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Adaptive Homography-Based Visual Servo Tracking for a Fixed Camera
Configuration With a Camera-in-Hand Extension

Jian Chen, Darren M. Dawson, Warren E. Dixon, and Aman Behal

Abstract—In this brief, a homography-based adaptive visual
servo controller is developed to enable a robot end-effector to
track a desired Euclidean trajectory as determined by a sequence
of images for both the camera-in-hand and fixed-camera config-
urations. To achieve the objectives, a Lyapunov-based adaptive
control strategy is employed to actively compensate for the lack of
unknown depth measurements and the lack of an object model.
The error systems are constructed as a hybrid of pixel information
and reconstructed Euclidean variables obtained by comparing
the images and decomposing a homographic relationship. Simula-
tion results are provided to demonstrate the performance of the
developed controller for the fixed camera configuration.

Index Terms—Adaptive control, control applications, Lyapunov-
methods, visual servo control.

I. INTRODUCTION

AKEY issue that impacts camera-based visual servo control
is the relationship between the Euclidean-space and the

image-space. One factor that impacts this relationship is the
fact that the image-space is a two-dimensional (2-D) projection
of the three-dimensional (3-D) Euclidean-space. To compen-
sate for the lack of depth information from the 2-D image
data, some researchers have focused on the use of alternate
sensors (e.g., laser and sound ranging technologies). Other
researchers have explored the use of a camera-based vision
system in conjunction with other sensors along with sensor
fusion methods or the use of additional cameras in a stereo con-
figuration that triangulate on corresponding images. However,
the practical drawbacks of incorporating additional sensors
include: increased cost, increased complexity, decreased reli-
ability, and increased processing burden. Motivated by these
practical constraints, recent research [2], [5], [10]–[12], [17]
has focused on monocular camera-based visual servo strategies
that rely on analytic techniques to address the lack of depth
information. One strategy that has recently been employed
involves the use of partitioning methods that exploit a com-
bination of reconstructed 3-D Euclidean information and 2-D
image-space information. For example, in the series of papers
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by Malis and Chaumette [1], [2], [18], [19] various kinematic
control strategies exploit the fact that the interaction between
translation and rotation components can be decoupled through
a homography (i.e., a geometric transformation). Specifically,
information combined from the reconstructed Euclidean-space
and the image-space is utilized to regulate the translation and
rotation error systems. In [8], Deguchi utilizes a homography
relationship and an epipolar condition to decouple the rotation
and translation components and then illustrates how two types
of visual controllers can be developed from the decoupled
information. Corke and Hutchinson [5] also developed a hybrid
image-based visual servoing scheme that decouples rotation
and translation components from the remaining degrees of
freedom. One drawback of some of the aforementioned con-
trollers are claims (without a supporting proof) that a constant,
best-guess estimate of the depth information can be utilized
in lieu of the exact value. Motivated by the desire to actively
compensate for unmeasurable depth information, Conticelli
developed an adaptive kinematic controller in [3] to ensure
uniformly ultimately bounded (UUB) set-point regulation,
provided conditions on the translational velocity and bounds on
the uncertain depth parameters are satisfied. In [4], Conticelli
et al. proposed a 3-D depth estimation procedure that exploits
a prediction error provided a positive definite condition on
the interaction matrix is satisfied. In [10] and [11], Fang et al.
recently developed homography-based visual servo controllers
to asymptotically regulate a manipulator end-effector and a
mobile robot, respectively, by developing an adaptive update
law that actively compensates for an unknown depth parameter.
In [12], Fang et al. also developed a camera-in-hand regulation
controller that incorporated a robust control structure to com-
pensate for uncertainty in the extrinsic calibration parameters.

