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Abstract—Deep neural networks (DNNs) and long short-
term memory networks (LSTMs) have grown in recent
popularity due to their function approximation performance
when compared to traditional NN architectures. However,
the predictions that may result from these networks often
do not align with physical principles. This letter intro-
duces the first physics-informed LSTM (PI-LSTM) controller
composed of DNNs and LSTMs, where the weight adapta-
tion laws are designed from a Lyapunov-based analysis.
The developed PI-LSTM combines DNNs and LSTMs for
the purpose of function approximation and memory while
respecting the underlying system physics. Simulations
were performed to demonstrate feasibility and resulted in a
root mean square tracking error of 0.0185 rad and a 33.76%
improvement over the baseline method.

Index Terms—Long short-term memory, physics-
informed learning, nonlinear control systems.

I. INTRODUCTION

IN RECENT years, with the improvement of computing
power, there has been a surge in deep learning and its

applicability in a wide range of control applications. Deep
neural network (DNN)-based control has become increasingly
popular due to the improved function approximation capabil-
ities of DNNs when compared to shallow neural networks
(NNs) [1], [2], [3], [4]. In particular, DNNs have been shown
to be exponentially more efficient regarding the number of
neurons required to achieve similar function approximation
performance [5].
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In general, NN architectures are popular due to their ability
to approximate functions over a compact space for applications
which have no model knowledge and rely solely on output
data. However, in some applications, partial knowledge of
the dynamics may be available. As a result, physics-informed
learning emerged as a strategy which aims to incorporate
established physical principles into the learning architec-
tures [6], [7], [8]. This strategy allows physics-informed
neural networks (PINNs) to make more realistic and more
accurate predictions when compared to their traditional black-
box NN counterparts. Results such as [6], [9], [10], [11]
develop PINNs suitable for modeling and control of dynamical
systems. However, these works implement offline training
methods to update the PINN architectures and do not adapt the
weights of the PINN online using real-time data. Offline train-
ing requires state-derivative information and representative
training sets. While such methods could be used as an initial
condition (but are not required if training data is not available),
real-time weight adaptation can learn in dynamic environments
and offers stability guarantees while incorporating streams of
new data.

Results in [2], [12], [13], [14] develop adaptive control tech-
niques using Lyapunov-based weight adaptation laws which
allow for online learning with DNNs. Recently, Lyapunov-
based techniques were also used to develop an adaptive PINN
architecture using the known structure of Euler-Lagrange
model dynamics [14]. The PINN architecture in [14] is
composed of multiple feedforward DNNs which estimate
the unknown inertia, centripetal-Coriolis, potential, and dis-
sipation effects. However, feedforward DNNs are unable to
capture temporal relationships and history-dependent behav-
iors. Many systems involve complex physics which can
be characterized using history-dependent inertia, centripetal-
Coriolis, potential, and dissipation effects. Some examples
include systems composed of smart materials, or experience
fluid-structure interaction, human-machine interaction, electro-
magnetic effects, and etc. Thus, there is a need to augment
the PINN architecture to account for these phenomena.

Motivated by the desire to capture time-dependent rela-
tionships, long short-term memory (LSTM) NNs have been
developed and have gained popularity due to their ability to
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retain relevant information across multiple time steps [15].
Specifically, the LSTM cell includes an explicit memory which
can be used to model internal dynamics and complex temporal
behaviors. When integrated with control systems, LSTMs have
been shown to improve function approximation and reduce
control effort [12], [16], [17]. The result in [12] develops
Lyapunov-based stability-driven weight adaptation laws for
all weights of the LSTM cell; however, this result does not
incorporate a physics-informed approach.

This letter provides the first result on an adaptive PI-
LSTM-based control architecture which merges the function
approximation capabilities of DNNs and memory retention
attributes of LSTMs to model and compensate for unknown
system dynamics while using physical insight. Unlike the
black-box DNN architectures in previous results [2], [12], the
developed PI-LSTM controller incorporates physical insight
into the architecture. The PI-LSTM weights are updated in
real-time using adaptation laws derived from a Lyapunov-
based stability analysis. The Lyapunov-based PI-LSTM
demonstrates a significant advancement in physics-informed
learning for control which offers accurate modeling combined
with real-time adaptability while maintaining physical plau-
sibility. A Lyapunov-based stability analysis is performed to
ensure asymptotic tracking error convergence and bounded-
ness of the developed PI-LSTM controller. Simulations were
performed on a two-link robot manipulator and yielded an root
mean square (RMS) tracking error of 0.0185 rad and achieved
a 33.76% improvement over the baseline method presented
in [14].

