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Adaptive Tracking and Regulation of a Wheeled Mobile Robot With
Controller/Update Law Modularity

W. E. Dixon, M. S. de Queiroz, D. M. Dawson, and T. J. Flynn

Abstract—A new adaptive controller is developed for wheeled
mobile robots with parametric uncertainty in the dynamic model.
The main theoretical contribution is the modular manner in which
the control law and parameter update law are designed. This fea-
ture allows for design flexibility in the selection of the update law,
and can be exploited to improve the transient response of the adap-
tive controller. The proposed controller also has the important fea-
ture of being applicable to both the tracking and regulation prob-
lems. The modularity of the adaptive controller is experimentally
demonstrated on a K2A Cybermotion mobile robot that has been
modified to allow for the implementation of torque-level control in-
puts. In particular, the adaptive controller with a gradient update
law is evaluated vis-à-vis a least-squares update law.

Index Terms—Adaptive control, input-output stability, Lya-
punov methods, least squares methods, mobile robot dynamics.

I. INTRODUCTION

OVER the last decade, the problem of regulating non-
holonomic systems has been heavily targeted by control

researchers due to the theoretically challenging nature of the
problem. Specifically, due to the structure of the governing
differential equations of the underactuated nonlinear system,
the regulation problem cannot be solved via a smooth, time-in-
variant pure state feedback law due to the implications of
Brockett’s condition [2]. In addition to the regulation problem
for the wheeled mobile robot (WMR), researchers have also
targeted the more practical tracking control problem (which
includes the path following problem as a subset). From a
review of literature (see [3], [4], [8], [18], [20], [22]–[24] and
the references therein), it can be observed that: i) most of
the tracking controllers do not solve the regulation problem
due to restrictions on the reference model trajectory signals;
ii) most control designs rely heavily on the use of Barbalat’s
Lemma and its extensions during the kinematic stability
analysis (i.e., the Lyapunov derivative is negative semidefinite

Manuscript received November 21, 2002. Manuscript received in final form
May 27, 2003. Recommended by Associate Editor Y. Jin. This work was sup-
ported in part by the U.S. DOE Office of Biological and Environmental Re-
search (OBER) Environmental Management Sciences Program (EMSP) Project
ID 82797 at ORNL for the DOE Office of Science (SC), a subcontract to ORNL
by the Florida Department of Citrus through the University of Florida, and by a
U.S. NSF Grant DMI-9457967, ONR Grant N00014-99-1-0589, a DOC Grant,
and an ARO Automotive Center Grant.

W. E. Dixon is with the Engineering Science and Tech. Div.-Robotics,
Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA (e-mail:
dixonwe@ornl.gov).

M. S. de Queiroz is with the Department of Mechanical Engineering,
Louisiana State University, Baton Rouge, LA 70803 USA.

D. M. Dawson is with the Department of Electrical and Computer Engi-
neering, Clemson University, Clemson, SC 29634 USA.

T. J. Flynn is with the Imagery Technology & Systems Division, Science Ap-
plications International Corporation, Tucson, AZ 85711 USA.

Digital Object Identifier 10.1109/TCST.2003.819587

in the system states as opposed to negative definite); iii) some
of the kinematic controllers are not differentiable (e.g., see
the kinematic controller developed in [18]), and hence, the
standard integrator backstepping procedure cannot be used to
incorporate the mechanical dynamics (see the discussion in
[18]); iv) few results adaptively compensate for parametric
uncertainty (e.g., payload mass, friction coefficients) in the
dynamic model of the WMR; and v) all of the adaptive control
results rely on standard gradient adaptive update laws.

To address some of the above issues, Dixon et al. [9] devel-
oped a differentiable kinematic control law that utilizes a dy-
namic oscillator-like control term to obtain a global uniformly
ultimately bounded solution for the unified WMR tracking and
regulation problems. Since the proposed kinematic controller is
differentiable, standard backstepping techniques were used to
design a nonlinear robust controller that rejects uncertainty asso-
ciated with the dynamic model. In [10], Dixon et al. redesigned
the dynamic oscillator of [9] to achieve global adaptive tracking
and regulation control. In [11], Dong et al. exploited the dif-
ferentiable kinematic control structure proposed in [23] to con-
struct a global adaptive asymptotic tracking control law for a
class of nonholonomic systems; however, the Lyapunov deriva-
tive for the controllers in [10] and [11] are negative semi-definite
in the system states and position/velocity tracking error-based
gradient adaptive update laws were required.