After examining the literature, it is evident that much of the
previous visual servo controllers have only been designed to ad-
dress the regulation problem. That is, the objective of most of the
previous controllers is to force a hand-held camera to a Euclidean
position defined by a static reference image. Unfortunately, many
practical applications require a robotic system to move along a
predefined or dynamically changing trajectory. For example, a
human operator may predefine an image trajectory through a
high-level interface, and this trajectory may need to be modified
on-the-fly to respond to obstacles moving in and out of the envi-
ronment. Moreover, it is well known that a regulating controller
may produce erratic behavior and require excessive initial con-
trol torques if the initial error is large. Motivated by the need for
new advancements to meet visual servo tracking applications,
previous research has concentrated on developing different types
of path planning techniques in the image-space [6], [21]–[23].
More recently, Mezouar and Chaumette developed a path-fol-
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lowing image-based visual servo algorithm in [20] where the
path to a goal point is generated via a potential function that
incorporates motion constraints. In [7], Cowan et al. develop a
hybrid position/image-space controller that forces a manipulator
to a desired setpoint while avoiding obstacles and ensuring the
object remains in the field-of-view by avoiding pitfalls such as
self-occlusion.

In contrast to the approaches in [7] and [20] in which a path is
planned as a means to reach a desired setpoint, hybrid tracking
controllersaredevelopedinthisbriefwheretherobotend-effector
is required to track a prerecorded time-varying reference tra-
jectory. To develop the hybrid controllers, a homography-based
visual servoing approach is utilized. The motivation for using
this approach is that the visual servo control problem can be
incorporated with a Lyapunov-based control design strategy to
overcome many practical and theoretical obstacles associated
with more traditional, purely image-based approaches. Specifi-
cally, one of the challenges of this problem is that the translation
error system is corrupted by an unknown depth-related param-
eter. By formulating a Lyapunov-based argument, an adaptive
update law is developed to actively compensate for the unknown
depth parameter. In addition, the proposed approach facilitates:
1) translation/rotational control in the full six degree-of-freedom
task-space without the requirement of an object model, 2) par-
tial servoing on pixel data that yields improved robustness and
increases the likelihood that the centroid of the object remains
in the camera field-of-view [19], and 3) the use of an image Ja-
cobian that is only singular for multiples of , in contrast to
the state-dependent singularities present in the image Jacobians
associated with many of the purely image-based controllers. The
homography-based controllers in this brief target both the fixed
camera and the camera-in-hand configurations. The control de-
velopment for the fixed camera problem is presented in detail,
and the camera-in-hand problem is included as an extension.

This brief is organized in the following manner. In Section II,
a geometric model is constructed that relates the Euclidean co-
ordinates of the target points. In Section III, a Euclidean homog-
raphy is developed that relates the normalized Euclidean coordi-
nates of the target points, and the pinhole camera model is used
to develop a projective homography that relates the measurable
pixel coordinates. In Sections IV and V, the control objective is
developed along with the open-loop and closed-loop error dy-
namics. The stability of the closed-loop error system is analyzed
through Lyapunov-based methods in Section VI. An extension to
the camera-in-hand problem is presented in Section VII. Simu-
lation results illustrating the performance of the control law are
given in Section VIII, and concluding remarks are given in Sec-
tion IX.

II. GEOMETRIC MODEL

To make the subsequent development more tractable, four
target points located on an object (i.e., the end-effector of a robot
manipulator) denoted by 1, 2, 3, 4 are considered to be
coplanar1 and not colinear. Based on this assumption, consider a

1It should be noted that if four coplanar target points are not available then
the subsequent development can exploit the classic eight-points algorithm [18]
with no four of the eight target points being coplanar.

