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Abstract—Closed-loop control of skeletal muscle is complicated
by the nonlinear muscle force to length and velocity relationships
and the inherent unstructured and time-varying uncertainties in
available models. Some pure feedback methods have been devel-
oped with some success, but the most promising and popular con-
trol methods for neuromuscular electrical stimulation (NMES) are
neural network (NN)-based methods. Efforts in this paper focus
on the use of a NN feedforward controller that is augmented with
a continuous robust feedback term to yield an asymptotic result (in
lieu of typical uniformly ultimately bounded stability). Specifically,
an NN-based controller and Lyapunov-based stability analysis are
provided to enable semi-global asymptotic tracking of a desired
limb time-varying trajectory (i.e., non-isometric contractions). The
developed controller is applied as an amplitude modulated voltage
to external electrodes attached to the distal-medial and proximal-
lateral portion of the quadriceps femoris muscle group in non-im-
paired volunteers. The added value of incorporating a NN feed-
forward term is illustrated through experiments that compare the
developed controller with and without the NN feedforward com-
ponent.

Index Terms—Asymptotic stability, closed-loop control of func-
tional electrical stimulation (FES), neural networks (NNs), neuro-
muscular electrical stimulation (NMES), non-isometric contrac-
tions, nonlinear control, robust integral of the sign of the error
(RISE)-based feedback.

I. INTRODUCTION

EUROMUSCULAR ELECTRICAL STIMULATION

(NMES) is a technique employed to generate desired
muscle contractions via electrical stimulus [for functional
tasks, NMES is described as functional electrical stimulation
(FES)]. Efforts in NMES facilitate improved limb control and
functionality for patients with stroke, spinal cord injuries, and
other neurological impairments [1], [2]. Although most NMES
procedures in physical therapy clinics consist of tabulated
open-loop application of electrical stimulation, a market exists
for the development of noninvasive closed-loop methods.
NMES control development is hampered by several challenges
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that affect the ability of a muscle to produce a desired force:
muscle fatigue, hyperactive somatosensory reflexes, electrode
placement, inter- and intra-subject variability in muscle prop-
erties, changing muscle geometry under the electrodes in
non-isometric conditions, etc.

Some promising closed-loop experimental results have been
reported that use high-gain linear feedback methods to com-
pensate for uncertain muscle response (cf. [3]-[7] and the ref-
erences therein). However, the development of analytical sta-
bility guarantees for linear feedback methods has been lacking
due to the fact that the governing equations for muscle con-
tractions are nonlinear with unstructured time-varying uncer-
tainties. Feedback techniques such as linear quadratic Gaussian
(LQG) methods, gain scheduling methods, and pole placement
methods were developed and analyzed under a linear muscle
model assumption [8]-[10]. Recently, nonlinear robust tech-
niques such as sliding mode control (SMC) (cf. [11], [12]) and
robust integral of the sign of the error (RISE) [13] methods have
been developed and analyzed for uncertain nonlinear muscle
models. Although stability results can be achieved for represen-
tative nonlinear muscle models, these results, as well as pre-
vious linear feedback methods, inherently rely on high gains or
high frequency to dominate the model uncertainty, potentially
resulting in overstimulation.

Seminal work in [14]-[19] continue to inspire new inves-
tigations (cf. [20]-[25] and the references within) in neural
network (NN)-based NMES control development. One motiva-
tion for NN-based controllers is the desire to augment feedback
methods with an adaptive element that can adjust to the un-
certain muscle model, rather than only relying on feedback
to dominate the uncertainty based on worse case scenarios.
NN-based control methods have attracted more attention in
NMES than other adaptive feedforward methods because of
the nature of the unstructured uncertainty and the universal
approximation property of NNs. However, since NNs can only
approximate a function within some residual approximation
error, all previous NN-based controllers yield uniformly ulti-
mately bounded stability (i.e., the errors converge to a region
of bounded steady-state error).

Our previous result in [13] focuses on the development of a
RISE-based NMES controller and the associated analytical sta-
bility analysis that yields asymptotic tracking in the presence of
a nonlinear uncertain muscle model with nonvanishing additive
disturbances. The result in [13] uses feedback and an implicit
learning mechanism to dominate uncertainty and disturbances.
Recent results from general control systems literature [26] indi-
cate that the RISE-based feedback structure can be augmented
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with a NN feedforward term to yield asymptotic tracking for
some classes of systems. Based on these general results (and
our preliminary work in [27]), the RISE-based method in [13] is
modified with an NN to develop a new NMES controller for the
uncertain muscle model. The developed controller is applied as
an amplitude modulated voltage to external electrodes attached
to the distal-medial and proximal-lateral portion of the quadri-
ceps femoris muscle group in non-impaired volunteers. The ex-
perimental results indicate that the addition of the NN to the
RISE controller reduces the root mean squared (RMS) tracking
error for similar RMS voltage when compared to the method in
[13] without the NN feedforward component (RISE controller
alone).

II. MUSCLE ACTIVATION AND LIMB MODEL

The musculoskeletal dynamics with one-degree of rotational
freedom about the knee joint is given as [6]

M]+M6+Mg+MU+Td:T. (1)

In (1), M1(§) € R denotes the inertia of the shank-foot com-
plex about the knee-joint, M.(q) € R denotes elastic effects
due to joint stiffness, M,(q) € R denotes the gravitational com-
ponent, M,(¢) € R denotes viscous effects due to damping
in the musculotendon complex [28], 74(¢) € R represents un-
known unmodeled bounded disturbances (e.g., fatigue, signal,
and response delays, spasms, changing muscle geometry), and
7(t) € R denotes the torque produced at the knee joint by the
electric potential.

The inertia and gravitational effects in (1) can be modelled as

M =Ji, M, =mglsin(q)

where ¢(t), (), §(t) € R denote the angular position, velocity,
and acceleration of the lower shank about the knee-joint, re-
spectively, JJ € R denotes the unknown inertia of the combined
shank and foot, . € R denotes the unknown combined mass of
the shank and foot, [ € R is the unknown distance between the
knee-joint and the lumped center of mass of the shank and foot,
and g € R denotes the gravitational acceleration. The elastic
effects are modelled on the empirical findings by Ferrarin and
Pedotti in [28] as

M, = ki(exp(—k2q))(q — k3) 2

where ki1,ks, k3 € R are unknown positive coefficients. As
shown in [6], the viscous moment M,,(§) can be modelled as

M, = By tanh(—Bsq) — Bsg 3

where B1, B, and B3 € R are unknown positive constants.

