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Isometric Torque Control for Neuromuscular
Electrical Stimulation With Time-Varying

Input Delay
Manelle Merad, Ryan J. Downey, Serhat Obuz, and Warren E. Dixon

Abstract— Previous results have shown experimental evidence
that the muscle response to neuromuscular electrical stimula-
tion (NMES) is delayed; the time lag is often referred to as
electromechanical delay. NMES closed-loop control methods have
been developed to compensate for a known constant input delay.
However, as a muscle fatigues, this delay increases. This paper
develops a feedback controller that robustly compensates for the
time-varying delay of an uncertain muscle model during isometric
contractions. The controller is proven to yield global uniformly
ultimately bounded torque tracking error. Experimental results
illustrate the effectiveness of the developed controller and the
time-varying nature of the delayed response.

Index Terms— Delay estimation, isometric contractions, muscle
fatigue, neuromuscular electrical stimulation (NMES), nonlinear
control, time-varying input delay.

I. INTRODUCTION

MOTOR neurons innervate muscle fibers and control their
contractions by transmitting electrical potentials along

their axons from the brain to the muscle. Motor function can
be impaired if muscles are unable to receive the motor signals
(e.g., following a stroke or a spinal cord injury). However, an
electric current propagating along the muscle fibers between
two electrodes can cause the muscle to contract [1]. Conse-
quently, an external stimulus can replace or augment impaired
motor function. Neuromuscular electrical stimulation (NMES)
has been developed based on this phenomenon and functional
electrical stimulation (FES) is the application of NMES to
perform functional tasks. NMES is a technique primarily
used in postoperative rehabilitation [2], [3] and for muscle
strengthening [4]. However, NMES can also be implemented
in a closed-loop feedback mechanism where the electrical
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stimuli are designed to achieve various rehabilitation out-
comes involving dynamic or isometric contractions [5]–[14].
Many rehabilitation outcomes mandate dynamic training lead-
ing to limb motion. For other outcomes, isometric contractions
are more advantageous: it is considered safer than dynamic
training since the joint is not moving, develops resistance, can
decrease pain during rehabilitation [15], [16] and may lower
blood pressure [17], [18].

Experimental evidence exists to demonstrate that there is
a time lag, termed electromechanical delay (EMD), between
the muscle electrical activation and the onset of muscle
force [19]–[23]. NMES-induced delays are a result of the
muscle activation process; therefore, they are introduced in the
dynamics via a delayed input [24], [25]. Control instability
may be caused by the input delay, and therefore,
EMD should be considered in the system model and in the
control strategy [26]. NMES closed-loop controllers were
developed in [27]–[29] to compensate for EMD assuming lin-
ear dynamics and a constant known delay. Nonlinear methods
were developed in [30]–[32] to compensate for the known
constant input delay assuming exact model knowledge in more
general dynamic systems. The constant input delay problem
for uncertain nonlinear dynamical systems is addressed
in [33]–[36] where the delay is assumed to be known, and
in [37] where the delay is unknown. Results of known constant
EMD compensation are presented in [38] for known muscle
dynamics and in [23] and [39] for uncertain muscle dynamics.

While previous research focused on NMES closed-loop
stabilization in the presence of constant input delays,
experimental results show evidence of fatigue during mus-
cle contractions that limits the control performance. Muscle
fatigue is a process whereby the muscle force decreases
even though the stimulation signal is maintained [40]–[42]
and muscle fatigue is known to occur faster with NMES
training than voluntary contractions. There are various sug-
gested causes of NMES-induced fatigue such as a reversal of
Henneman’s size principle [43] as well as spatially fixed and
temporally synchronous fiber recruitment [44]. While fatigue
itself presents a control challenge in the sense that increased
control effort is required over time to generate equal torque
production (motivating an integral term in the subsequently
developed controller), fatigue can also lead to instability result-
ing from its effects on the EMD. Specifically, fatigue causes
electrochemical and mechanical alterations, such as impair-
ments of axonal action potential propagation and reduced
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motor-tendon stiffness, that lengthen the EMD [45]–[49].
While researchers have pursued methods to slow the rate
of NMES-induced fatigue [50]–[53], the onset of fatigue
is inevitable; therefore, the EMD should be considered as
time-varying in the control development rather than constant.
To compensate for the known time-varying input delay,
methods were developed to stabilize input delayed systems
in [54] and [55] assuming exact model knowledge and in [56]
where semiglobal uniformly ultimately bounded position
tracking is achieved for uncertain Euler–Lagrange dynamics.