In contrast to the adaptive controllers for WMR’s, several
adaptive control results have been formulated for robot manipu-
lators that explore new methods of parameter estimation. Most
of this research has exploited Lyapunov-based techniques (i.e.,
the controller and the adaptive update law are designed in con-
junction via a single Lyapunov function); however, the Lya-
punov-based approach tends to restrict the design of the adaptive
update law. For example, many of the previous adaptive con-
trollers are restricted to utilizing position/velocity tracking error
based gradient update laws. However, motivated by the fact that
gradient update laws often exhibit slow parameter convergence
(and hence, may retard the transient performance of the system)
several researchers have explored control designs that incorpo-
rate other forms of update laws. Specifically, Slotine et al. [25]
constructed a prediction error term as the difference between an
estimated, filtered version of the robot dynamics and a filtered
version of the input torque, and then developed a composite
adaptive control law as the composite sum of a least-squares
update law driven by the prediction error and a modified gra-
dient update law driven by the link position/velocity tracking
error. Although composite adaptive controllers have been ex-
perimentally proven (e.g., see [28]) to yield faster parameter
convergence and improved transient response, the structure of
the adaptive update law is still rather inflexible. In contrast to
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the Lyapunov-based approach given in [25], Leal et al. [14] uti-
lized the flexibility1 provided by previous passivity-based adap-
tive control designs to construct a modified least-squares update
law with the link position/velocity tracking error as the input.
A modified least-squares update law based on the link posi-
tion/velocity tracking error was also proposed by Sadegh et al.
[21] in the design of an exponentially stable desired compensa-
tion adaptation law (DCAL) based controller, provided the de-
sired regression matrix satisfies a semipersistency of excitation
condition. In [26], Tang et al. developed an adaptive controller
which included the standard gradient update law, the composite
adaptation update law, and an averaging gradient update law as
special cases.

In addition to the Lyapunov and passivity-based approaches
given above, some research has exploited estimation-based ap-
proaches. Although these efforts have mainly targeted linear
systems, estimation-based approaches allow for further flexi-
bility in the construction of parameter update laws (e.g., pre-
diction error-based gradient or least squares update laws can be
designed) due to the modular design of the controller and the
update law. For example, Middleton et al. [19] utilized a mod-
ular estimation-based approach to augment the adaptive com-
puted torque controller of [5] with additional terms which al-
lowed the closed-loop error system to be written as a stable,
strictly proper, transfer function with the link position tracking
error as the output and a prediction error related term as the
input. The controller given in [19] enabled link position tracking
and controller/update law modularity in the sense that any pa-
rameter update law could be used as long as its design ensured
that: i) the parameter estimates remain bounded; ii) the predic-
tion error is square integrable; and iii) the estimated inertia ma-
trix is positive-definite (i.e., a projection-type algorithm is re-
quired in the parameter update law). In [13], Krstic et al. uti-
lized nonlinear damping [12] to extend previous linear estima-
tion-based techniques to a class of parametric-strict-feedback
nonlinear systems; however, this class of systems, does not en-
compass the robot dynamics due to coupling terms in the in-
ertia matrix. However, motivated by the development given in
[13], de Queiroz et al. [6] developed an adaptive link position
tracking controller for robot manipulators which achieves con-
troller/update law modularity. Although the result was similar
to the result given in [19], the controller developed in [6] does
not require the estimated inertia matrix to be positive-definite
and does not require the online calculation of the inverse of the
estimated inertia matrix.