The torque produced about the knee is controlled through
muscle forces that are elicited by NMES. For simplicity and
without loss of generality, the subsequent development focuses
on producing knee torque through muscle tendon forces gener-
ated by electrical stimulation of the quadriceps (i.e., antagonistic
muscle forces are not considered). The knee torque is related to
the muscle tendon force F'(q,q,t) € R as

T=(F @

where ((¢) € R denotes a positive moment arm that changes
with the extension and flexion of the leg as shown in studies by
[29] and [30]. The total muscle force is a sum of active force
generated by contractile element (often denoted as Fcg), the
tension generated by passive elastic elements (often denoted as
Fpg) and the forces generated by viscous fluids (often denoted
as Fyg). The muscle force generated at the tendon is the projec-
tion of net sum of these elements along the line parallel to the
tendon. The total muscle force generated at the tendon is consid-
ered a function of the unknown nonlinear function 7(q, ¢) € R
and voltage V' (t) applied to the quadriceps muscle by electrical
stimulation defined as

F=nV. &)

The introduction of the unknown nonlinear function 7(q, ¢) en-
ables the muscle contraction to be considered under general dy-
namic conditions in the subsequent control development. The
uncertain and unknown function 7(q, ¢) captures the dynamic
characteristics of muscle recruitment (approximated by a con-
tinuously differentiable function), and active and passive muscle
characteristics. The active and passive characteristics include
increase in elastic element with increasing muscle length and
muscle stiffness changes of potentially more than two orders of
magnitude [31] under dynamic contractions.

The model developed in (1)—(5) is used to examine the sta-
bility of the subsequently developed controller, but the con-
troller does not explicitly depend on these models. Specifically,
an NN is used to approximate the muscle dynamics along with
the implicit learning of the RISE feedback structure. The fol-
lowing assumptions are used to facilitate the subsequent control
development and stability analysis.

Assumption 1: The moment arm ((q) is assumed to be a
non-zero, positive, bounded function [29], [30] whose first two
time derivatives exist. Based on the empirical data in [32] and
[33], the function 7(q, ) is assumed to be a non-zero, posi-
tive, and bounded function with bounded first and second time
derivatives.

Assumption 2: The auxiliary non-zero unknown scalar func-
tion Q(q, ¢) € R is defined as

Q=(n (6)

where the first and second time derivatives of (g, ¢) are as-
sumed to exist and be bounded (see Assumption 1).
Assumption 3: The unknown disturbance 74(t) is bounded
and its first and second derivatives with respect to time exist
and are bounded. Based on Assumptions 1 and 2, the ratio
74(t)/Q(q, ¢) is also assumed to be bounded and its first and
second derivatives with respect to time exist and are bounded.

III. CONTROL DEVELOPMENT AND STABILITY ANALYSIS

The objective is to develop an NMES controller to produce
a desired torque at the knee to enable the knee angle to track a
desired trajectory, denoted by ¢,4(¢) € R. The desired trajectory
can be any continuous signal (or a simple constant setpoint). In
the subsequent experimental results the desired signal is a sinu-
soidal trajectory. The sinusoidal trajectory is arbitrary and may
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not correspond to functional trajectory, but the period of the si-
nusoid is motivated by the speed of typical walking gaits. Al-
though such trajectories may not correspond to functional tra-
jectories, the ability to track arbitrary trajectories is necessary
for the performance of many functional tasks elicited through
external electrical stimulation. To quantify the objective, a limb
position tracking error, denoted by e (t) € R, is defined as

€1=qa—q 7

where qq(t) is an a priori trajectory which is designed such that
qa(t) and g4(t) are bounded and within the knee range of mo-
tion, where ¢’ (#) denotes the ith derivative for i = 1,2, 3,4. To
facilitate the subsequent analysis, filtered tracking errors, de-
noted by ex(t) and r(¢) € R, are defined as

ez = €1+ aier, T =eé2+ e (®)
where «1,a2 € R denote positive constants. The filtered
tracking error r(t) is introduced to facilitate the closed-loop
error system development and stability analysis but is not
used in the controller because of a dependence on acceleration
measurements.

A. Open-Loop Error System Development

The open-loop tracking error system can be developed by
multiplying (8) by J/(q, ¢) and by utilizing the expressions
in (1) and (4)—(8) as

Jor = Jo(ases + @1é1 4+ Ga) + Lo =V + 100 (9)

where Jo(q,q) € R,La(g,¢) € R, and 740(q,q¢) € R are
defined as

J 1 Td
Jo==, Lo=—-(M.+ M,+ M,), =—. (10
e=gq Le Q( .+ M, + M,), Ti0 O (10)
To facilitate the subsequent analysis, auxiliary signals

Jod(qd,qa) € R and Lga(qa,qq) € R are defined as in
(10) where the functional dependencies on ¢(t) and ¢(t) are
replaced with ¢4(¢t) and ¢q4(t). By adding and subtracting
fa(qa, 4a, Ga) € R, defined as

fa = Lad + Jaada (11)
the dynamics in (9) can be rewritten as
Jor=fa+ 8-V + 140 (12)

where the auxiliary function S(q, g4, ¢, 4a, Ga) € R is defined as

S = Jo(azes + a1é1) + Jaga — JaaGa + Lo — Laa-

B. Feedforward NN Estimation

NN-based estimation methods are well suited for NMES be-
cause the muscle model contains unstructured nonlinear dis-
turbances as given in (1) (i.e., uncertainties that do not satisfy
the linear-in-the-parameters assumption). Let S be a compact
simply connected set of R*. Let C(S) be defined as the space