II. PROBLEM FORMULATION

Notation and Preliminaries: Given A � [aj,i] ∈ R
n×m,

vec(A) � [a1,1, . . . , a1,m, . . . , an,m]�. Given any A ∈ R
n×m,

B ∈ R
m×p, and C ∈ R

p×r, vec(ABC) = (C� ⊗ A)vec(B).

The notation
a.a.t.
(·) denotes the relation (·) holds for almost all

time (a.a.t.). The notation K[ · ] denotes Filippov’s differential
inclusion applied on [ · ] [18]. The right-to-left matrix product

operator is represented by
�∏

, i.e.,

�

m∏

p=1
Ap = Am . . .A2A1 and

�

m∏

p=a
Ap = 1 if a > m. The Kronecker and Hadamard (element-

wise) products are defined by ⊗ and �, respectively, given any
a, b ∈ R

n, a�b = Dab, and therefore, ∂
∂b (a�b) = Da, where

Da ∈ R
n×n denotes a diagonal matrix with the vector a as its

main diagonal. Function composition is defined by ◦ where
(f ◦g)(x) � f (g(x)). The identity matrix of size n×n is denoted
by In. Given some functions f and g and some w ∈ R, the
notation f (w) = Om(g(w)) means that ‖f (w)‖ ≤ M‖g(w)‖m

for all w ≥ w0, where M ∈ R>0 and w0 ∈ R denote constants.

A. Model Dynamics and Control Objective

Consider an uncertain Euler-Lagrange system modeled as

M(q)q̈ + V(q, q̇)q̇ + G(q)+ F(q̇)+ τd(t) = τ(t), (1)

where q, q̇, q̈ ∈ R
n denote the generalized position, velocity,

and acceleration, respectively. The generalized inertia matrix,

generalized centripetal-Coriolis effects, generalized potential
forces, generalized dissipation effects, the time-varying distur-
bances, and the control input are denoted by M ∈ R

n×n, V ∈
R

n×n, G ∈ R
n, F ∈ R

n, τd ∈ R
n, and τ ∈ R

n, respectively. The
system disturbances are assumed to be bounded as ‖τd(t)‖ ≤
d, where d ∈ R>0 denotes a known constant. The system in (1)
satisfies following properties described in [19, Sec. 2.3].

Property 1: The inertia matrix M(q), satisfies m1‖ζ‖2 ≤
ζ�M(q)ζ ≤ m2‖ζ‖2 for all ζ, q ∈ R

n, where m1,m2 ∈ R>0
denote known constants.

Property 2: The time-derivative of the inertia matrix and
centripetal-Coriolis matrix satisfy the skew-symmetry relation,
ζ�(Ṁ(q)− 2V(q, q̇))ζ = 0, for all q, q̇, ζ ∈ R

n.
The control objective is to design a PI-LSTM controller

to asymptotically track a user-defined, time-varying desired
trajectory, qd ∈ R

n, which is designed to be sufficiently
smooth such that qd(t), q̇d(t), q̈d(t) ∈ Q, for all t ∈ R≥0,
where Q ⊆ R

n denotes a known compact set. To quantify
the objective, the tracking error e ∈ R

n and auxiliary tracking
error r ∈ R

n are defined as

e � q − qd, r � ė + αe, (2)

respectively, where α ∈ R>0 denotes a user-selected con-
stant control gain. Quantitatively, the objective is to ensure
‖e(t)‖ → 0 and ‖r(t)‖ → 0 as t → ∞. Using (1)-(2), the
open-loop dynamics for r can be determined as

M(q)ṙ = τ − M(q)(q̈d − αė)− V(q, q̇)(q̇d − αe)

− G(q)− F(q̇)− τd − V(q, q̇)r. (3)

III. CONTROL LAW DEVELOPMENT

A. Adaptive PI-LSTM Architecture

Recent trends show an increased implementation of PINN
architectures in control design, because they use known
physical properties of systems to enhance the model accuracy
and generalization [6]. Leveraging the memory capabilities
and improved transient performance of LSTMs, the developed
method combines LSTM cells which capture dynamic time
dependencies with the function approximation power of
feedforward DNN terms. Motivated by the known struc-
ture of Euler-Lagrange dynamics, the developed PI-LSTM
structure is developed to individually approximate the con-
tribution of the unknown terms M(q), V(q, q̇), G(q), and
F(q̇) based on the model structure (e.g., functional depen-
dencies, vectors that multiply by each uncertainty) thereby
integrating the physics into the architecture. This differs from
black box approaches that approximate the entirety of the
dynamics.