Fig. 1. Coordinate frame relationships between a fixed camera and the plane
defined by the current, desired, and reference feature points (i.e., �, � , and � ).

fixed plane, denoted by , that is defined by a reference image
of the object. In addition, consider the actual and desired motion
of the plane containing the end-effector target points, denoted
by and , respectively (see Fig. 1). To develop a relationship
between the planes, an inertial coordinate system, denoted by ,
is defined where the origin coincides with the center of a fixed
camera. The Euclidean coordinates of the target points on , ,
and can be expressed in terms of , respectively, as follows:

(1)

under the standard assumption that the distances from the origin
of to the target points remains positive (i.e., , ,

where denotes an arbitrarily small positive constant).
Orthogonal coordinate systems , , and are attached to
the planes , , and , respectively (see Fig. 1). To relate the
coordinate systems, let , , denote the ro-
tation between and , and , and and , respectively,
and let , , denote the respective translation
vectors expressed in the coordinates of . As also illustrated in
Fig. 1, denotes the constant unit normal to the plane
expressed in the coordinates of , and denotes the con-
stant coordinates of the -th target point. The constant distance
from the origin of to along the unit normal is denoted by

and is defined as follows:

(2)

From the geometry between the coordinate frames depicted
in Fig. 1, the following relationships can be developed:

(3)

After solving the third equation in (3) for and then substituting
the resulting expression into the first and second equations, the
following relationships can be obtained:

(4)
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where , and , are new
rotational and translational variables, respectively, defined as
follows (see the Appendix for further insight into the geomet-
rical significance of the new rotational and translational vari-
ables):

(5)

From (2), the relationships in (4) can be expressed as follows:

(6)

Remark 1: The subsequent development requires that the
constant rotation matrix be known. The constant rotation
matrix can be obtained a priori using various methods (e.g.,
a second camera, Euclidean measurements). The subsequent
development is also based on the assumption that the target
points do not become occluded.

III. EUCLIDEAN RECONSTRUCTION

The relationship given by (6) provides a means to quantify a
translation and rotation error between and and between

and . Since the Euclidean position of , , and
cannot be directly measured, a Euclidean reconstruction is de-
veloped in this section to obtain the position and rotational error
information by comparing multiple images acquired from the
fixed, monocular vision system. Specifically, comparisons are
made between the current image, the reference image obtained
a priori, and the a priori known sequence of images that define
the trajectory of . To facilitate the subsequent development,
the normalized Euclidean coordinates of the points on , ,
and can be, respectively, expressed in terms of as ,

, , as follows:

(7)

(8)

(9)

From the expressions given in (6)–(9), the rotation and transla-
tion between the coordinate systems can now be related in terms
of the normalized coordinates as follows:

(10)

(11)

where , denote invertible depth ratios, ,
denote Euclidean homographies [13], and ,

denote scaled translation vectors that are defined
as follows:

(12)

Each target point on , , and will have a projected pixel
coordinate expressed in terms of , denoted by ,
for , , for , and , for , that are
defined as follows:

(13)

In (13), , , represent the image-space coordi-
nates of the time-varying target points, the desired time-varying
target point trajectory, and the constant reference target points,
respectively. To calculate the Euclidean homography given in
(10) and (11) from pixel information, the projected pixel coor-
dinates of the target points are related to , , and
by the following pin-hole lens models [13]:

(14)

where is a known, constant, and invertible intrinsic
camera calibration matrix. After substituting (14) into (10) and
(11), the following relationships can be developed:

(15)

where , ,
denote projective homographies. From the first relation-

ship in (15), a set of 12 linearly independent equations given
by the four target point pairs with three independent
equations per target pair can be used to determine the projective
homography up to a scalar multiple (i.e., the product
can be determined). From the definition of given in (15),
various techniques can then be used [14], [26] to decompose
the Euclidean homography, to obtain , , , and the
rotation and translation signals and , and . Like-
wise, by using the target point pairs , the desired
Euclidean homography can be decomposed to obtain ,

, , and the desired rotation and translation signals
and . The rotation matrices and can

be computed from and by using (5) and the fact
that is assumed to be known. Hence, , , ,

, , , and the depth ratios and are
all known signals that can be used for control synthesis.