An adaptive torque control input for WMRs is developed in
this paper to solve the unified tracking and regulation control
problem. This result is achieved despite the presence of para-
metric uncertainty in the system dynamics. To compensate for
parametric uncertainty in the system, a nonlinear damping based
strategy, inspired by [6], is employed to provide input-to-state
stability (ISS) of the controller. The ISS result yields a mod-
ular adaptive controller that allows the adaptive update law to
be designed in a modular manner with respect to the feedback

1The passivity-based adaptive controllers provide some flexibility in the de-
sign of the update law; however, the update law must be designed to satisfy a
passive mapping condition.

controller; hence, allowing for improved design flexibility. That
is, provided a prediction error-based update law ensures the pa-
rameter estimate vector is bounded, all of the signals are proven
to be bounded through an ISS analysis. An additional stability
analysis is provided to prove that if the adaptive update law
is designed such that the prediction error is square-integrable
and the estimated inertia matrix is positive-definite, then the
WMR tracking and regulation errors are globally asymptotically
forced to a constant that can be made arbitrarily small. To facili-
tate this result, we exploit the kinematic control structure of [9].
The structure of the kinematic controller is crucial to the de-
velopment of the modular adaptive controller. Specifically, this
approach is motivated by the fact that the kinematic controller
is differentiable; thus, enabling integrator backstepping to in-
corporate the effects of the system dynamics. The approach en-
sures the transformed states of the system are negative-definite
in the time derivative of a radially unbounded nonnegative func-
tion. This concept is a key advantage over many of the current
WMR designs, which are negative semidefinite in the system
states and require tools such as extended Barbalat’s Lemma to
prove stability, because it can be fused with nonlinear damping
techniques to facilitate an ISS result. To highlight the modular
nature of the adaptive controller, experimental results are pro-
vided to demonstrate that the controller can be implemented
with a prediction error based gradient update law and then im-
plemented with the same control gains with a prediction error
based least-squares update law to achieve similar performance.

II. KINEMATIC MODEL

The kinematic model for the so-called kinematic wheel under
the nonholonomic constraint of pure rolling and nonslipping is
given as follows:

(1)

where are defined as

(2)

, and denote the position and orienta-
tion, respectively, of the center of mass (COM) of the WMR,

denote the Cartesian components of the linear ve-
locity of the COM, and denotes the angular velocity of
the COM. In (1), the matrix is defined as follows:

(3)

and the velocity vector is defined as

(4)

with denoting the linear velocity of the COM of the
WMR.

III. OPEN-LOOP ERROR SYSTEM

To formulate the tracking control problem, we define the fol-
lowing time-varying reference model

(5)
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where was defined in (3),
denotes the desired time-varying position and

orientation trajectory, and
denotes the reference time-varying linear and angular ve-
locity. With regard to (5), it is assumed that the signal

is constructed to produce the desired motion and that
, and are bounded for all time. See

Remark 1.3 of [8] for an example of one method for selecting
such that a desired Cartesian path is generated.

To facilitate the subsequent control synthesis and the corre-
sponding stability proof, the following global invertible trans-
formation is defined [8]

(6)

where and are auxiliary
tracking error variables, and denote the
difference between the actual Cartesian position and orientation
of the COM and the reference position and orientation of the
COM as follows:

(7)

After taking the time derivative of (6) and using (1)–(7), the
tracking error dynamics can be expressed in terms of the auxil-
iary variables defined in (6) as follows [8]:

(8)

where denotes a skew-symmetric matrix defined as

(9)

and is defined as

(10)

The auxiliary variable introduced
in (8) is defined in terms of the WMR position and orientation,
linear and angular velocities, and the reference trajectory as fol-
lows:

(11)

In (11), the global invertible matrix is defined as
follows:

(12)

and is defined as

(13)

IV. DYNAMIC MODEL

The WMR dynamic model can be expressed in the following
form [8]

(14)

where

(15)

In (15), represents the constant, positive-definite
inertia matrix, represents the friction ef-
fects, represents the torque input vector,
represents a known, constant global invertible input matrix that
governs torque transmission to the wheels (see [8] for explicit
examples of ), and and are defined in (12)
and (13), respectively. The dynamic equation of (14) exhibits the
following properties which will be employed during the subse-
quent control development and stability analysis.

Property 1: The transformed inertia matrix is sym-
metric, positive-definite, and satisfies the following inequalities
[8]

(16)

where is a known positive constant,
is a known, positive bounding function which is assumed to be
bounded provided and are bounded is
also assumed to be bounded provided , and
are bounded), and is the standard Euclidean norm.

Property 2: A skew-symmetric relationship exists between
the transformed inertia matrix and as follows:

(17)

where represents the time derivative of the transformed
inertia matrix.