B. Deep Neural Network (DNN) Model

A family of feedforward DNNs �i(xi, θi) ∈ R
Lk+1,i can be

modeled as [2]

�i(xi, θi) �
(

v�
ki
φk,i ◦ · · · ◦ v�

1i
φ1,i

)(
v�

0i
xa,i

)
, (4)

for i ∈ {M,V,F,G}, where all of the weights within
�i are represented by θi � [vec(v0i)

�, . . . , vec(vki)
�]� ∈

Authorized licensed use limited to: University of Florida. Downloaded on January 29,2024 at 16:28:10 UTC from IEEE Xplore.  Restrictions apply. 



HART et al.: LYAPUNOV-BASED PHYSICS-INFORMED LSTM NEURAL NETWORK 15

R

∑ki
j=0 Lj,iLj+1,i , and vj,i ∈ R

Lj,i×Lj+1,i denotes the matrix of
weights and biases in the jth hidden layer, Lj,i ∈ N denotes
the number of nodes within the jth hidden layer for all j ∈
{0, . . . , ki}, ki ∈ N denotes the number of hidden layers,
and L0,i � mi + 1, where mi is the size of the input
to the DNN. The vector of smooth1 activation functions at
the jth layer is denoted by φj,i ∈ R

Lj,i and is defined as
φj,i � [ςj,i,1 · · · ςj,i,Lj−1 1 ]�, where ςj,i,y ∈ R denotes the
activation function at the yth node of the jth layer for all j ∈
{1, . . . , ki} and i ∈ {M,V,F,G}. The augmented input xa,i ∈
R

mi+1 is defined as xa,i �
[
x�

i 1
]�

, where xi ∈ 
i denotes the
input to the DNN, and 
i ⊂ R

mi denotes a compact set for all
i ∈ I. To incorporate a bias term into the DNN model in (4),
the input xi and the activation functions φj,i are augmented
with a 1 for all j ∈ {1, . . . , ki} and i ∈ {M,V,F,G}.

To facilitate the development of the weight adaptation laws,
the DNN model in (4) can also be represented recursively
using shorthand notation �j,i as [2]

�j,i �
{

v�
j,iφj,i

(
�j−1,i

)
, j ∈ {1, . . . , ki},

v�
0,ixa,i j = 0,

(5)

where �i(xi, θi) = �ki,i, for all i ∈ {M,V,F,G}.

C. Long Short-Term Memory (LSTM) Model

The incorporation of LSTM cells within the PINN archi-
tecture enables NN estimates to leverage previous state
information to capture any dynamical behavior that the feed-
forward DNN cannot, improving prediction accuracy.

An LSTM cell for i ∈ {M,V,F,G} can be modeled in
continuous time as [12]

f
(
zi,Wf ,i

) = σg ◦ W�
f ,izi, p

(
zi,Wp,i

) = σg ◦ W�
p,izi,

o
(
zi,Wo,i

) = σg ◦ W�
o,izi, c̃

(
zi,Wc,i

) = σc ◦ W�
c,izi,

ċi = −bc,ici + bc,i�c(zi, ci, ϑi),

ḣi = −bh,ihi + bh,i�h(zi, ci, ϑi), (6)

where user-selected constants are given by bc,i, bh,i ∈ R>0, the
cell and hidden states are denoted by ci ∈ R

l2,i and hi ∈ R
l2,i

respectively where ci(0) = hi(0) = 0 for all i ∈ {M,V,F,G},
and l2,i ∈ R>0 denotes the number of neurons within the
LSTM. The concatenated state vector zi ∈ R

l1,i is defined as
zi � [x�

i , h�
i , 1]�, where l1,i � mi + l2,i + 1. The state zi

is augmented with 1 to incorporate a bias term. The forget
gate, input gate, cell gate, and output gate are represented
by f (zi,Wf ,i) ∈ R

l2,i , p(zi,Wp,i) ∈ R
l2,i , c̃(zi,Wc,i) ∈ R

l2,i ,
and o(zi,Wo,i) ∈ R

l2,i , respectively, and the vector sigmoid
and tanh activation functions are denoted by σg ∈ R

l2,i and
σc ∈ R

l2,i , respectively. The weight matrices are given by
W�

f ,i,W�
c,i,W�

p,i,W�
o,i ∈ R

l2,i×l1,i , and W�
h,i ∈ R

l3,i×l2,i , where

the size of the output is defined as l3,i � n for i ∈ {F,G}
and l3,i � n2 for i ∈ {M,V}, and the collection of adaptive
weight estimates is given by ϑi � [vec(Wc,i)

�, vec(Wp,i)
�,

vec(Wf ,i)
�, vec(Wo,i)

�, vec(Wh,i)
�]�∈ R

4l2,il1,i+l2,il3,i for
i ∈ {M,V,F,G}. The functions �c,i(zi, ci, ϑi) ∈ R

l2,i and

1To consider nonsmooth activation functions, the switched systems analysis
in [2] can be used with the subsequent control development.