where f4(z4) : S — R is continuous. The universal approx-
imation property states that there exist weights and thresholds
such that the function f4(z4) € C(S) can be represented by a
three-layer NN as [34]
fo=WTa(UTxa) + ¢(za) (13)
where x4(t) € R* is defined as z4(t) = [1 qa(t) qa(t) Ga(t)]T.
In (13), U € R¥Nt and W € RYM*! are bounded constant
ideal weight matrices for the first-to-second and second-to-third
layers, respectively, where N; is the number of neurons in the
hidden layer. The sigmoid activation function in (13) is denoted
by o(-) : R* — R™M™*! and ¢(z4) : R* — R is the func-
tional reconstruction error. The additional term “1” in the input
vector 24(t) and activation term o( - ) allows for thresholds to
be included as the first columns of the weight matrices [34].
Thus, any estimation of W and U then includes estimation of
the thresholds. Based on (13), the typical three layer NN ap-
proximation for f4(z4) is given as [34]
fa=WTra(U ) (14)
where U(t) € R**Nt and W (t) € RN+ are subsequently de-
signed estimates of the ideal weight matrices. The estimate mis-
match for the ideal weight matrices, denoted by U (t) € R** !
and W (t) € RM*1 are defined as
U=U-U, W=W-W (15)
and the mismatch for the hidden-layer output error, denoted by
5(zq) € RN T is defined as
d=0—6=0(UT2q) — (U ). (16)
Assumption 4 (Boundedness of the Ideal Weights): The ideal

weights are assumed to exist and are bounded by known positive
values so that

1U1% = tr(UTU) = vee(U)Tvec(U) < Up

J A7)
W% = tr(WTW) = vec(W)Tvec(W) < Wg

(18)

where || - || F is the Frobenius norm of a matrix, and tr( - ) is the
trace of a matrix. The ideal weights in an NN are bounded, but
knowledge of this bound is a non-standard assumption in typ-
ical NN literature (although this assumption is also used in text-
books such as [34]). If the ideal weights are constrained to stay
within some predefined threshold, then the function reconstruc-
tion error will be larger. Typically, this would yield a larger ulti-
mate steady-state bound. Yet, in the current result, the mismatch
resulting from limiting the magnitude of the weights is compen-
sated through the RISE feedback structure (i.e., the RISE struc-
ture eliminates the disturbance due to the function reconstruc-
tion error). Based on the assumption that the desired trajectory
is bounded, the following inequalities hold:

le(xa)l < €, [é(za)| < €,

l€(za)l < ey  (19)

where €, , €, and €, € R are known positive constants.
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Remark 1: One motivation to add and subtract the auxiliary
function f4(q4, Ga, Ga) to yield (12) is to develop the input vector
x4(t) in terms of the desired trajectory, thus avoiding higher
order state derivatives in the NN input vector and ensuring that
fa(qas da, Ga) is defined on S.

C. Closed-Loop Error System Development

The control development in this section is motivated by sev-
eral technical challenges associated with blending the NN feed-
forward term with the RISE feedback method. One of the chal-
lenges to use the RISE control structure is that an extra time
derivative of the dynamics, which generates acceleration de-
pendent terms, is used in the stability analysis. If the NN is a
function of the actual system states, the NN update laws will
require acceleration measurements. To avoid the use of accel-
eration measurements, the NN structure in (14) is developed
in terms of the desired trajectories. Another challenge is that,
while the NN estimate are upper bounded by constant, the time
derivatives of these terms are state dependent, and hence vio-
late the traditional RISE assumptions. To address this issue, the
closed-loop error system development requires a strategic sep-
aration and regrouping of terms. In this section, the control is
designed and the closed-loop error system is presented.

Based on the open-loop error system in (12) and the subse-
quent stability analysis (see the development in Appendix A),
the control torque input is designed as [26]

V="fatn (20)

where fd (t) € Ris the three-layer NN feedforward estimate de-
fined in (14), and p(t) € R is the RISE feedback term designed
as [35]-[37]

p= (ks + Dea(t) = (ks + 1)ea(0) + v 1)

In (21), ks € R denotes positive constant adjustable control
gain, and v(t) € R is the generalized solution to

v = (ks + 1)agea(t) + frsgn(ea(t)), v(0)=0 (22)
where 31 € R denotes positive constant adjustable control gain,
and sgn( - ) denotes the signum function. The estimates for the
NN weights in (14) are generated online using a projection al-

gorithm as
W = pI‘Oj (F16/UT:1':,162T)

; T
U = proj <Fm (&’Tvifeg) ) (23)
where T'; € RMi+DX(Ni+1) gnd Ty € R**? are constant,
positive definite, symmetric gain matrices. The NN-based feed-
forward component f,4(t) is used to approximate the desired
musculoskeletal dynamics f,4(qq4, 4a, Ga) given in (11). The NN
component approximates the desired function through adaptive
weight estimates that are adjusted online via the adaptive law
given in (23). The RISE feedback controller p(¢) has implicit
learning characteristics [37] which maintains the robustness of
the system in the presence of additive disturbances and residual
function approximation error. Also during the transient response

of the trial, the role of the RISE feedback controller is to keep the
system stable while the NN approximates the system dynamics.

The closed-loop tracking error system can be developed by
substituting (20) into (12) as

Jor = fa+ S — p+ Tao (24)
where
fa=fa— fa.

To facilitate subsequent closed-loop stability analysis, the time
derivative of (24) can be determined as

(25)

Jor = —Jor+ f, +S — i + 7uq. (26)
Although the voltage control input V'(¢) is present in the open-
loop error system in (12), an additional derivative is taken to fa-
cilitate the design of the RISE-based feedback controller. After
substituting the time derivative of (25) into (26) by using (13)
and (14), the closed-loop system can be expressed as
T
Joi = —Jor + WTo (UTz)UTiq— W o(UTz4)
T
- WTUI(UTxd)UTj:d - WTUI((ijd) U x4
+ &(ra) + S — i+ Tao 27)

where o (UTz,4) = do(U"xq)/d(U"xa)|yr,,_pr,,- After
adding and subtracting the terms W26 UTq, + WT6' U iy
to (27), the following expression can be obtained:

Jaor = —jQ’I“ + WT&,UTde + V~VT6/UTZI'Sd

—WT6' U iy —WT6 U iy

T
+WTo' U dg + é(xg) - W6 U w4
. T

—W 48—+ (28)
where the notation 6(-) is introduced in (16). Using the NN
weight tuning laws described in (23), the expression in (28) can
be rewritten as

