
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 2, MARCH 2008 373

Asymptotic Tracking for Systems With Structured and
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P. M. Patre, Student Member, IEEE, W. MacKunis, C. Makkar, and W. E. Dixon, Senior Member, IEEE

Abstract—The control of systems with uncertain nonlinear
dynamics has been a decades-long mainstream area of focus.
The general trend for previous control strategies developed for
uncertain nonlinear systems is that the more unstructured the
system uncertainty, the more control effort (i.e., high gain or
high-frequency feedback) is required to cope with the uncertainty,
and the resulting stability and performance of the system is di-
minished (e.g., uniformly ultimately bounded stability). This brief
illustrates how the amalgamation of an adaptive model-based
feedforward term (for linearly parameterized uncertainty) with a
robust integral of the sign of the error (RISE) feedback term (for
additive bounded disturbances) can be used to yield an asymptotic
tracking result for Euler–Lagrange systems that have mixed
unstructured and structured uncertainty. Experimental results
are provided that illustrate a reduced root-mean-squared tracking
error with reduced control effort.

Index Terms—Adaptive control, friction, Lyapunov methods,
nonlinearities, robustness.

I. INTRODUCTION

THE control of systems with uncertain nonlinear dynamics
has been a decades-long mainstream area of focus. For

systems with uncertainties that can be linearly parameterized, a
variety of adaptive (e.g., [8], [21], [23]) feedforward controllers
can be utilized to achieve an asymptotic result. Some recent
adaptive control results have also targeted the application
of adaptive controllers for systems that are not linear in the
parameters [11]. Learning controllers have been developed for
systems with periodic disturbances [1], and recent research has
focused on the use of exosystems [22] to compensate for dis-
turbances that are the solution of a linear time-invariant system
with unknown coefficients. A variety of methods have also
been proposed to compensate for systems with unstructured
uncertainty including: various sliding mode controllers (e.g.,
[23], [24]), robust control schemes [20], and neural network and
fuzzy logic controllers (e.g., [9], [10], and [19]). From a review
of these approaches, a general trend that can be determined is
that controllers developed for systems with more unstructured
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uncertainty will require more control effort (i.e., high gain or
high-frequency feedback) and yield reduced performance (e.g.,
uniformly ultimately bounded stability).

Recently, a new high gain feedback control strategy called
the robust integral of the sign of the error (RISE) was devel-
oped in [25] that contains a unique integral signum term which
can accommodate for sufficiently smooth bounded distur-
bances. A significant outcome of this new control structure is
that asymptotic stability is obtained despite a fairly general un-
certain disturbance. This technique was used in [2] to develop
a tracking controller for nonlinear systems in the presence of
additive disturbances and parametric uncertainties under the
assumption that the disturbances are with bounded time
derivatives. In [27], Xian et al. utilized this strategy to propose
a new output feedback discontinuous tracking controller for
a general class of nonlinear mechanical (i.e., second-order)
systems whose uncertain dynamics are first-order differen-
tiable. In [28], Zhang et al. combined the RISE feedback
structure with a high-gain observer at the sacrifice of yielding
a semi-global uniformly ultimately bounded result. The RISE
method has also been used as an identification technique.
For example, the method has been applied to identify friction
(e.g., [14] and [15]), for range identification in perspective
and paracatadioptric vision systems (e.g., [5] and [6]), and for
fault detection and identification (e.g., [17]).