Property 3: The robot dynamics given in (14) can be linearly
parameterized as follows:

(18)

where contains the unknown constant mechan-
ical parameters (i.e., inertia, mass, and friction effects) and

denotes the known regression matrix. The
following linear parameterization can be formulated

(19)

where denotes a known regression ma-
trix, is the same unknown constant parameter vector given in
(18), and represents the time derivative of the sub-
sequently designed input .

V. CONTROL DEVELOPMENT

A. Control Objective

The objective in this paper is to design an adaptive controller
that solves the unified tracking and regulation problems for a
WMR under the additional constraint of parametric uncertainty
for the robot dynamics of (14) such that a modularity is achieved
in the design of the controller and the parameter update law. To
quantify the error between the parameter estimate generated by
the modular adaptive update law and the actual parameters of
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the WMR dynamic model, a parameter estimation error vector
is defined as follows:

(20)

where is a dynamic estimate of , defined in (18).
Motivated by the desire to facilitate a modular adaptive control
scheme that is independent of acceleration measurements, the
measurable prediction error signal is defined as fol-
lows:

(21)

The filtered regression matrix, denoted by , in-
troduced in (21) is defined by the following differential equation
and initial condition

(22)

where was defined in (18) (see [16] for details regarding
an acceleration independent formulation of ), is a
positive control term, and the filtered torque is gen-
erated by the following differential equation and initial condi-
tion

(23)

where and are defined in (14) and (15), respectively.
To achieve the objective of simultaneously solving the

tracking and regulation problems, a control strategy is em-
ployed that exploits a dynamic oscillator-like structure. To
facilitate this control design, an auxiliary error signal, denoted
by , is defined as the difference between the subse-
quently designed dynamic oscillator-like signal
and the transformed variable , defined in (6), as follows:

(24)

A backstepping error signal, denoted by , is defined
to quantify the mismatch between the kinematic velocity signal

and the subsequently designed desired kinematic velocity
input, denoted by , as follows:

(25)

B. Control Design

Based on the open-loop kinematic system given in (8) and the
subsequent stability analysis, we design [9]

(26)

where was given in (16), and is a positive,
constant control gain. The auxiliary control term
introduced in (26) is defined as

(27)

where the auxiliary signal is defined by the following dy-
namic oscillator-like relationship

(28)

the auxiliary terms and are defined
as

(29)

(30)

respectively, are positive, constant control
gains, and was defined in (10). Motivation for the
structure of (28) is obtained by taking the time derivative of

as follows

(31)

where (28) has been utilized. After noting that the matrix of
(9) is skew symmetric, we can rewrite (31) as

(32)

As result of the selection of the initial conditions given in (28),
it is easy to verify that

(33)

is a unique solution to the differential equation given in (32) (see
[9] for motivation regarding the design of ).

Based on the transformed dynamic model given by (14) and
the subsequent stability analysis, we design the control torque
input as follows:

(34)

where is defined as

(35)

where , and are defined in

(16), (19), (20), and (22), respectively, (which in-

cludes and ) denotes the time derivative of the dy-
namic estimate , and are pos-
itive constant control gains. The bracketed control terms given
in (35) are incorporated in the control design to cancel similar
terms in the subsequent stability analysis. The remaining terms
of (35) are incorporated to facilitate the input-to-state stability
property of the closed-loop system with respect to .

C. Closed-Loop Error Systems

To facilitate the closed-loop error system development, the
auxiliary control input signal is injected into the open-loop
dynamics of given by (8) by adding and subtracting the
term to the right-hand side (RHS) of (8) to obtain
the following expression

(36)



142 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 1, JANUARY 2004

where (25) was utilized. After substituting (26) for , adding
and subtracting to the resulting expression, uti-
lizing (24), and exploiting the skew symmetry of defined in
(9), the dynamics for can be determined as

(37)

Finally, by substituting (27) for only the first occurrence of
in (37) and then utilizing the equality given by (33), the skew
symmetry of defined in (9), and the fact that (Note
that denotes the standard 2 2 identity matrix), the following
expression for the closed-loop error system for can be ob-
tained

(38)

To determine the closed-loop error system for , we take
the time derivative of (24), substitute (28) for , and then
substitute (8) for to obtain