1. .
Joi = =5 dar + N+ N = es = (ks + 1)r — fsgn(ez) (29)

where the unmeasurable auxiliary terms N(e1,ez,7,t) and
N(W,U,xq4,%4,t) € R given in (29) are defined as

. 1. . A T
N = —5Jar + 5 + ez — proj (Fl& UTi?degT) o

— W7 proj (rm (&'TW@)T) ’ T4 (30)
N = Ng + Nu. 31)
In (31), Nyg(z4,44,t) € R is defined as
Na=W70' UTiq+ é(xa) + 7a0 (32)
while Ng(W,U, x4,iq4,t) € R is defined as
Np = Np, + N3, (33)
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where N, (W, U,zq,&a, t)and Np, (W, U,zq,%a, t) € Rare
defined as

Np, = -WT6'U g~ WT5'0 04 (34)

and

Np, =WT6'U g+ WT6'U  iry. (35)
Motivation for the definitions in (30)—(32) are based on the need
to segregate terms that are bounded by state-dependent bounds
and terms that are upper bounded by constants for the develop-
ment of the NN weight update laws and the subsequent stability
analysis. The auxiliary term in (33) is further segregated to de-
velop gain conditions in the stability analysis. Based on the seg-
regation of terms in (30), the mean value theorem can be applied
to upper bound N(el, e, r,t) as

INT< p(llD)lI=] (36)
where z(t) € R? is defined as
22 [e1 e2 T’]T (37)

and the bounding function p(||z||) € R is a positive globally
invertible nondecreasing function. Based on Assumption 3,
(17)—(19), and (33)—(35), the following inequalities can be
developed [26]:

INa| <Gt [NB| < ¢

INa| <G INBI < G+ G5

62|
(38)
where ¢; € R, (i = 1,2, ...5) are known positive constants.
Theorem 1: The composite NN and RISE controller given
in (20)—(22) ensures that all system signals are bounded under
closed-loop operation and that the position tracking error is reg-
ulated in the sense that
ler(t)] = 0 ast— oo 39)
provided the control gains in (8), (21), and (22) are selected
according to the following sufficient conditions:

1
051>§, 012>/32+1

51>C1+<2+a%§3+ai2§47 B2 > (s

and control gain k, defined in (21) is chosen sufficiently large

based on the initial conditions of the error system, where (; €

R,(: = 1,2,...,5) are known positive constants defined in

(38), and 35 € R is a subsequently defined positive constant.
Proof: See Appendix A.

IV. EXPERIMENTAL RESULTS

Experimental results obtained with volunteer subjects are
provided in this section to examine the performance of the
developed controller given in (20)—(22). These results were
compared with the previous results in [13] that used the RISE
feedback structure without the NN feedforward term. The

NMES controller was implemented as an amplitude modulated
voltage composed of a positive rectangular pulse with a fixed
width of 400 usec and fixed frequency of 30 Hz. The a priori
chosen stimulation parameters are within the ranges typically
reported during NMES studies [13]. Without loss of generality,
the developed controller is applicable to different stimulation
protocols (i.e., voltage, frequency, or pulse width modulation).
The following results indicate that the developed controller
(henceforth denoted as NN+RISE) was able to minimize the
knee angle error while dynamically tracking a desired trajec-
tory.

A. Testbed and Protocol

Three sets of experiments were conducted including tracking
experiments, regulation experiments, and a sit-to-stand tracking
experiment. The objective in tracking experiments (including
the sit-to-stand tracking case) was to enable the knee and lower
leg to follow an angular trajectory, whereas, the objective of
regulation experiments was to regulate the knee and lower
leg to a constant desired setpoint. For tracking and regulation
experiments, the testbed consists of a custom computer con-
trolled stimulation circuit and a modified leg extension machine
(LEM). The LEM was modified to include optical encoders.
The LEM allows seating adjustments to ensure the rotation
of the knee is about the encoder axis. A 4.5 kg (10 lb) load
was attached to the weight bar of the LEM and a mechanical
stop was used to prevent hyperextension. The sit-to-stand
tracking experiment was performed to illustrate the controller
performance in a more functional weight bearing task where the
person was not sitting in the LEM. For this experiment, a person
was seated in a chair while leaning forward (so the center of
gravity would be positioned to enable the person to stand via
leg extension). The person’s knee angle was measured using a
goniometer (manufactured by Biometrics Ltd.) attached to both
sides of the knee joint. The goniometer was interfaced with the
custom computer controlled stimulation circuit via an angle
display unit (ADU301). For all experiments, bipolar self-ad-
hesive neuromuscular stimulation electrodes were placed over
the distal-medial and proximal-lateral portion of the quadriceps
femoris muscle group of volunteers and connected to custom
stimulation circuitry. For each experiment, the computed
voltage input was modulated by a fixed pulse width of 400 us
and fixed frequency of 30 Hz. The stimulation frequency was
selected based on subject comfort and to minimize fatigue.

The experiments were conducted on nine non-impaired sub-
jects including eight males and one female (as in our previous
study in [13]) with age ranges of 20 to 35 years, with written in-
formed consent as approved by the Institutional Review Board
at the University of Florida. The electrical stimulation responses
of non-impaired subjects have been reported as similar to para-
plegic subjects’ responses [11], [17], [21]. Volunteers were in-
structed to relax as much as possible and to allow the stimulation
to control the limb motion (i.e., the subject was not supposed
to influence the leg motion voluntarily and was not allowed to
see the desired trajectory). In the first set of experiments, the
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Fig. 1. Top plot shows the actual limb trajectories obtained from the NN4RISE controller (dashed line) and the RISE controller (solid line) versus the desired
1.5 period trajectory (dotted line). The middle plot shows the tracking error (desired angle minus actual angle) obtained from NN+ RISE (dashed line) and RISE
(solid line) controllers. The maximum steady state errors obtained are 4.24° (at 28.6 s) and 5.95° (at 20.7 s) for NN4-RISE and RISE controller, respectively. The
bottom plot shows the computed NN+RISE voltage (dashed line) and RISE voltage (solid line). The maximum steady state voltage obtained are 26.95 (at 29.1 s)

and 28.1 V (at 21.47 s) for NN+RISE and RISE controller, respectively.