IV. CONTROL OBJECTIVE

The objective is to develop a visual servo controller that
ensures that the trajectory of tracks (i.e., tracks

), where the trajectory of is constructed relative to the
reference camera position/orientation given by . To ensure
that tracks from the Euclidean reconstruction
given in (10) and (11), the tracking control objective can be
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stated as follows:2 , , and
(and, hence, ). The 3-D control

objective is complicated by the fact that only 2-D image infor-
mation is measurable. That is, while the development of the
homography provides a means to reconstruct some Euclidean
information, the formulation of a controller is challenging due
to the fact that the time varying signals and are not
measurable. In addition, it is desirable to servo on actual pixel
information (in lieu of reconstructed Euclidean information) to
improve robustness to intrinsic camera calibration parameters
and to increase the likelihood that the object will stay in the
field of view of the camera [19].

To reformulate the control objective in light of these issues,
a hybrid translation tracking error, denoted by , is
defined as follows:

(16)

where , are defined as follows:

(17)

and denotes the natural logarithm. A rotation tracking
error, denoted by , is defined as follows:

(18)

where , denote the axis-angle representation
of and as follows [25]:

(19)

For the representations in (19), , represent unit
rotation axes, and denote the respective rotation
angles about and that are assumed to be confined to
the following regions:

(20)

Based on the error system formulations in (16) and (18), the con-
trol objective can be stated as the desire to regulate the tracking
error signals and to zero. If the tracking error sig-
nals and are regulated to zero then the object can be
proven to be tracking the desired trajectory (see the Appendix
for further details).

Remark 2: A particular solution for and can be de-
termined as follows [25]:

(21)

where the notation denotes the trace of a matrix, and
denotes the 3 3 skew-symmetric expansion of .

Remark 3: To develop a tracking control design, it is typical
that the desired trajectory is used as a feedforward component

2Any point O can be utilized in the subsequent development. However, to
reduce the notational complexity, we have elected to select the image point O
and, hence, the subscript 1 is utilized in lieu of i in the subsequent development.

in the control design. Hence, for a kinematic controller the de-
sired trajectory is required to be at least first-order differentiable
and at least second-order differentiable for a dynamic level con-
troller. To this end, a sufficiently smooth function (e.g., a spline
function) is used to fit the sequence of target points to generate
the desired trajectory . Hence, it is assumed that and

are bounded functions of time. From the projective ho-
mography introduced in (15), can be expressed in terms of
the a priori known, functions , , , and .
Since these signals can be obtained from the prerecorded se-
quence of images, sufficiently smooth functions can also be gen-
erated for these signals by fitting a sufficiently smooth spline
function to the signals. Hence, in practice, the a priori developed
smooth functions , ,and can be constructed
as bounded functions with bounded time derivatives. Based on
the assumption that is a bounded first-order differentiable
function with a bounded derivative, (21) can be used to conclude
that and are bounded first-order differentiable func-
tions with a bounded derivative. Hence, and can
be assumed to be bounded. In the subsequent tracking control
development, the desired signals and will be used
as a feedforward control term.

V. CONTROL FORMULATION

A. Open-Loop Error System

To develop the open-loop error system for , we take the
time derivative of (18) to obtain the following expression (see
the Appendix for further details):

(22)

In (22), the Jacobian-like matrix is defined as

(23)

where

and denotes the angular velocity of the object ex-
pressed in . By exploiting the fact that is a unit vector
(i.e., 1), the determinant of can be calculated as
[17]

(24)

where signifies the determinant operator. From (24), it is
clear that is only singular for multiples of (i.e., out
of the assumed workspace); therefore, is invertible in the
assumed workspace. To develop the open-loop error system for

, we take the time derivative of (16) to obtain the following
expression (see the Appendix for further details):

(25)
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where denotes the linear velocity of the object ex-
pressed in . In (25), is defined as follows:

(26)

where , denote the pixel coordinates of the principal
point,3 and the auxiliary Jacobian-like matrix is
defined as

(27)

Remark 4: It is easy to show that the product is an
invertible upper triangular matrix from (26) and (27).