The development in this brief is motivated by the desire to in-
clude some knowledge of the dynamics in the control design as a
means to improve the performance and reduce the control effort.
Specifically, for systems that include some dynamics that can
be segregated into structured (i.e., linear parameterizable) and
unstructured uncertainty, this brief illustrates how a new con-
troller and error system can be crafted to include a model-based
adaptive feedforward term in conjunction with the RISE feed-
back technique to yield an asymptotic tracking result. This brief
presents the first result that illustrates how the amalgamation
of these compensation methods can be used to yield an asymp-
totic result. Heuristically, the addition of the model-based adap-
tive feedforward term should reduce the overall control effort
because some of the disturbance has been isolated and com-
pensated for by a non-high-gain feedforward element. More-
over, the addition of the adaptive feedforward term injects some
knowledge of the dynamics in the control structure, which could
lead to improved performance. Experimental results are pre-
sented to reinforce these heuristic notions. Specifically, the pre-
sented controller was implemented on a simple one-link robot
testbed and demonstrated reduced tracking error and control ef-
fort. For this testbed, the dynamics that were included in the
feedforward term included the inertia of the linkage assembly,
and the friction present in the system.
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II. DYNAMIC MODEL AND PROPERTIES

The class of nonlinear dynamic systems considered in this
brief is assumed to be modeled by the following Euler–Lagrange
formulation:

(1)

In (1), denotes the inertia matrix,
denotes the centripetal-Coriolis matrix, de-

notes the gravity vector, denotes friction,
denotes a general nonlinear disturbance (e.g., unmodeled ef-
fects), represents the torque input control vector, and

denote the link position, velocity, and ac-
celeration vectors, respectively. The friction term in (1) is
assumed to have the following form as in [16]:

(2)
where , denote unknown positive con-
stants. The friction model in (2) has the following properties:
1) it is symmetric about the origin; 2) it has a static coefficient
of friction; 3) it exhibits the Stribeck effect where the friction
coefficient decreases from the static coefficient of friction with
increasing slip velocity near the origin; 4) it includes a viscous
dissipation term; and 5) it has a Coulombic friction coefficient
in the absence of viscous dissipation. To a good approximation,
the static friction coefficient is given by , and the Stribeck
effect is captured by . The Coulombic
friction coefficient is given by , and the viscous
dissipation is given by . For further details regarding the fric-
tion model, see [16]. The subsequent development is based on
the assumption that and are measurable and that ,

, , , and are unknown. Moreover, the
following properties and assumptions will be exploited in the
subsequent development.

Property 1: The inertia matrix is symmetric and posi-
tive definite and satisfies the following inequality :

(3)

where is a known positive constant, is a
known positive function, and denotes the standard Euclidean
norm.

Property 2: If , then the first and second
partial derivatives of the elements of , , and
with respect to , and the first and second partial derivatives of
the elements of , and with respect to exist and
are bounded.

Property 3: The nonlinear disturbance term and its first two
time derivatives are bounded (i.e., ).

III. ERROR SYSTEM DEVELOPMENT

The control objective is to ensure that the system tracks a de-
sired time-varying trajectory despite structured and unstructured

uncertainties in the dynamic model. To quantify this objective,
a position tracking error, denoted by , is defined as

(4)

To facilitate the subsequent analysis, filtered tracking errors, de-
noted by , are also defined as

(5)

(6)

where denote positive constants. The filtered
tracking error is not measurable since the expression in (6)
depends on .

The open-loop tracking error system can be developed by pre-
multiplying (6) by and utilizing the expressions in (1), (2),
(4), and (5) to obtain the following expression:

(7)

where is defined as

(8)

In (8), contains the constant unknown system parame-
ters, is the desired regression matrix that
contains known functions of the desired link position, velocity,
and acceleration, , respectively, and

are the best guess estimates for , , and ,
respectively. The desired trajectory is assumed to be designed
such that exist and are
bounded. In (7), the auxiliary function
is defined as

(9)

and the auxiliary function is defined as

(10)

Based on the expression in (7), the control torque input is de-
signed as follows:

(11)
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In (11), denotes the RISE term defined as

(12)

where , are positive, constant control gains, and
denotes a parameter estimate vector generated online ac-

cording to the following update law:

(13)

where is a known, constant, diagonal, positive-defi-
nite adaptation gain matrix. Since is only a function of the
known desired time varying trajectory, (13) can be integrated by
parts as follows:

(14)
so that the parameter estimate vector implemented in (11)
does not depend on the unmeasurable signal .