study was conducted for different types of desired trajectories
including: a 1.5 s periodic trajectory and a dual periodic tra-
jectory (combined 4 and 6 s periods). Controllers were imple-
mented on both legs of four subjects using the trajectory with a
1.5 s period, while the rest of the tests were performed on only
one leg of the other three subjects since they were not available
for further testing. Three subjects [one male, one female (both
legs); one male (one leg)] were asked to volunteer for the dual
periodic desired trajectory tests. The regulation tests were per-
formed on one of the legs of two subjects, while the sit-to-stand
experiment was performed on one healthy normal individual.
Each subject participated in one trial per criteria (e.g., one result
was obtained in a session for a given desired trajectory). A pre-
trial test was performed on each volunteer in each experimental
session to find the appropriate initial voltage for the controller
to reduce the initial transient error. After the pretrial test, the
RISE controller was implemented on each subject for a thirty
second duration and its performance was recorded. A rest period
of five minutes was provided before the NN+RISE controller
was implemented for an additional thirty second duration. The
NN+RISE controller was implemented with three input layer
neurons, 25 hidden layer neurons, and one output layer neuron.
The neural network weights were estimated online according to
the adaptive algorithm in (23).

B. Results and Discussion

The knee/lower limb tracking results for a representative sub-
ject with stimulation from the RISE and the NN4-RISE con-
trollers are shown in Fig. 1 and are summarized in Table I. In

Table I, the maximum steady-state voltage (SSV) and maximum
steady-state error (SSE) are defined as the computed voltage
and absolute value of error respectively, that occur after 1.5 s
of the trial. Paired one tailed t-tests (across the subject group)
were performed with a level of significance set at @« = 0.05.
The results indicate that the developed controller demonstrates
the ability of the knee angle to track a desired trajectory with a
mean (for eleven tests) RMS error of 2.92 degrees with a mean
maximum steady state error of 7.01 degrees. Combining the NN
with the RISE feedback structure in [13] yields (statistically sig-
nificant) reduced mean RMS error for approximately the same
input stimulus. The maximum steady state voltages for the RISE
and NN+RISE controllers revealed no statistical differences.
To illustrate that the performance of the NN+RISE controller
(in comparison to the RISE controller alone) can be more sig-
nificant for different desired trajectories, both controllers were
implemented on three subjects (two male, one female) with the
control objective to track a dual periodic (4-6 s) desired trajec-
tory with a higher range of motion. The stimulation results from
the RISE and the NN+RISE controllers are shown in Fig. 2 and
are summarized in Table II. In Table II, the maximum SSV and
SSE were observed after 4 s of the trial. The results illustrate
that the NN+RISE controller yields reduced mean RMS error
(across the group) and reduced mean maximum SSE (across the
group) for approximately the same input stimulus. Paired one
tailed t-tests (across the subject group) were performed with a
level of significance set at @ = 0.05. The results show that the
difference in mean RMS error and mean maximum SSE were
statistically significant. The P value for the mean RMS error



718

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 20, NO. 3, MAY 2012

TABLE I
SUMMARIZED EXPERIMENTAL RESULTS AND P VALUES OF ONE TAILED PAIRED T-TEST FOR A 1.5 s PERIOD DESIRED TRAJECTORY.
* INDICATES STATISTICAL DIFFERENCE

Subject | Leg RMS Error Max SSE Mean Voltage [Volts] | Max SSV [Volts]
RISE | NN+RISE | RISE | NN+RISE | RISE NN+RISE | RISE | NN+RISE
A Left | 3.59° 2.92° 12.42° 7.59° 22.91 23.98 29.5 31
A Right | 2.60° 2.63° 5.74° 6.51° 27.70 25.40 32.95 31.5
B Left | 2.47° 2.23° 5.95° 4.24° 22.41 22.81 28.1 26.95
B Right | 2.83° 2.74° 6.28° 6.76° 25.10 23.03 29.8 30.5
C Left | 3.18° 2.46° 8.1 6.17° 41.35 40.14 48.9 44.8
C Right | 2.97° 3.01° 6.9° 9.63° 36.32 35.15 46.4 42.3
D Left | 3.23° 3.71° 6.04° 5.86° 25.25 28.24 30 34.1
D Right | 3.53° 2.96° 8.8° 7.58° 13.62 14.95 24.2 234
E Left | 3.92° 3.26° 11.15° 7.92° 30.89 31.46 45 40.5
F Left | 3.38° 2.83° 7.99° 6.41° 26.15 28.13 31.8 34.1
G Left | 3.52° 3.32° 8.2° 8.45° 41.59 43.44 49.8 50
Mean 3.20° *2.92° 7.96° 7.01° 28.48 28.79 36.04 35.38
Std. Dev. 0.45° 0.41° 2.18° 1.44° 8.49 8.29 9.44 8.08
P(T<=t) 0.02 0.08 0.28 0.22
60
)
(5}
=
o 40
=)
=
<
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Fig. 2. Top plot shows the actual limb trajectories obtained from the NN+4RISE controller (dashed line) and the RISE controller (solid line) versus the dual
periodic desired trajectory (dotted line). The middle plot shows the tracking error (desired angle minus actual angle) obtained from NN4-RISE (dashed line) and
RISE (solid line) controllers. The maximum steady state errors obtained are 4.57° (at 10.5 s) and 6.56° (at 21 s) for NN+RISE and RISE controller, respectively.
The bottom plot shows the computed NN+RISE voltage (dotted line) and RISE voltage (solid line). The maximum SSV obtained are 29.68 (at 26.9 s) and 29.67

V (at 26.7 s) for NN+RISE and RISE controller, respectively.

(0.00043) and mean maximum SSE (0.0033) t-test obtained in
the case of dual periodic trajectory is smaller when compared
to the P values (0.02 and 0.08, respectively) obtained for the 1.5
s trajectory. This difference indicates the increased role of the
NN for slower trajectories (where the adaptation gains can be
increased).

As in [13], additional experiments were also conducted to ex-
amine the performance of the NN+4-RISE controller in response
to step changes and changing loads. Specifically, a desired tra-
jectory of a step input was commanded with a 10 1b load at-
tached to the LEM. An additional 10 Ib load was added once

the limb stabilized at 15 degrees. The limb was again com-
manded to perform a step response to raise the limb back up
an additional 15 degrees with the total load of 20 1b. The results
using the NN+4-RISE controller are shown in Fig. 3. The experi-
mental results for the step response and load addition are given
in Table III. The results give some indication of the controller’s
ability to adapt to changes in load and step inputs and motivate
possible future case studies.