B. Closed-Loop Error System

Based on the structure of the open-loop error systems and
subsequent stability analysis, the angular and linear camera ve-
locity control inputs for the object are defined as follows:

(28)

(29)

In (28) and (29), , denote diagonal matrices
of positive constant control gains, and ,
denote parameter estimates that are generated according to the
following adaptive update laws:

(30)

(31)

where denotes a positive constant adaptation gain, and
denotes a positive constant diagonal adaptation gain

matrix. After substituting (28) into (22), the following closed-
loop error dynamics can be obtained:

(32)

After substituting (29) into (25), the closed-loop translation
error dynamics can be determined as follows:

(33)

where the parameter estimation error signals and
are defined as follows:

(34)

From (32) it is clear that the angular velocity control input given
in (28) is designed to yield an exponentially stable rotational
error system. The linear velocity control input given in (29) and
the adaptive update laws given in (30) and (31) are motivated
to yield a negative feedback term in translational error system
with additional terms included to cancel out cross-product terms
involving the parameter estimation errors in the subsequent sta-
bility analysis.

3The principal point is the image center that is defined as the frame buffer
coordinates of the intersection of the optical axis with the image plane.

VI. STABILITY ANALYSIS

Theorem 1: The control inputs designed in (28) and (29),
along with the adaptive update laws defined in (30) and (31),
ensure that and are asymptotically driven to zero in
the sense that

(35)

Proof: To prove Theorem 1, a nonnegative function
is defined as follows:

(36)

After taking the time derivative of (36) and then substituting for
the closed-loop error systems developed in (32) and (33), the
following expression can be obtained:

(37)

where the time derivative of (34) was utilized. After substituting
the adaptive update laws designed in (30) and (31) into (37), the
following simplified expression can be obtained:

(38)

where the fact that was utilized. Based on
(34), (36), and (38), it can be determined that , , ,

, , and that , [9]. Based
on the assumption that is designed as a bounded function,
the expressions given in (18), (23), (24), and (28) can be used to
conclude that . Since , (7), (13), (14),
(16), (17), and (27) can be used to prove that ,

. Given that is assumed to be bounded function, the
expressions in (29)–(33) can be used to conclude that ,

, , , . Since , and
, , , , Barbalat’s Lemma [24] can be

used to prove the result given in (35).
Remark 5: The result in (35) is practically global in the

sense that it is valid over the entire domain with the exception
of the singularity introduced by the exponential parameteri-
zation of the rotation matrix (20) and the physical restriction
that , , and must remain positive. Although the
result stated in Theorem 5 indicates asymptotic convergence
for the rotation error , it is evident from (32) that

where denotes the minimum eigenvalue of
the constant matrix . However, the fact that

does not simplify the control devel-
opment or stability analysis and the overall resulting control
objective of tracking a desired set of prerecorded images is still
asymptotically achieved.

VII. CAMERA-IN-HAND EXTENSION

Based on the development provided for the fixed camera
problem in the previous sections, a controller for the
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Fig. 2. Coordinate frame relationships between the fixed feature point plane
and the camera-in-hand at the current, desired, and reference position and
orientation (i.e., F , F , and F ).

camera-in-hand problem can be developed in a similar manner.
To formulate a controller for the camera-in-hand tracking
problem consider the geometric relationships depicted in Fig. 2
where the camera is held by a robot end-effector (not shown).
The coordinate frames , , and depicted in Fig. 2 are
attached to the camera and denote the actual, desired, and refer-
ence locations for the camera, respectively. From the geometry
between the coordinate frames, can be related to and

as follows:

(39)

where , , and now denote the Euclidean coor-
dinates of expressed in , , and , respectively. In (39),