Remark 1: The control design in (11) is similar to the results
in [25]. However, previous designs based on [25] could only
compensate for uncertainty in the system through the high-gain
RISE feedback term . Through the new development
presented in the current result, an adaptive feedforward term
can also be used to compensate for system uncertainty. This
flexibility presents a significant advantage because it allows
more system dynamics to be incorporated in the control design.
Specifically, if some of the system uncertainty can be segre-
gated into a linear parameterizable form, then the model-based
adaptive feedforward term can be injected to compensate for
the uncertainty instead of just relying on the non-model based
high gain RISE feedback term. Heuristically, this contribu-
tion should improve the tracking performance and reduce the
control effort. Experimental results on a simple one-link robot
manipulator provide some validation of this heuristic idea.

The closed-loop tracking error system can be developed by
substituting (11) into (7) as

(15)

where represents the parameter estimation error
vector defined as

(16)

To facilitate the subsequent stability analysis (and to illustrate
some insight into the structure of the design for ), the time
derivative of (15) is determined as

(17)

where the unmeasurable auxiliary term is
defined as

(18)

where (13) was used. In (17), the unmeasurable auxiliary term
is defined as

(19)

The time derivative of (12) is given as

(20)

The expressions in (12) and (20) are based on [25]. In a similar
manner as in [26], the Mean Value Theorem can be used to de-
velop the following upper bound:

(21)

where is defined as

(22)

The following inequalities can be developed based on the ex-
pression in (19) and its time derivative:

(23)

where are known positive constants.

IV. STABILITY ANALYSIS

Theorem: The controller given in (11), (12), and (14) ensures
that all system signals are bounded under closed-loop operation
and that the position tracking error is regulated in the sense that

provided the control gain introduced in (12) is selected suf-
ficiently large, and and are selected according to the fol-
lowing sufficient condition:

(24)

and is selected according to the following sufficient condition:

(25)

where and are introduced in (23).
Proof: For details of the proof, please see [4], [13], and

[18].

V. EXPERIMENTAL RESULTS

The testbed depicted in Fig. 1 was used to implement the
developed controller. The testbed consists of a circular disc
of unknown inertia mounted on an NSK direct-drive switched
reluctance motor (240.0 Nm Model YS5240-GN001). The
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Fig. 1. Experimental testbed consists of a circular disk mounted on an NSK
direct-drive switched reluctance motor.

NSK motor is controlled through power electronics operating
in torque control mode. The motor resolver provides rotor
position measurements with a resolution of 614400 pulses/rev-
olution. A Pentium 2.8-GHz PC operating under QNX hosts
the control algorithm, which was implemented via Qmotor 3.0,
a graphical user-interface, to facilitate real-time graphing, data
logging, and adjustment of control gains without recompiling
the program (for further information on Qmotor 3.0, the reader
is referred to [12]). Data acquisition and control implemen-
tation were performed at a frequency of 1.0 kHz using the
ServoToGo I/O board. A rectangular nylon block was mounted
on a pneumatic linear thruster to apply an external friction
load to the rotating disk. A pneumatic regulator maintained a
constant pressure of 20 pounds per square inch on the circular
disk.

The dynamics for the testbed are given as follows:

(26)

where denotes the combined inertia of the circular disk
and rotor assembly, the friction torque is defined in
(2), and denotes a general nonlinear disturbance (e.g.,
unmodeled effects). The control torque input is given by
(11), where is the regression matrix defined
as

and is the vector consisting of the unknown parame-
ters defined as

(27)

The parameter estimates vector in (27) is generated online using
the adaptive update law in (14). The desired link trajectory (see
Fig. 2 was selected as follows (in degrees):

(28)

For all experiments, the rotor velocity signal is obtained by ap-
plying a standard backwards difference algorithm to the posi-
tion signal. The integral structure of the adaptive term in (14)
and the RISE term in (12) was computed online via a standard

Fig. 2. Desired trajectory used for the experiment.