�h,i(zi, ci, ϑi) ∈ R
l2,i in the cell and hidden state dynamics

are defined as

�c(zi, ci, ϑi) � f
(
zi,Wf ,i

) � ci + p
(
zi,Wp,i

) � c̃
(
zi,Wc,i

)
,

�h(zi, ci, ϑi) � o
(
zi,Wo,i

) � (σc ◦�c(zi, ci, ϑi)),

respectively. To ensure the output of the LSTM is of the
appropriate dimension, a fully-connected layer with weight
matrix Wh is added to the LSTM cell. Thus, the output of the
ith LSTM �i(zi, ci, ϑi) ∈ R

l3,i can be modeled as

�i(zi, ci, ϑi) = W�
h,i�h(zi, ci, ϑi), (7)

for i ∈ {M,V,F,G}.

D. Adaptive PI-LSTM Control Strategy

Using the developed PI-LSTM architecture, an adaptive
estimate of the dynamics is developed and implemented in
the subsequently designed controller. The universal function
approximation property states that the space of DNNs given
by (5) is dense in C(
i), where C(
i) denotes a space of
continuous functions over 
i [20, Th. 3.2]. Therefore, for
any given fi ∈ C(
i) and prescribed ε̄i ∈ R>0, there exist
some ki,Lj,i ∈ N, and corresponding ideal weights and biases
θj,i ∈ R

Lj,i×Lj+1,i,∀j ∈ {0, . . . , ki}, such that supxi∈
i
‖fi(xi) −

χi(xi, θi)‖ ≤ ε̄i, for all i ∈ I. Based on this property,
the unknown terms M(q), V(q, q̇), G(q), and F(q̇) can be
modeled as

vec(M(q)) = χM(xM, θM, cM, hM, ϑM)+ εM(xM), (8)

vec(V(q, q̇)) = χV(xV , θV , cV , hV , ϑV)+ εV(xV), (9)

G(q) = χG(xG, θG, cG, hG, ϑG)+ εG(xG), (10)

F(q̇) = χF(xF, θF, cF, hF, ϑF)+ εF(xF), (11)

where the function χi defined as χi(xi, θi, ci, hi, ϑi) �
�i(xi, θi) + �i(xi, ci, hi, ϑi) represents the combined DNN-
LSTM estimate, where χi ∈ R

l3,i for i ∈ {M,V,F,G}. The
unknown function approximation errors are denoted as εi ∈
R

l3,i for i ∈ {M,V,F,G}.2 The inputs for each DNN-LSTM
are denoted as xM � q, xV � [q�, q̇�]�, xG � q, and
xF � q̇. The following assumption facilitates the subsequent
development.

Assumption 1: There exists known constants θ̄i ∈ R>0,
ϑ i ∈ R>0 such that the unknown ideal weights can be
bounded as ‖θi‖ ≤ θ̄i, ‖ϑi‖ ≤ ϑ̄i for all i ∈ {M,V,F,G}
[21, Assumption 1].

To ensure an appropriate output dimension of the PI-LSTM
estimate, the vectorization operator is applied to M(q) and
V(q, q̇). Using properties of the vectorization operator and
using (8)-(11) yields

M(q)ṙ = τ − τd −
(
(q̈d − αė)� ⊗ In

)
(χM + εM(xM))

− V(q, q̇)r −
(
(q̇d − αe)� ⊗ In

)
(χV + εV(xV))

− (χG + εG(xG))− (χF + εF(xF)). (12)

2The output of the DNN and the LSTM are of the same dimension such that
l3,i = Lk+1,i. Therefore the dimension of χi can be equivalently expressed
as χi ∈ R

Lk+1,i for all i ∈ {M,V,F,G}.
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Based on the subsequent stability analysis, an adaptive PI-
LSTM control input3 is designed as

τ(t) =
(
(q̇d − αe)� ⊗ In

)
χ̂V + χ̂G + χ̂F − k1r − e

+
(
(q̈d − αė)� ⊗ In

)
χ̂M − sgn(r)