, denote the rotation between and
and between and , respectively, and ,
denote translation vectors from to and to expressed
in the coordinates of and , respectively. By utilizing (2),
(7)–(9), and a relationship similar to (12), the expressions in (39)
can be written as follows:

(40)

(41)

In (40) and (41), , denote the following scaled
translation vectors:

(42)

and are introduced in (10) and (11), and ,
, and now denote the normalized Euclidean coordi-

nates of expressed in , , and , respectively. Based on
the development in (39)–(41), the Euclidean reconstruction and
control formulation can be develop in the same manner as for
the fixed camera problem. Specifically, the signals , ,

, , and the depth ratios and can be com-
puted. The error systems for the camera-in-hand problem are de-

fined the same as for the fixed camera problem (16)–(19). How-
ever, , , , and are defined as in (21) in terms of

and , respectively, for the camera-in-hand problem.
Based on this fact, the open-loop error dynamics for the rotation
system can be derived as follows:

(43)

where the fact that

(44)

is used, and denotes the camera angular velocity expressed
in . After taking the time derivative of (39), the following ex-
pression for can be derived for the camera-in-hand [10]:

(45)

where denotes the linear velocity of the camera expressed
in terms of . After utilizing (45), the open-loop dynamics for

can be determined as follows:

(46)

where , , are defined in (16) and (17).
Based on the open-loop error systems in (43) and (46), the

following control signals are designed:

(47)

(48)

(49)

resulting in the following closed-loop error systems:

(50)

(51)

The result in (35) can now be proven for the camera-in-hand
problem using the same analysis techniques and the same non-
negative function as defined in (36) with the term containing

eliminated.

VIII. SIMULATION RESULTS

Simulation studies were performed to illustrate the perfor-
mance of the controller given in (28)–(31). For the simulation,
the intrinsic camera calibration matrix is given as follows:

(52)

where 257 pixels , 253 pixels ,
101.4 pixels mm and 101.4 pixels mm represent

camera scaling factors, is the angle between the
camera axes, and 12. 5 mm denotes the camera focal
length. The control objective is defined in terms of tracking a
desired image sequence. For the simulation, the desired image
sequence was required to be artificially generated. To generate
an artificial image sequence for the simulation, the Euclidean
coordinates of four target points were defined as follows:

(53)
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and the initial translation and rotation between the current,
desired, and reference image feature planes were defined as
follows:

(54)

(55)

(56)

(57)

Based on (52)–(57), the initial pixel coordinates can be com-
puted as follows:

The time-varying desired image trajectory was then generated
by the kinematics of the target plane where the desired linear
and angular velocity were selected as follows:

m/s

rad/s (58)

The desired translational trajectory is given in Fig. 3, and the
desired rotational trajectory is depicted in Fig. 4. The generated
desired image trajectory is a continuous function. However, in
practice the image trajectory would be discretely represented
by a sequence of prerecorded images and would require a data
interpolation scheme (i.e., a spline function) as described in Re-
mark 3. Hence, a spline function (i.e., the MATLAB spline rou-
tine) was utilized to generate a continuous curve to fit the de-
sired image trajectory. For the top two subplots in Fig. 3, the
pixel values obtained from the prerecorded image sequence are
denoted by an asterisk (only select data points were included
for clarity of illustration), and a cubic spline interpolation that
was used to fit the data points is illustrated by a solid line. For
the bottom subplot in Fig. 3 and all the subplots in Fig. 4, a plus
sign denotes reconstructed Euclidean values computed using the
prerecorded pixel data, and the spline function is illustrated by
a solid line.

The control gains and and the adaptation gains and
were adjusted through trial and error to the following values:

(59)

The resulting errors between the actual relative translational and
rotational of the target with respect to the reference target and

Fig. 3. Desired translational trajectory of the manipulator end-effector
generated by a spline function to fit prerecorded image data.

Fig. 4. Desired rotational trajectory of the manipulator end-effector generated
by a spline function to fit prerecorded image data.