(39)

where the auxiliary control input was injected by adding
and subtracting to the RHS of (39), and (25) was utilized.
After substituting (26) for and then substituting (27) for

in the resulting expression, we can rewrite (39) as follows:

(40)

After substituting (29) for only the second occurrence of
in (40) and using the fact that , the following simpli-
fied expression can be obtained

(41)

where (24) has been utilized. Since the bracketed term in (41)
is equal to defined in (27), the final expression for the
closed-loop error system for can be expressed as

(42)

To develop the closed-loop error system for , we take the
time derivative of (25), substitute (14) for , add and subtract

, and then rearrange the resulting expression as

(43)

where (19) and (25) were utilized. After substituting (34) and
(35) into (43), the following expression is obtained

(44)

where (20) was utilized.

VI. STABILITY ANALYSIS

Based on the previous development, several results can now
be proven. To facilitate a modular adaptive result, the first objec-
tive is to demonstrate that the controller yields ISS as indicated
by the following theorem.

Theorem 1: Given the closed-loop error systems in (38),
(42), and (44), if then all signals are bounded
under closed-loop operation for where denotes the
final time.

Based on the ISS result of Theorem 1 (see the Appendix for
a proof), the modular adaptive unified tracking and regulation
problem can be examined. Specifically, the position and orien-
tation tracking errors can be proven to asymptotically approach
an arbitrarily small positive constant, provided some adaptive

update law, denoted by , is designed according to the
following theorem.

Theorem 2: Any update law that ensures
is positive-definite, and ,

can be used in conjunction with the controller developed in
(34) and (35) to ensure that all signals are bounded during
closed-loop operation for , and the position and
orientation tracking errors asymptotically
approach a positive constant as follows:

(45)

where is a positive bounding constant, and can be
made arbitrarily small.

The proof for Theorem 2 (see the Appendix) requires that

be designed so that is positive-def-
inite, and . A typical parameter adaptation algorithm
which ensures that and is given by the
following gradient update law

(46)

where is a positive-definite gain matrix. Another
typical parameter adaptation algorithm satisfying the previous
conditions is the following least-squares estimator

(47)

where is a time-varying symmetric matrix. To
ensure that is positive-definite, a standard projection al-
gorithm can be incorporated in the design of (46) and (47) (see
[1] and [15]).

Remark 3: Based on the fact that no restrictions were
placed on the reference trajectory with the exception
that , it is straightforward to prove that the
tracking control result given in Theorem 2 is also valid for the
regulation problem (i.e., ).

VII. EXPERIMENTAL VERIFICATION

A. Experimental Configuration

The developed modular adaptive tracking controller intro-
duced in (34) and (35) was implemented on the modified K2A
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Fig. 1. K2A mobile robot testbed.

WMR manufactured by Cybermotion Inc. shown in Fig. 1. Per-
manent magnet dc motors provide steering and drive actuation
through a 106:1 and a 96:1 gear coupling, respectively. The
positions of the steering and drive motors are measured via
Hewlett Packard (HEDS-9000) encoders with a resolution of
0.35 deg/line, and velocity measurements were calculated via a
filtered backward difference algorithm. A Pentium 133 MHz PC
operating under QNX (a real-time microkernel based operating
system) hosts the control algorithm that was written in “C++”,
and implemented using Qmotor 3.0 [17]. Data acquisition and
control implementation were performed at a frequency of 1.0
kHz using the MultiQ I/O board. To measure the tracking error
given in (7), the and coordinate and the orientation
of the WMR are required. To obtain the position and orienta-
tion signals, the positions of the steer and drive motors were ob-
tained from the encoder measurements. Based on the steer and
drive motor positions, linear and angular velocity measurements
were calculated via a filtered backward difference algorithm.
Using the angular position measurement and the linear and an-
gular velocity measurements, the relationship given in (1) was
used to determine and . A numerical integration rou-
tine was then applied to (1) to obtain the actual values of the
Cartesian coordinates of the WMR. For simplicity the electrical
dynamics of the system were ignored. That is, the computed
torque is assumed to be statically related to the voltage input of
the permanent magnet dc motors by a constant. For further de-
tails regarding the experimental testbed see [8].