Previous NMES results have achieved closed-loop control
yielding dynamic contractions. Fewer studies have investigated
closed-loop control yielding isometric contractions. In [57],
a linear torque tracking controller was developed for
closed-loop NMES. A group of recent results develops
torque tracking controllers for isometric NMES using an
electromyogram (EMG)-based fatigue prediction [58]–[60].
However, surface EMG signals are difficult to dissociate from
the input stimulation signal during transcutaneous electrical
stimulation. Further, EMD was not considered in the
aforementioned isometric torque tracking results, although it
has influence on the reaction torque and system stability.

In this paper, a torque tracking controller is developed for
isometric NMES on the quadriceps femoris muscle group
considering a known time-varying input delay in the dynamics;
the corresponding model and assumptions are presented in
Section II. The control objective is presented in Section III, and
a Lyapunov-based stability analysis, developed in Section V,
yields a global uniformly ultimately bounded torque tracking
error despite the presence of uncertainties, nonlinearities, and
time-varying EMD. Experiments were conducted on eight
healthy individuals to assess the performance of the developed
controller, as detailed in Section VI. Results show that the
error between the measured and the desired torque remains
stable while the time-varying effects of fatigue are illustrated.
A discussion of the results and concluding remarks is provided
in Section VII.

II. STATIC MODEL AND PROPERTIES

The uncertain nonlinear muscle model in [25] is adapted to
isometric contractions by fixing the joint angle and adding the
reaction torque, which leads to

R(t) = f (q)+ D(t) +�(t)V (t − τ (t)) (1)

where R ∈ R denotes the reaction torque, f (q) ∈ R denotes
the gravity and elastic components depending only on the
constant knee-joint angle q ∈ R, D ∈ R denotes time-varying
unknown exogenous disturbances, � ∈ R is an unknown
nonzero time-varying function relating the input voltage
V ∈ R to the torque, and τ ∈ R denotes the known time-
varying EMD. The reaction torque is the resulting combination
of the joint torque produced by electrical stimulation of the
quadriceps, the gravitational and elastic effects on the system
(constant in isometric conditions), and disturbances. The active
knee-joint torque T ∈ R, as detailed in [36], is related to the
muscle-tendon force F ∈ R, as

T = ζ F

where ζ ∈ R is a positive moment arm. The muscle-tendon
force results from NMES-induced contractions, and is defined
as

F = ψV (t − τ )

where ψ ∈ R denotes unknown muscle dynamics
(e.g., unknown fatigue and muscle fiber recruitment-force
properties). The control effectiveness � is defined as

� = ζψ. (2)

Assumption 1: The disturbance D(t) is bounded and its
first time-derivative exists and is bounded [23].

Assumption 2: The positive nonzero unknown function �
is bounded such that � ≤ �(t) ≤ � for all t , where � and
� are positive constants. The first time-derivative of � exists
and is bounded by a known constant.

Assumption 3: The EMD τ is bounded such that
0 < τ(t) < ϕ1 for all t , where ϕ1 ∈ R

+ is a known constant.
The rate of change of the delay is bounded such that |τ̇ | < 1−ε
where ε ∈ R

+ satisfies 0 < ε < 1 and its second time
derivative is also bounded such that |τ̈ | < ϕ2 where ϕ2 ∈ R

+ is
a known constant.

Remark 1: As a muscle fatigues, the reaction torque decays,
but only to a minimum value. Assumption 2 is mild in the
sense that it provides a known conservative lower bound which
relates to the minimum torque that can be produced for a
given input. For example, this bound could be determined
experimentally.

Remark 2: Assumption 3 is also mild in the sense that it
implies that the delay is bounded and that the change in the
delay is slow process. This assumption is demonstrated by the
subsequent experimental results.

Throughout this paper, for notational brevity,
a time-dependent delayed function ξτ : [0,∞) → R

corresponding to a function ξ is defined as

ξτ (t) �
{
ξ (t − τ (t)) , t ≥ τ (t)

0, t < τ(t).

III. CONTROL OBJECTIVE

The objective is to design a controller that ensures state R
of the input-delayed system in (1) tracks a desired torque
trajectory Rd ∈ R despite uncertainties, time-varying input
delays and additive bounded disturbances. To quantify this
objective, the torque tracking error is defined as

e � Rd − R. (3)

To facilitate the subsequent stability analysis, an auxiliary
tracking error is defined as

r � e − Bez (4)

where the auxiliary signal ez ∈ R is defined as

ez �
ˆ t

t−τ
V̇ (θ)dθ. (5)

In (4), B ∈ R is a constant positive best guess estimate of �.
The mismatch error between B and � is defined as

η � B −� (6)
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which, according to Assumption 2, satisfies the following
inequality:

|η| ≤ η (7)

where η ∈ R is a known constant.