(
k2

+ k3‖(q̇d − αe)� ⊗ In‖+k4‖(q̈d − αė)� ⊗ In‖
)
, (13)

where k1, k2, k3, k4 ∈ R>0 are user-defined control gains,
and χ̂i � χi(xi, θ̂i, ĉi, ĥi, ϑ̂i) ∈ R

l3,i denotes the com-
bined DNN and LSTM estimate for all i ∈ {M,V,G,F}.
Let the adaptive DNN and LSTM weight estimates
be denoted as θ̂i � [vec(v̂0,i)

�, . . . , vec(v̂k,i)
�]� ∈

R

∑ki
j=0 Lj,iLj+1,i and ϑ̂i � [vec(Ŵc,i)

�, vec(Ŵp,i)
�, vec(Ŵf ,i)

�,
vec(Ŵo,i)

�, vec(Ŵh,i)
�]� ∈ R

4l2,il1,i+l2,il3,i for all i ∈
{M,V,G,F}. Using the LSTM model in (6) and the adaptive
weight estimates ϑ̂i, the estimates of the cell state ĉi and
hidden state ĥi dynamics are

˙̂ci = −bc,iĉi + bc,i
(
f
(
ẑi, Ŵf ,i

) � ci

+ p
(
ẑi, Ŵp,i

) � c̃i
(
ẑi, Ŵc,i

))
, (14)

˙̂hi = −bh,iĥi + bh,i

(
o
(
ẑi, Ŵo,i

) � σc,i ◦�c,i

(
ẑi, ĉi, ϑ̂i

))
, (15)

respectively, for all i ∈ {M,V,G,F}, where ẑi � [x�
i , ĥ�

i , 1]�
denotes the augmented input of the LSTM.

Substituting (13) into (12) yields

M(q)ṙ = −
(
(q̇d − αe)� ⊗ In

)
(χV − χ̂V + εV)

−
(
(q̈d − αė)� ⊗ In

)
(χM − χ̂M + εM)− e

− χG + χ̂G − χF + χ̂F − k1r − τd − V(q, q̇)r

− sgn(r)
(

k2 + k3‖(q̇d − αe)� ⊗ In‖
)

− k4sgn(r)‖(q̈d − αė)� ⊗ In‖ − εG − εF. (16)

IV. PI-LSTM WEIGHT ADAPTATION LAWS

The development of Lyapunov-based adaptation laws for
the PI-LSTM architecture allows for continuous real-time
adaptation. Based on the subsequent stability analysis, the
weight adaptation laws are designed as

˙̂ZM = −�Mχ̂
′�
M

(
(q̈d − αė)� ⊗ In

)�
r, (17)

˙̂ZV = −�V χ̂
′�
V

(
(q̇d − αe)� ⊗ In

)�
r, (18)

˙̂ZF = −�Fχ̂
′�
F r, (19)

˙̂ZG = −�Gχ̂
′�
F r, (20)

where Ẑi � [ϑ̂�
i , θ̂

�
i ]�, and �i ∈ R

l4,i×l4,i is a positive-
definite adaptation gain matrix, where l4,i � 4l2,il1,i + l2,il3,i +∑ki

j=0 Lj,iLj+1,i for i ∈ {M,V,G,F} and j ∈ {0, . . . , ki}.
The shorthand notation χ̂ ′

i denotes the Jacobian χ̂ ′
i �

∂χi(xi,θ̂i,ĉi,ĥi,ϑ̂i)

∂Ẑi
. Therefore, the Jacobian can be expressed as

χ̂ ′
i � [�̂′

i, �̂
′
i], where �̂′

i �
∂�i(xi,ĉi,ĥi,ϑ̂i)

∂ϑ̂i
and �̂′

i �
∂�i(xi,θ̂i)

∂θ̂i

3The sgn function in (13) is motivated to obtain an asymptotic result given
the function approximation error and added disturbance terms.

denote the Jacobians of the LSTM and feedforward DNN for
i ∈ {M,V,G,F}, respectively.