The dynamics for the modified K2A WMR are given

(48)

where kg denotes the mass of the robot,
kg m denotes the inertia of the robot, m denotes
the radius of the wheels, m denotes the length of
the axis between the wheels, and the dynamic friction elements

Fig. 2. Position and orientation tracking errors.

are denoted by , and . The desired reference linear and
angular velocity were selected as

(49)

respectively, (the resulting reference time-varying Cartesian
position and orientation is a sinusoidal trajectory with a
peak-to-peak amplitude of approximately 0.6 m).

B. Experimental Results

The controller introduced in (34) and (35) was first imple-
mented with the prediction error based gradient update law
given in (46). The control and adaptation gains were then tuned
to achieve the best results in terms of steady-state tracking
error. The control gains that resulted in the best performance
are given

(50)

where the adaptation gains were selected as follows:

(51)

Note that although of (34) was defined as a scalar constant,
the values given in (50) and (51) were used to facilitate the
“tuning” process. The position/orientation tracking error of the
COM of the WMR and the associated control torque inputs are
shown in Figs. 2 and 3, respectively. The control torque inputs
plotted in Fig. 3 represent the torques applied by the motor
multiplied by the gear ratio to represent the torque applied to
the wheels. The parameter estimates are illustrated in Fig. 4.
Based on the data for Fig. 2, the steady-state position/orienta-
tion tracking error can bounded as follows:

(52)
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Fig. 3. Control torque input applied by the steer and drive motors.

Fig. 4. Parameter estimates for the gradient update law.

To demonstrate modularity between the controller and the pa-
rameter update law, the controller was then implemented with
the prediction error based least-squares update law given in (47).
Without retuning the controller (i.e., using the same control
gains as in (50)) the gradient update law was replaced with the
least-squares estimator in (47) with the initial conditions for the
symmetric matrix selected as follows:

(53)

The position/orientation tracking error of the COM of the WMR
and the associated control torque inputs are shown in Figs. 5 and
6, respectively. The parameter estimates are illustrated in Fig. 7.
Based on the data for Fig. 5, the steady-state position/orientation
tracking error can be bounded as

(54)

Fig. 5. Position and orientation tracking errors.

Fig. 6. Control torque input applied by the steer and drive motors.

Fig. 7. Parameter estimates for the least-squares update law.
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Remark 4: From Fig. 7, it is clear that some of the param-
eter estimates to do not converge to constant values. If the lack
of estimate convergence becomes problematic for a control de-
signer, a standard projection algorithm (see [1] and [15]) could
be applied to bound the estimates to a specified region. A pro-
jection algorithm was not utilized for the presented experimental
results.

VIII. CONCLUSION

An adaptive torque control input for wheeled mobile robots
that can be utilized in a modular manner with parameter estimate
update laws has been developed to solve the unified tracking
and regulation problems. To achieve this result, we first lever-
aged off of our previous work in [9] to develop a differentiable
kinematic controller that solves the unified tracking and reg-
ulation problems and facilitates integrator backstepping. An-
other motivation for the WMR kinematic control design is that a
Lyapunov-based function can be constructed such that its time
derivative is negative-definite, and hence, facilitates the mod-
ular adaptive control design and stability analysis (e.g., it is not
clear how typical WMR kinematic controllers which exploit the
use of extended Barbalat’s Lemma to prove the stability result
(such as [22]), can be utilized in conjunction with the modular
adaptive control strategy). After developing the kinematic con-
trol design, we then leveraged off of the work of [6] and [13]
for robot manipulators, to develop a torque control input that
was proven to yield update law modularity. That is, provided
a prediction error-based update law ensures the parameter es-
timate vector is bounded, then all of the signals were proven
to be bounded. An additional stability analysis was then pro-
vided to prove that if the adaptive update law was designed such
that the prediction error is square-integrable and the estimated
inertia matrix is positive-definite, the WMR tracking and reg-
ulation errors are asymptotically forced to a control term that
can be made arbitrarily small. An advantage of the update law
modularity is that the control designer is provided with addi-
tional flexibility in the design of the adaptive update law. That is,
faster parameter convergence, and hence, potentially faster tran-
sient performance can be facilitated by various parameter update
laws. To demonstrate this advantage, the controller was imple-
mented with prediction error based gradient and least-squares
update laws without retuning the controller.