Experiments were also performed to test the NN+RISE con-
troller for a sit-to-stand task. These tests were conducted on a
non-impaired individual initially seated on a chair. The objec-
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TABLE 11
SUMMARIZED EXPERIMENTAL RESULTS AND P VALUES OF ONE TAILED PAIRED T-TEST FOR DUAL PERIODIC (4—6 s) DESIRED TRAJECTORY.
* INDICATES STATISTICAL DIFFERENCE

Subject | Leg RMS Error Max SSE Mean Voltage [Volts] | Max SSV [Volts]
RISE | NN+RISE | RISE | NN+RISE | RISE NN+RISE | RISE | NN+RISE
A Left | 2.35° 1.85° 6.12° 4.30° 29.08 29.19 34.10 34.09
A Right | 1.73° 1.26° 4.49° 3.9° 30.00 29.67 35.75 34.62
B Left | 3.52° 2.62° 6.45° 5.64° 37.09 36.34 44.04 43.47
B Right | 3.39° 2.89° 6.53° 6.00° 37.88 38.57 45.30 46.19
C Right | 3.84° 2.82° 6.56° 4.57° 23.99 24.09 29.67 29.68
Mean 2.97° *2.29° 6.03° *4 .88° 31.61 31.57 37.77 37.61
Std. Dev. 0.89° 0.71° 0.88° 0.90° 5.84 5.85 6.69 6.93
P(T<=t) 0.00043 0.0033 0.43 0.29
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Fig. 3. Experimental plots (subject A—dashed-dotted line; subject B—solid line) for step change and load addition obtained from the NN+-RISE controller. The
top plot shows actual limb trajectory versus the desired step trajectory (dotted line). The load was added once the limb stabilizes (between 13—15 s interval). After
the load addition the limb was tested for the step input. The middle plot shows the limb tracking error obtained during the experiment. The bottom plot shows

computed voltage for the experiment.

TABLE III
EXPERIMENTAL RESULTS FOR STEP RESPONSE AND CHANGING LOADS
Subject | Leg | Max. SSE (after | Max. Transient Error | Max. Error (during | Max. SSV (after
step input) disturbance) step input) [Volts]
A Left | 0.7° 9.5° 2.8° 42.2
B Right | 0.6° 9.52° 2.0° 19.2

tive was to control the angular knee trajectory that resulted in
the volunteer rising from a seated position, with a final desired
angle of 90° (standing position) and the initial knee angle of 0°
(sitting position). The error, voltage, and desired versus actual
knee angle plots are shown in Fig. 4. The final SSE is within
—0.5°, the maximum transient error was observed as 8.23° (at
1.64 s), and the maximum voltage was obtained as 35.1 V (at
1.59 s). The RMS error and the mean voltage were obtained as
2.92° and 26.88 V, respectively.

The NN+RISE structure is motivated by the desire to blend
a NN-based feedforward method with a continuous feedback

RISE structure to obtain asymptotic limb tracking despite an
uncertain nonlinear muscle response. The ability of the neural
networks to learn uncertain and unknown muscle dynamics
is complemented by the ability of RISE to compensate for
additive system disturbances (hyperactive somatosensory re-
flexes that may be present in impaired individuals) and NN
approximation error. Although the NN+RISE controller was
successfully implemented and compared to RISE controller
in the present work, the performance of the controller may
be further improved in efforts to reduce the effects of muscle
fatigue in future studies. Fatigue can be reduced for short
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Fig. 4. Top plot shows the actual leg angle trajectory (solid line) versus desired trajectory (dashed line) obtained during the standing experiment. The middle plot
shows the error obtained during the experiment. The bottom plot shows the voltage produced during the experiment.

durations by selecting optimal stimulation parameters, but
FES/NMES may require a controller that adapts with fatigue to
yield performance gains for longer time durations. Therefore,
future development includes the use of a fatigue model in the
muscle dynamics as a means to provide desired results for
longer durations.

C. Limitations

The results illustrate the added value of including a NN feed-
forward component in comparison to only using the RISE feed-
back structure in [13]. However, several limitations exist in the
experimental study. The contribution from the NN component
in the case of 1.5 s periodic desired trajectory was observed to
increase but the RISE contribution did not decline proportion-
ally. On the other hand, respective contributions from the RISE
and NN component in the dual periodic desired trajectory case
were relatively stationary, and the NN component’s contribu-
tion was found to be relatively larger in this case. As a represen-
tative example, Fig. 5 shows the results obtained from a same
subject for two cases: 1.5 s desired trajectory and dual periodic
desired trajectory, where it depicts the individual contributions
of NN and RISE components in the applied voltages. The ra-
tios of NN and RISE contributions in the Fig. 5 for 1.5 s pe-
riod desired trajectory and dual periodic desired trajectory were
obtained as 0.088 and 0.165, respectively, which were calcu-
lated as RMS NN voltage over mean RISE voltage. A possible
reason for this observation is that the 1.5 s period desired tra-
jectory has a large desired acceleration ¢4 (¢), which is an input
to the NN that can lead to large voltage swings during the tran-
sient stage. To reduce large voltage variants during the transient
due to 4(t), the update law gains are reduced in comparison to
gains that could be employed during less aggressive trajectories.
Also, the experimental results with slower trajectories (dual pe-
riodic—4-6 s period) illustrate that the NN component can play

a larger role depending on the trajectory. Specifically, the dual
periodic trajectory results indicate that the RMS error obtained
with the NN+RISE controller is lower than the RMS error ob-
tained with the RISE controller with a lower P value (0.00043)
compared to the P value (0.02) obtained with the 1.5 s period
trajectory.

Since a trajectory for a specific functional task was not pro-
vided, the desired trajectory used in the first set of experiments
was simply selected as a continuous sinusoid with a constant 1.5
s period. The desired trajectory was arbitrarily selected, but the
period of the sinusoid is inspired by a typical walking gait tra-
jectory. As the work transitions to applications where a specific
functional trajectory is generated, the control results should di-
rectly translate. Furthermore, some clinical goals may be better
expressed as a desired force profile rather than a desired limb tra-
jectory. The results from this work could be directly applied to
these cases by altering the control objective and open-loop error
system, but the form of the control method (i.e., NN+RISE)
would remain intact.