A. Jacobians of the LSTM Architecture

The Jacobian of the LSTMs �̂′
i can be represented as �̂′

i �
[�̂′

Wc,i
, �̂

′
Wp,i
, �̂′

Wf ,i
, �̂′

Wo,i
, �̂′

Wh,i
], where the Jacobian of each

weight estimate can be expressed as �̂′
Wj,i

� ∂�i(xi,ĉi,ĥi,ϑ̂i)

∂vec(Ŵj,i)
for

j ∈ {c, p, f , o, h} and i ∈ {M,V,G,F}. Based on (7) and the
chain rule, �̂′

Wh,i
and �̂′

Wj,i
can be written using �̂′

Wh,i
= In ⊗

��
h (ẑi, ĉi, ϑ̂i), �̂′

Wj,i
= Ŵ�

h,i�̂
′
h,Wj,i

, and �̂ ′
h,Wj,i

� ∂�h(ẑi,ĉi,ϑ̂i)

∂vec(Ŵj,i)

for all j ∈ {c, p, f , o} and i ∈ {M,V,G,F}. Using (6),
(14)-(15), the chain rule, properties of the Hadamard product,
and the vectorization operator, the terms �̂ ′

h,Wj
and �̂ ′

h,Wo
can

be written as [12]

�̂ ′
h,Wj,i

= diag
(
σg,i

(
Ŵ�

o,iẑ
))
σ ′

c,i

(
�c

(
ẑi, ĉi, ϑ̂i

))
�̂ ′

c,Wj,i
,

�̂ ′
h,Wo,i

= diag
(
σc,i

(
�c

(
ẑi, ĉi, ϑ̂i

)))(
σ ′

g,i

(
Ŵ�

o,iẑi

))(
Il2,i ⊗ ẑ�

i

)
,

respectively, for all j ∈ {c, p, f } and i ∈ {M,V,G,F}, where

�̂ ′
c,Wj,i

� ∂�c,i(ẑi,ĉi,ϑ̂i)

∂vec(Ŵj,i)
, and the gradient of the sigmoid and tanh

activation functions are expressed using the shorthand notation
σ ′

g,i ∈ R
l2,i×l2,i and σ ′

c,i ∈ R
l2,i×l2,i , respectively. Similarly, the

terms �̂ ′
c,Wc,i

, �̂ ′
c,Wp,i

, and �̂ ′
c,Wf ,i

can be expressed as

�̂ ′
c,Wc,i

= diag
(
σg,i

(
Ŵ�

p,iẑ
))
σ ′

c,i

(
W�

c,iẑ
)(

Il2,i ⊗ ẑ�
i

)
,

�̂ ′
c,Wp,i

= diag
(
σc,i

(
Ŵ�

c,iẑ
))
σ ′

g,i

(
W�

p,iẑ
)(

Il2,i ⊗ ẑ�
i

)
,

�̂ ′
c,Wf ,i

= diag
(
ĉi

)
σ ′

g,i

(
Ŵ�

f ,iẑ
)(

Il2,i ⊗ ẑ�
i

)
,

respectively, for all i ∈ {M,V,F,G}.

B. Jacobians of the Feedforward DNN Architecture

The Jacobians of the feedforward DNNs �̂j,i �
�j,i(xi, v̂0,i, . . . , v̂j,i) and their respective Jacobians �̂′

i can
be represented �̂′

i � [�̂′
0,i, . . . , �̂

′
j,i], where the shorthand

notation �̂′
j,i is defined as �̂′

j,i � ∂�j,i(xi,θ̂i)

∂θ̂i
, for all j ∈

{0, . . . , ki} and i ∈ {M,V,G,F}. Using (5), the chain rule,
and properties of the vectorization operator, the terms �̂′

0,i and
�̂′

j,i can be expressed as [14]

�̂′
0,i �

⎛

⎜
⎝

�

ki∏

l=1

v̂�
l,iφ̂

′
l,i

⎞

⎟
⎠

(
IL1,i ⊗ x�

a,i

)
,

�̂′
j,i �

⎛

⎜
⎝

�

ki∏

l=j+1,i

v̂�
l,iφ̂

′
l,i

⎞

⎟
⎠

(
ILj+1,i ⊗ φ̂�

j,i

)
,

for all j ∈ {1, . . . , ki} and i ∈ {M,V,G,F}, respec-
tively, where the activation function at the jth layer and its
Jacobian are expressed using the shorthand notations φ̂j,i �
φj,i(�j−1,i(xi, θ̂i)) and φ̂′

j,i � φ′
j,i(�j−1(xi, θ̂i)), respectively,

where φ′
j,i : R

Lj,i → R
Lj,i×Lj,i is defined as φ′

j,i(y) �
∂
∂�
φj,i(�i)|�i=y, for all y ∈ R

Lj,i .
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V. STABILITY ANALYSIS

To address the additional level of complexity due to the
nonlinearity of the DNN and LSTM weight estimates, a first-
order Taylor series approximation-based error model is given
by [2, eq. (22)].