Fig. 5. Error between the actual translation trajectory and the desired
translation trajectory given in Fig. 3 for the noise-free case.
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Fig. 6. Error between the actual rotation trajectory and the desired rotation
trajectory given in Fig. 4 for the noise-free case.

the desired translational and rotational of the target with respect
to the reference target are depicted in Figs. 5 and 6, respectively.
The parameter estimate signals are depicted in Figs. 7 and 8. The
angular and linear control input velocities (i.e., and )
defined in (28) and (29) are depicted in Figs. 9 and 10.

While the results in Figs. 5–10 provide an example of the
performance of the tracking controller under ideal conditions,
several issues must be considered for a practical implemen-
tation. For example, the performance of the tracking control
algorithm is influenced by the accuracy of the image-space feed-
back signals and the accuracy of the reconstructed Euclidean
information obtained from constructing and decomposing the
homography. That is, inaccuracies in determining the location
of a feature from one frame to the next frame (i.e., feature
tracking) will lead to errors in the construction and decom-
position of the homography matrix, leading to errors in the
feedback control signal. Inaccuracies in determining the feature
point coordinates in an image is a similar problem faced in
numerous sensor based feedback applications (e.g., noise as-
sociated with a force/torque sensor). Practically, errors related
to sensor inaccuracies can often be addressed with an ad hoc
filter scheme or other mechanisms (e.g., an intelligent image
processing and feature tracking algorithm, redundant feature
points and an optimal homography computation algorithm).

In light of these practical issues, another simulation was per-
formed where random noise was injected with a standard devia-
tion of 1 pixel (i.e., the measured feature coordinate was subject
to 4 pixels of measurement error) as in [18]. As in any practical
feedback control application in the presence of sensor noise, a
filter was employed. Specifically, ad hoc third-order butterworth
low-pass filters with a cutoff frequency of 10 rad/s were utilized
to preprocess the corrupted image data. The control gains
and and the adaptation gains and were tuned through
trial and error to the following values:

(60)

Fig. 7. Parameter estimate for z for the noise-free case.

Fig. 8. Parameter estimates for s for the noise-free case.

Fig. 9. Angular velocity control input for the noise-free case.
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Fig. 10. Linear velocity control input for the noise-free case.

Fig. 11. Error between the actual translation trajectory and the desired
translation trajectory given in Fig. 3 for the noise-injected case.

The resulting translational and rotational errors of the target are
depicted in Figs. 11 and 12, respectively. The parameter esti-
mate signals are depicted in Figs. 13 and 14. The control input
velocities and defined in (28) and (29) are depicted
in Figs. 15 and 16.

Another simulation was also performed to test the robustness
of the controller with respect to the constant rotation matrix .
The constant rotation matrix in (5) is coarsely calibrated
as . The resulting translational and rotational
errors of the target are depicted in Figs. 17 and 18, respectively.

IX. CONCLUSION

In this brief, an adaptive visual servo controller is developed
for the fixed camera configuration to enable the end-effector
of a robot manipulator to track a desired trajectory determined
by an a priori available sequence of images. The controller is
formulated using a hybrid composition of image-space pixel
information and reconstructed Euclidean information that is ob-
tained via projective homography relationships between the ac-

Fig. 12. Error between the actual rotation trajectory and the desired rotation
trajectory given in Fig. 4 for the noise-injected case.

Fig. 13. Parameter estimate for z for the noise-injected case.

Fig. 14. Parameter estimates for s for the noise-injected case.

tual image, a reference image, and the desired image. To achieve
the objective, a Lyapunov-based adaptive control strategy is
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Fig. 15. Angular velocity control input for the noise-injected case.

Fig. 16. Linear velocity control input for the noise-injected case.

employed to actively compensate for the lack of unknown
depth measurements and unknown object model parameters.
Based on the development for the fixed camera controller,
an extension is provided to enable a camera held by a robot
end-effector to track a desired trajectory determined from a
sequence of images (i.e., camera-in-hand tracking). Simulation
results were provided to demonstrate the performance of the
controller for the fixed camera problem.