For all experiments, the subjects were not aware of the order
of the control implementation, and the RISE controller was im-
plemented first so that proper gains could be determined. The
NN+RISE controller was implemented by simply adding the
NN component to the tuned RISE controller. This approach al-
lows a direct comparison that highlights the contribution of the
NN for the same set of control gains. However, the subjects
could have been more comfortable or experienced more fatigue
when the second set of experiments were performed. Ideally the
controllers would have been implemented in a random manner.

The Lyapunov-based analysis provides conservative suffi-
cient gain conditions. The control gains for the experiments
were obtained by choosing gains and then adjusting them based
on the transient and steady-state performance. If the response
exhibited a prolonged transient response (compared with the
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Fig. 5. As arepresentative example, the figure shows respective contributions from NN and RISE components in the voltages applied to a subject for two cases:
1.5 s desired trajectory (dashed line) and dual periodic desired trajectory (solid line). The top plot shows the NN contributions while the bottom plot shows the RISE
contributions in the respective applied voltages. The NN contribution in the case of 1.5 periodic trajectory increases but the RISE component does not decrease
proportionally. However, the respective contributions from the RISE and NN component in the dual periodic desired trajectory case are relatively stationary and

also, the NN component’s contribution is relatively greater in this case.

TABLE IV
TABLE SHOWS THE RMS ERRORS DURING EXTENSION AND FLEXION PHASE OF THE LEG MOVEMENT ACROSS DIFFERENT SUBJECTS, TRAJECTORIES
(1.5 s AND DUAL PERIODIC), AND CONTROLLERS (RISE/NN+RISE). THE RESULTS SHOW THAT THE MEAN RMS ERROR IS

MORE DURING THE EXTENSION PHASE THAN DURING THE FLEXION PHASE

Subject | Leg Trajectory | RMS Error (RISE) | RMS Error (NN+RISE)
Extension | Flexion | Extension Flexion
A Left | Dual period 4.35° 2.41° 3.30° 1.68°
A Right | Dual period 3.98° 2.68° 3.39° 2.28°
B Left | Dual period 2.74° 1.86° 1.77° 1.92¢°
B Right | Dual period 1.78° 1.69° 1.35° 1.17°
C Right | Dual period 4.22° 3.43° 3.27° 2.28°
D Left | 1.5 second 2.87° 2.00° 2.54° 1.88°
D Right | 1.5 second 3.21° 2.38° 3.07° 2.38°
E Left | 1.5 second 3.87° 3.30° 3.30° 2.49°
E Right | 1.5 second 2.56° 2.65° 2.34° 2.88°
F Left | 1.5 second 3.81° 2.51° 4.00° 3.40°
F Right | 1.5 second 3.59° 3.47 2.96° 2.96°
G Left 1.5 second 3.93° 2.18° 2.86° 1.97°
G Right | 1.5 second 2.98° 2.95° 2.82° 3.19°
H Left | 1.5 second 4.18° 2.70° 3.92° 2.58°
I Left | 1.5 second 3.97° 2.66° 3.11° 2.51°
J Right | 1.5 second 3.79° 4.05° 3.38° 3.13°
Mean 3.49° 2.68° 2.96° 2.42°
P(T<=t) 0.00013 0.0014

response obtained with other gains), the proportional gains
were adjusted. If the response exhibited overshoot, derivative
gains were adjusted. The control gains for the experiments
were tuned based on this trial and error basis. In contrast to
this trial and error approach, the control gains could have been
adjusted using more methodical approaches as described in
various survey papers on the topic [38], [39].

An analysis across different subjects and trajectories (1.5 s
and dual periodic) indicate that the mean RMS error is more
during leg extension and flexion. A t-test analysis shows that the
results are statistically significant with p values of 0.00013 and
0.0014 obtained from the RISE and NN+RISE controllers, re-
spectively. The mean RMS errors during the extension phase for
the RISE and NN+RISE controllers were 3.49° and 2.68°, re-

spectively, while the mean RMS errors during the flexion phase
was 2.96° and 2.42°, respectively. Summarized RMS errors for
both phases are shown in Table IV. An increased error during ex-
tension phase can be attributed to higher control effort required
during extension. The performance during the extension phase
can also be aggravated by increased time delay and muscle fa-
tigue due to the requirement for higher muscle force compared
to the flexion phase. This analysis indicates a possible need for
separate control strategies during extension and flexion phase of
the leg movement. Particularly, future efforts will investigate a
hybrid control approach for each phase of motion.

Currently the experiments were performed on non-impaired
persons. In future studies with impaired individuals, our
untested hypothesis is that the added value of the NN feed-
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forward component will be even more pronounced (and that
the controller will remain stable) as disturbances due to more
rapid fatigue and more sensitive somatosensory reflexes may be
present in impaired individuals. To delay the onset of fatigue,
different researchers have proposed different stimulation strate-
gies [40]-[42] such as choosing different stimulation patterns
and parameters. The NMES controller in this study was imple-
mented using constant pulse width amplitude modulation of
the voltage. However, the controller can be implemented using
other modulation schemes such as pulse width and frequency
modulation without any implications on the stability analysis,
but the effects of using frequency modulation or varying pulse
trains (e.g., a pulse train containing doublets) remain to be
investigated clinically.

V. CONCLUSION

A Lyapunov-based stability analysis indicates that the de-
veloped closed-loop nonlinear NMES control method yields
asymptotic tracking for a unknown nonlinear muscle activa-
tion and limb dynamics, even in the presence of uncertain
additive disturbances. Experiments using external electrodes
on non-impaired volunteers demonstrated the ability of the
NN-+RISE controller to enable the knee and lower leg to track
a desired trajectory composed of sinusoids, step changes, and
changes in the load. Statistical analysis of the experimental
results indicates that the NN+RISE algorithm yields reduced
RMS tracking error when compared to the RISE controller for
statistically insignificant differences in voltage input. Future
efforts will explore non-quadratic Lyapunov functions and
methods based on convex optimization in [43] to improve the
current stability analysis.