APPENDIX

PROOF FOR THEOREM 1

Proof: To prove Theorem 1, we define the nonnegative
function

(55)

where (55) can be lower and upper bounded as

(56)

where are positive bounding constants,
was given in (16), and is defined as follows:

(57)

After taking the time derivative of (55), substituting for the
closed-loop error systems given in (38), (42), and (44), uti-
lizing (17), and then cancelling common terms, the following
expression is obtained

(58)

where the notation denotes the induced infinity norm of
a signal. After completing the squares for the bracketed terms
of (58), the following upper bound can be formulated

(59)

By utilizing (56), the inequality in (59) can be upper bounded
as follows:

(60)

where are positive constants defined as

(61)

where the assumption that (i.e., a constant
bounded value for exists ) was
utilized. After solving the differential inequality given in (60),
the following upper bound can be formulated

(62)

Hence, from (55) and (62), the following inequality can be ob-
tained

(63)

Based on (57) and (63), it is straightforward to determine
that . After utilizing (24), (33), and
the fact that , we can also conclude that

. From (8), (10), (25)–(29), (38), and (42),
we can prove that

. Given that
, we can utilize (1)–(6), (12), and (13) to prove

that
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. Based on the previous bounding arguments, we
can prove that , and hence,

. Since , we can utilize
the time derivative of (25) to prove that ;
hence, . Based on the assumption that

, we can now utilize (20) and (21) to
prove that . As described in [7],
given that , we can now prove that

; hence, we can now utilize (34) and (35)
to prove that .

APPENDIX

PROOF FOR THEOREM 2

Proof: Theorem 1 can be directly applied to prove that all
signals are bounded on during closed-loop operation. As
in [13], the bounds are dependent only on the initial conditions,
control gains, and the reference trajectory, (i.e., not dependent
on ); hence, due to the independence of time, can be ex-
panded to . To prove Theorem 2, the expressions in (18) and
(19) can be used to obtain the following expression

(64)

where are defined as follows:

(65)

and is defined in (19). With the intent of
writing the term in terms of , we utilize
(20)–(22) to obtain the following expression

(66)

After substituting (64) into (66) for , the following
expression can be obtained

(67)

By substituting (67) into (44) and utilizing (65), the closed-loop
system given in (44) can be determined as follows:

(68)

where is a positive, time-varying signal defined as
follows:

(69)

To facilitate the subsequent analysis, we define the variable
transformation signal [6] as

(70)

The time derivative of (70) can be determined as

(71)

where (68) was utilized. By utilizing (70), (71) can be rewritten
as

(72)

To examine the stability of , another transformation, de-
noted by , is defined as [6]

(73)

After squaring (73) and then taking the time derivative of the
resulting expression, the following inequality can be obtained

(74)

where (72) and (73) were utilized, and denotes the min-
imum eigenvalue of the argument. Based on the definition given
in (73), we have that ; hence, (74) can be used to de-
velop the following inequality

(75)

where the nonzero, positive constants are defined as
follows: 2

(76)

The solution of the differential inequality of (75) is given by

(77)

After utilizing Holder’s inequality [27], (77) can be rewritten as

(78)

After squaring (78) and integrating the resulting expression, the
following expression can be obtained

(79)

2Provided M̂(q) is positive definite, M̂ (q) will also be positive definite,
and hence, the minimum eigenvalue will be positive. Moreover, since all sig-
nals are bounded from the previous analysis, the time-varying signals A(t) and
M̂ (q(t)) can be bounded by constants.
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where the fact that

(80)

has been utilized. After reversing the order of integration in (79),
the following expression is obtained

(81)

Based on the assumption that is designed to ensure that
, we can utilize (81) to prove that

(82)

where denotes the norm of a signal. From (82), we
can conclude that ; hence, from (73), we can prove
that . Based on the results from Theorem 1, we can
utilize (69) and (71) to prove that . After
taking the time derivative of (70) and utilizing the fact that

, we can conclude that .
Since and , we can use
Barbalat’s Lemma [25] to prove that

(83)

and hence, from (70), we can prove that

(84)

From (55), (58), and (84), we can now determine that

(85)

Based on the result given in (85), the triangle inequality can be
applied to (24) to prove that

(86)

where (33) was utilized. By utilizing (30), (85), and (86), the
result given in (45) be be obtained from taking the inverse of
the transformation given in (6).
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