Fig. 3. Position tracking error without the adaptive feedforward term.

trapezoidal algorithm. In addition, all the states and unknown
parameters were initialized to zero. The signum function for the
control scheme in (12) was defined as

Experiment 1: In the first experiment, the controller in (11)
was implemented without including the adaptation term. Thus,
the control torque input given in (11) takes the following form
[25]:

The gains for the controller that yielded the best steady-state
performance were determined as follows:

(29)

The position tracking error obtained from the controller is
plotted in Fig. 3, and the torque input by the controller is
depicted in Fig. 4.
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Fig. 4. Torque input without the adaptive feedforward term.

Fig. 5. Position tracking error for the control structure that includes the adap-
tive feedforward term.

Experiment 2: In the second experiment, the control input
given in (11) was used. The update law defined in (14) was used
to update the parameter estimates defined in (27). The following
control gains and best guess estimates were used to implement
the controller in (11):

The position tracking error obtained from the controller is
plotted in Fig. 5, the parameter estimates are depicted in Fig. 6,
the contribution of the RISE term is shown in Fig. 8, and the
torque input by the controller is depicted in Fig. 7.

VI. DISCUSSION

Fig. 5 illustrates that the incorporation of a model-based
feedforward term eliminates the spikes present in Fig. 3 that

Fig. 6. Parameter estimates of the adaptive feedforward component: (a) ̂ ,
(b) ̂ , (c) ̂ , and (d) ^J .

Fig. 7. Torque input for the control structure that includes the adaptive feed-
forward term.

Fig. 8. Contribution of the RISE term for the control structure that includes the
adaptive feedforward term.

occur when the motor changes direction. The spikes are ini-
tially present in Fig. 5, but reduce in magnitude and vanish as
the adaptive update converges. These figures exactly illustrate
how the addition of the adaptive feedforward element injects
model knowledge into the control design to improve the overall
performance. Fig. 8 indicates that the contribution of the RISE
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Fig. 9. RMS position tracking errors and torques for the two cases—(1) without
the adaptation term in the control input and (2) with the adaptation term in the
control input.

TABLE I
T-TEST: TWO SAMPLES ASSUMING EQUAL VARIANCES FOR RMS ERROR

term in the overall torque decreases with time as the feed-
forward adaptation term begins to compensate for part of the
disturbances.

Both of the experiments were repeated ten consecutive times
with the same gain values to check the repeatability and accu-
racy of the results. For each run, the root-mean-squared (rms)
values of the position tracking errors and torques are calculated.
The average of these rms values for the two cases (with adapta-
tion and without adaptation) obtained over ten sets are plotted in
Fig. 9, where the bars indicate the variance about the mean. An
unpaired t-test assuming equal variances was performed using
a statistical package (Microsoft Office Excel 2003) with a sig-
nificance level of . The results of the t-test for the
rms error, and the rms torque are shown in Tables I and II, re-
spectively. Table I indicates that the value obtained for the
one-tailed test is less than the significance level . Thus, the
mean rms error for case 2 is lower than that of case 1, and this
difference is statistically significant. Similarly, from Table II,
the mean rms torque for case 2 is lower than that of case 1. The
results indicate that the mean rms value of the position tracking
error when the adaptive feedforward term is used is about 43.5%
less than the case when no adaptation term is used. This im-
provement in performance by the proposed controller was ob-
tained while using 17.6% less input torque as shown in Fig. 9.

TABLE II
T-TEST: TWO SAMPLES ASSUMING EQUAL VARIANCES FOR RMS TORQUE

VII. CONCLUSION

A new class of asymptotic controllers is developed that con-
tains an adaptive feedforward term to account for linear pa-
rameterizable uncertainty and a high-gain RISE feedback term
which accounts for unstructured disturbances. In comparison
with previous results that used a similar high-gain feedback con-
trol structure, new control development was required to include
the additional adaptive feedforward term. The motivation for in-
jecting the adaptive feedforward term is that improved tracking
performance and reduced control effort result from including
more knowledge of the system dynamics in the control structure.
This heuristic idea was verified by our experimental results that
indicate reduced control effort and reduced rms tracking errors.
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