APPENDIX A
STABILITY ANALYSIS

Proof for Theorem 1: Let D C R® be a domain containing
y(t) = 0, where y(t) € R® is defined as

) 217 VPEH) Ve (40)
where the auxiliary function Q(¢) € R is defined as
a Q2 TTT—177 Q2. (FTP-17

Q) 2 D (W Iy W) + Str (U I, U) 41)

and P(t) € R is the generalized solution to the differential equa-
tion

P(0) = Bi]e2(0)| — e2(0)N(0).  (42)
Since I'; and I'y in (41) are constant, symmetric, and positive
definite matrices, and a2 > 0, it is straightforward that Q(¢) >
0. The auxiliary function L(¢) € R in (42) is defined as

L(t) £ 7 (Np, + Ny — Bisgn(e2)) + é2Np, — foej  (43)

where 31, 82 € R introduced in (22) and (43) respectively, are
positive constants chosen according to the following sufficient
conditions:

1 1
Br>C+C0+ —CG+—C, B> (44)
9 (D))

where (; € R,(i = 1,2,...,5) are known positive constants
introduced in (38). Provided the sufficient conditions in (44) are
satisfied, then P(t) > 0.

Let Vi (y,t) : DX [0,00) — R denote a Lipschitz continuous
regular positive definite functional defined as

1 1
Vi(y,t) S el + 563+ SJor® + P+Q  (45)
which satisfies the inequalities
Ur(y) < Vi(y,t) < Ua(y) (46)

provided the sufficient conditions in (44) are satisfied, where
Ui(y),Uz2(y) € R are continuous, positive definite functions
defined as

Ui(y) = Mllyll?, Ua(y) = Xo|lyl)?

where A1, A2 € R are known positive fung:tions or constants.
After taking the time derivative of (45), Vi(y,t) can be ex-
pressed as

1. ..
Vi(y,t) £ 2e161 + €96y + Jori + §JQT2 + P+ Q.

From (8), (29), (42), (43), and after taking the time derivative of
(41), some of the differential equations describing the closed-
loop system for which the stability analysis is being performed
have discontinuous right-hand sides as

(47a)
€y =T — (€9 (47b)
Jor = —%jm" + N+ N — ey — (ks + 1)r — Bsgn(ea)
47c)
P(t) = —r (Np, + N4 — fisgu(es)) — é2Np, + fae3
(47d)

Q(t) = tr (asz/Trl—l W) + tr (agijP;l f]) . (47e)

€1 =e3 — ajeq

Let f(y,t) € R denote the right-hand side of (47). Since
the subsequent analysis requires that a solution exists for y =
f(y,t), it is important to show the existence of the solution to
(47). As described in [44], the existence of Filippov’s general-
ized solution can be established for (47). First, note that f(y, t)
is continuous except in the set {(y, t) | e2 = 0}. From [44], [45],
an absolute continuous Filippov solution y(t) exists almost ev-
erywhere (a.e.) so that

¥y € K[f](y,t) ae.
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Except the points on the discontinuous surface {(y,t)|e2 =
0}, the Filippov set-valued map includes unique solution. Under
Filippov’s framework, a generalized Lyapunov stability theory
can be used (see [45] and [46] for further details) to establish
strong stability of the closed-loop system. The generalized time

derivative of (45) exists a.e., and V7 (y, 1) €V, (y,t), where

VL (yt)
= N TK[ey é5 # iP-2P 10-30 1"
EGBVL(y,t)g [61 €2 T 2 2 2Q ZQ ]
=VVEK[ér é + LP~EP 1Q=:Q 11",
C[261 €2 T‘JQ QP% 2Q% %jQ’I"2]
xKléy & ¢ P3P 1Q=3Q 1]7. @8

After utilizing (8), (29), (42), (43)

: 1.
Vi (y,t) C2e1e9 — 20(18% + eyr — azeg + §JQ7'2
+ 7N + 7N —reg — (ks + 1)r? — frK[sgn(es)]
1.
— EJQ'I"Q —rNp, — Ny + frK]sgn(es)]

- é2N32 + ,826% + tr <OZQWTF1_1 W)

. <a20Tr;1 U) (49)
where [47]
Ksgn(ez)] = SGN(e2)
such that
1, ex >0
SGN(ez) = { [-1,1], e2=0
-1, ez < 0.

Using (23), (31), (33), and (35), canceling common terms, and
based on the fact that

2 2
2e1es < ej + €

(49) can be written as

Vi (9,1) € =(201 = 1)e]
—(ag — B —1)e3 —r2 47N — ka2 (50)

As shown in (49) and (50), the unique integral signum
term in the RISE controller is used to compensate for
the disturbance terms included in  Ng(qa,dd, da, G 4. t)
and Np, (W U7xd,:i7d7t), provided the control gain [
and o are selected according to (44). Further the term
Np,(W,U,x4,44,t) is partially rejected by the unique inte-
gral signum term and partially canceled by adaptive update law.

Using (36), the term 7(t)N(e1, e2, 7, t), can be upper bounded
by following inequality:

[N | < p(ll=IDll=lIr|

to obtain

Vi (y,t) C —min{2a; — 1, a9 — f2 — 1,1}]2]|?
+[p(llzIDNzllr| = ksr®] . (5D

Completing the squares for the bracketed terms in (51) yields

Vi (y,t) C —min{20q — 1,0 — B2 — 1,1} 2|

P (l=DlI=11?
—I—T. (52)

The following expression can be obtained from (52):

Vi (y,t) C =U(y) (53)
where U(y) = c||z||?, for some positive constant ¢ € R, is a
continuous positive semi-definite function that is defined on the
following domain:

A 5 _
D= {yeR’ ||yl < p~' (2 Asks)}

where A3 = min{2a; — 1,y — B — 1,1}. Let S C D denote
a set defined as follows:

SE {y(t) c D Us(y(t)) < M (P_l (2 Ai”kS))z}
(54)

where S C D is introduced in Theorem 1. The region of attrac-
tion in (54) can be made arbitrarily large to include any initial
conditions by increasing the control gain k; (i.e., a semi-global
type of stability result), and hence

cllz(t)]* =0 ast— oo Vy(0)€S. (35)

Based on the definition of z(t) in (37), (55) can be used to show
that

le1(t)] = 0 ast— oo Vy(0)eS. (56)
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