stability-
driven adaptation laws. A nonsmooth Lyapunov-based stability
analysis is performed to guarantee convergence of the state
estimation error and stability of the overall Lb-LSTM observer
design. Comparative simulations are provided to estimate the
unknown angular velocity states of a two-link robot manipula-
tor. The simulation results show the developed method yielded
a 41.13% improvement in the root mean square estimation
error when compared to the adaptive shallow RNN observer
in [2]. Future work will incorporate the developed adaptive Lb-
LSTM observer into an output-feedback control architecture.
Additional efforts could implement the developed adaptive
LSTM observer for open-loop future state prediction or for
intermittent state feedback problems.
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