χi

(
xi, θi, ĉi, ĥi, ϑi

)
− χ̂i = χ̂ ′

i Z̃i + O2
i

(‖Z̃i‖
)
, (21)

where O2
i (‖Z̃ i‖) denotes the higher-order terms, ϑ̃ � ϑ − ϑ̂ ,

θ̃ � θ − θ̂ and Z̃i� [ϑ̃�
i , θ̃

�
i ]�for i ∈ {M,V,G,F}. Adding

and subtracting χ(xi, θi, ĉi, ĥi, ϑi), ∀i ∈ {M,V,G,F}, and
using (21), the closed loop error system can be written as

M(q)ṙ = −
(
(q̇d − αe)� ⊗ In

)(
χ̂ ′

VZ̃V + N1,V
)

−
(
(q̈d − αė)� ⊗ In

)(
χ̂ ′

MZ̃M + N1,M
)

− χ̂ ′
GZ̃G − N1,G − χ̂ ′

FZ̃F − N1,F

− sgn(r)
(

k2 + k3‖(q̇d − αe)� ⊗ In‖
)

− k4sgn(r)‖(q̈d − αė)� ⊗ In‖
− k1r − e − τd − V(q, q̇)r, (22)

where the auxiliary function N1,i ∈ R
l3,i is defined as N1,i �

χi(xi, θi, ci, hi, ϑi)−χi(xi, θi, ĉi, ĥi, ϑi)+εi(xi)+O2
i (‖Z̃ i‖) for

all i ∈ {M,V,G,F}, and N1,i can be bounded as ‖N1,i‖ ≤ N1,i,
for a known constant N1,i ∈ R>0 [12, Lemma 1].

To facilitate the subsequent stability analysis, let the
concatenated state vector ζ ∈ R

ψ be defined as ζ �
[e�, r�, Z̃�

M ,Z̃�
V , Z̃�

F , Z̃�
G ]�, where ψ � 2n + ∑

i∈I l4,i with
I � {M,V,G,F}, and let the open and connected set B� ⊂
R
ψ be defined as B� � {ξ ∈ R

ψ : ‖ξ‖ ≤
√
β1
β2
ω}, where ω ∈

R>0 denotes a user selected constant. The following theorem
establishes tracking error convergence using the developed PI-
LSTM-based adaptive controller.

Theorem 1: For the dynamical system in (1), the controller
in (13) and the adaptation laws developed in (17)-(20) ensure
asymptotic tracking in the sense that ‖e(t)‖ → 0 and
‖r(t)‖ → 0 as t → ∞, provided Assumption 1 holds, ζ(t0) ∈
B�, and the gain conditions k2 ≥ d + N1,F + N1,G, k3 ≥ N1,V ,
and k4 ≥ N1,M are satisfied.

Proof: Consider the candidate Lyapunov function VL ∈ R≥0
defined as

VL(ζ ) �
1

2
e�e + 1

2
r�Mr +

∑

i∈I

1

2
Z̃i�

−1

i Z̃i. (23)

The candidate Lyapunov function in (23) satisfies
the inequality β1‖ζ‖2 ≤ VL(ζ ) ≤ β2‖ζ‖2, where
β1 � min{ 1

2 ,
1
2 m1,

1
2 min

i∈I
(λmin(�i))} and β2 �

max{ 1
2 ,

1
2 m2,

1
2 max

i∈I
(λmax(�i))}. Taking the time-derivative

of VL(ζ ), applying the chain rule for differential inclusions
in [22, Th. 2.2], and applying (16) and Property 2 yields

V̇L(ζ )
a.a.t.∈ −e�αe + r�(−χ̂ ′

GZ̃G − N1,G − χ̂ ′
FZ̃F

− N1,F −
(
(q̈d − αė)� ⊗ In

)(
χ̂ ′

MZ̃M + N1,M
)

−
(
(q̇d − αe)� ⊗ In

)(
χ̂ ′

V Z̃V + N1,V
)

− εG − εF − τd − k1r − K
[
sgn

]
(r)

(
k2

+ k3‖(q̇d − αe)� ⊗ In‖ + k4‖(q̈d − αė)� ⊗ In‖
)

−
∑

i∈I

(
1

2
˙̂Z i�

−1

i Z̃i

)

. (24)

Substituting (17)-(21), and combining like terms yields

V̇L(ζ )
a.a.t.≤ −e�αe − r�((

(q̈d − αė)� ⊗ In

)
N1,M + N1,G

+ k1r + K
[
sgn

]
(r)

(
k2 + k3‖(q̇d − αe)� ⊗ In‖

)

+ k4K
[
sgn

]
(r)‖(q̈d − αė)� ⊗ In‖ + τd

+
(
(q̇d − αe)� ⊗ In

)
N1,V + N1,F

)
. (25)