APPENDIX A

To obtain geometric insight into the structure of and
defined in (5) can be obtained from Fig. 1 by placing a

fictitious camera that has a frame attached to its center such
that initially coincides with . Since and coincide, the
relationship between and can be denoted by rotational
and translational parameters ( , ) as is evident from Fig. 1.
Without relative translational or rotational motion between
and , the two coordinate frames are moved until aligns
with , resulting in Fig. 19. It is now evident that the fixed
camera problem reduces to a stereo vision problem with the pa-

Fig. 17. Error between the actual translation trajectory and the desired
translation trajectory given in Fig. 3 for the noise-injected case with a coarse
calibration of R .

Fig. 18. Error between the actual rotation trajectory and the desired rotation
trajectory given in Fig. 4 for the noise-injected case with a coarse calibration of
R .

rameters ( , ) denoting the translation
and rotation between and .

APPENDIX B

Based on the previous definitions for and , the fol-
lowing property can be determined [25]:

(61)

From (5) and (61), the following relationship can be determined:

(62)

While several parameterizations can be used to express in
terms of and , the open-loop error system for
is derived based on the following exponential parameterization
[25]:

(63)
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Fig. 19. Geometric relationships for �R(t) and �x (t).

where the notation denotes an identity matrix, and the
notation denotes the skew-symmetric matrix form of .
The parameterization can be related to as follows:

(64)

To facilitate the development of the open-loop dynamics for
, the expression developed in (62) can be used along with

(63) and the time derivative of (63), to obtain the following
expression:

(65)

where the following properties were utilized [15], [16]:

(66)

(67)

(68)

(69)

(70)

To facilitate further development, the time derivative of (19) is
determined as follows:

(71)

After multiplying (71) by , the following expression
can be obtained:

(72)

where (67) and the following properties were utilized:

(73)

Likewise, by multiplying (71) by and then utilizing (73)
the following expression is obtained:

(74)

From the expression in (65), the properties given in (66), (71),
(72), (74), and the fact that

can be used to obtain the following expression:

(75)

where is defined in (23). After multiplying both sides of
(75) by , the open-loop dynamics for can be obtained.
After substituting (75) into the time derivative of (18), the open-
loop dynamics for given by (22) can be obtained.

To develop the open-loop error system for , the time
derivative of (16) is obtained as follows:

(76)

where (1), (7), (14), (17), and the definition of in (10) were
utilized. After taking the time derivative of the first equation in
(3), can be determined as follows:

(77)

where (61) and the following property have been utilized [15]:

(78)

After substituting (77) into (76), multiplying the resulting ex-
pression by , and utilizing the definition of in (10), the
open-loop error system given in (25) is obtained.

APPENDIX C

As stated in Section IV, to ensure that tracks
from the Euclidean reconstruction given in (1), the tracking con-
trol objective can be stated as follows: ,

, and . This appendix describes how this
objective can be achieved provided the result given in (35) is
obtained. To this end, the expressions in (13) and (17) can be
used to conclude that if then and
the ratio . Hence, from (14) and the defini-
tion of the depth ratios in (10) and (11), it can be shown that

and . Given that
and , then (7) and (8) can be used to

prove that .
To examine if , we first take the difference

between the expressions defined in (63) and (64) can be deter-
mined as follows:

(79)
To continue the analysis, we can see from the result in (35) that

and, hence, we can use (18) and (19) to show that

as (80)

To see if (80) implies that , we note that (35) and
(80) imply that

as (81)

which implies that

as (82)
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Since , we can see from (82) that

as (83)

We can now see from (80) that

Case when

Case when (84)

After substituting each case given in (84) into (79) and then
passing the limit, it is clear that . Based on the
results that and that , it is clear
that .
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