Provided the stated gain conditions are satisfied, (25) can be
bounded as

V̇L(ζ )
a.a.t.≤ −α‖e‖2 − k1‖r‖2. (26)

Using (23) and (26) implies e, r, ϑ̃i, θ̃i ∈ L∞. The fact that
qd, q̇d, e, r ∈ L∞ implies q, q̇ ∈ L∞. To show xi ∈ 
i, and
therefore that the universal function approximation property
holds for all i ∈ {M,V,G,F}, let the open and connected sets
ϒi ⊆ 
i be defined as ϒM � {ξ ∈ 
M : ‖ξ‖ < qd +ω}, ϒV �
{ξ ∈ 
V : ‖ξ‖ < qd + (2+α)ω+ q̇d}, ϒF � {ξ ∈ 
F : ‖ξ‖ <
(1 + α)ω + q̇d}, and ϒG � {ξ ∈ 
G : ‖ξ‖ < qd + ω}. The

facts that V̇L(ζ(t))
a.a.t.≤ 0, and β1‖ζ‖2 ≤ VL(ζ ) ≤ β2‖ζ‖2

imply that ζ(t) can be bounded as ‖ζ(t)‖ ≤
√
β2
β1

‖ζ(t0)‖. If

‖ζ(t0)‖ ∈
√
β1
β2
ω, then ‖ζ(t)‖ ≤ ω, and therefore ‖e(t)‖ ≤ ω

and ‖r(t)‖ ≤ ω. Therefore, if ζ(t0) ∈ B�, then xi ∈ ϒi ⊆ 
i.
Then, using (23), (26), the extension of the LaSalle-Yoshizawa
corollary in [23, Corollary 1] can be invoked to show that
‖e(t)‖ → 0 and ‖r(t)‖ → 0 as t → ∞.

VI. SIMULATIONS

Simulation results are provided to demonstrate the
performance of the developed method using a two-link planar
revolute robot as modeled in [12]. Simulations were ran for
50 s with the selected desired trajectory qd(t) � [qd1, qd2]� ∈
R

2 as qd � (1 − exp(−0.1))

[ 3π
8 sin(π2 t)

3π
8 sin(π2 t)

]

∈ R
2 [rad] with

sensor and process noise generated from a Gaussian distri-
bution with standard deviation of 0.001 was injected into
the simulation data. The simulation is initialized at q(0) =
[0.4,−0.3]� [rad] and q̇(0) = [0, 0]� [rad/s]. To highlight
the contribution of the combined estimation power of DNNs
and LSTMs, the PI-LSTM was composed of 3 of DNNs
with 4 layers and 7 neurons and tanh activation functions
for the M,V , and F matrices while the LSTM model was
used with l2,i = 2 neurons for i ∈ {M,V,F}. The resulting
architecture has 817 individual weights, with the DNN and
LSTM having 661 and 156 individual weights, respectively. A
comparative simulation was performed with the architecture
developed in [14] as a baseline (i.e., without the contribution of
the memory properties gained from the LSTMs). The weights
of the DNNs and LSTMs were randomly initialized from
a uniform distribution U(−1, 1). The gains were selected
as shown in Table I with the learning gains �i selected as
�i = diag[�1,i, �2,i], where �1,i = �i,LSTM · I4l2,il1,i+l2,il3,i ,
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TABLE I
CONTROL GAINS

Fig. 1. Comparison of tracking error norm for the baseline developed
in [14] and the developed method.

and �2,i = �i,DNN · I∑ki
j=0 Lj,iLj+1,i

for i ∈ {M,V,F}. The

root mean squared (RMS) tracking error for the Lb-PINN
and PI-LSTM controllers were of 0.0279 rad and 0.0185 rad,
respectively. Although both architectures achieved rapid track-
ing error convergence as shown in Figure 1, the developed
PI-LSTM converged faster and was more robust to the injected
noise. The developed method yielded a 33.76% improvement
compared to the developed architecture in [14].

VII. CONCLUSION

This letter provides the first result on Lyapunov-derived
adaptation laws for the weights of a novel PI-LSTM archi-
tecture. The combination of the LSTM term within a
physics-informed structure allows the architecture to effec-
tively capture long term dynamic behavior. Comparative
simulation results resulted in a 0.0185 rad RMS tracking error
yielding a 33.76% improvement over the baseline. Future work
would include constraining the output of the PI-LSTM to
further respect other physical properties such as the positive
definiteness of the inertia matrix.
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