IV. CONTROL DEVELOPMENT

Multiplying (4) by �−1 and using (1) and (3) yields

�−1r = �−1(Rd − f − D)− Vτ − B�−1ez . (8)

The open-loop error system can be obtained by taking the
time-derivative of (8) and using (4)–(6) as

�−1ṙ = −1

2

d

dt
(�−1)r + N + S − V̇

−�−1η(V̇ − (1 − τ̇ )V̇ (t − τ )) (9)

where the auxiliary signals S ∈ R and N ∈ R are defined as

S � d

dt
(�−1(Rd − f − D)) (10)

N � −1

2

d

dt
(�−1)r − B

d

dt
(�−1)ez . (11)

Based on (3)–(5), the open-loop error system in (9) now con-
tains a delay-free control input. From the subsequent analysis
and (9), the control input is designed as the solution1 to

V̇ = kbr = kb (e − BV + BVτ ) , V (0) = V0 (12)

where V0 ∈ R is a selectable constant and kb ∈ R is a
selectable constant control gain such that

kb � kb1 + kb2 + kb3 (13)

where kb1 , kb2 , kb3 ∈ R
+. Substituting (12) into (9) yields the

following closed-loop error system:

�−1ṙ = −1

2

d

dt
(�−1)r + N + S − kbr

− kb�
−1η(r − (1 − τ̇ )rτ ). (14)

Using Assumptions 1 and 2, the expressions in (10) and (11)
can be upper bounded as

|S| ≤ ε2 (15)

|N | ≤ ζ1||z|| (16)

where ε2, ζ1 ∈ R are positive known constants and z ∈ R
2 is

defined as

z � [rez]T. (17)

To facilitate the subsequent stability analysis, let y ∈ R
4 be

defined as

y �
[
rez

√
P

√
Q

]T (18)

1In the subsequent experiments, the control input is calculated by numer-
ically solving the differential equation in (12) using Euler’s method with a
fixed step size of 1 ms. Implementation of the controller requires the force
tracking error, the delay, and knowledge of the previous control input over
the delay interval.

where P, Q ∈ R are Lyapunov–Krasovskii functionals
defined as

P � ω

ˆ t

t−τ

(ˆ t

s
V̇ 2(θ)dθ

)
ds (19)

Q �
kb

(
2�−1η + kbγ

2
2

)
2(1 − τ̇ )

ˆ t

t−τ
r2(θ)dθ (20)

where ω, γ2 ∈ R
+ are selectable constants. Based on the

subsequent stability analysis, the constant β1 ∈ R
+ is defined

such that

β1 � min{m1,m2} (21)

where m1, m2 ∈ R
+ are defined as

m1 � inf
τ,τ̇

{
kb3 − kbγ

2
1

4
− kb

(
2�−1η(3−2τ̇ )+ kbγ

2
2

)
2(1 − τ̇ )

− k2
bωτ

}

m2 � inf
τ,τ̇

{
1

τ

(
ω(1− τ̇ )−τ

(
kb

γ 2
1

+ 4

γ 2
2

)
−

(
2�−1η + kbγ

2
2

)
ϕ2

2kb(1−τ̇ )2
)}

and γ1 ∈ R
+ is a selectable constant.

V. STABILITY ANALYSIS

Theorem 3: Given the model in (1) with
Assumptions 1–3, the control law in (12) ensures global
uniformly ultimately bounded torque tracking provided that
the following sufficient conditions are satisfied:

kb3 > sup
τ,τ̇

{
k2

bτω + kb
(
2�−1η(3 − 2τ̇ )+ kbγ

2
2

)
2(1 − τ̇ )

+ kbγ
2
1

4

}

ω > sup
τ,τ̇

{
τ

1 − τ̇

(
kb

γ 2
1

+ 4

γ 2
2

)
+

(
2�−1η + kbγ

2
2

)
ϕ2

2kb(1 − τ̇ )3

}

β1 >
ζ 2

1

4kb1

.

Proof: Let VL : R × [0; ∞) → R be a continuously
differentiable positive-definite functional defined as

VL � 1

2
�−1r2 + 1

2
e2

z + P + Q (22)

where P and Q are defined in (19) and (20), respectively, such
that

λ||y||2 ≤ VL ≤ λ2||y||2 (23)

where the constants λ1, λ2 ∈ R are defined as

λ1 � 1

2
min(�

−1
, 1), λ2 � max

(
1

2
�−1, 1

)
(24)

and � and � were defined in Assumption 2. Applying the
Leibniz rule to determine the time derivative of (19) and (20),
and utilizing (4) and (14), the time derivative of (22) can be
expressed as

V̇L = −kbr2 + Sr + Nr − kb�
−1ηr2 + kbezr

+ kb
(
�−1ηr − ez

)
(1 − τ̇ )rτ + kb

(
2�−1η + kbγ

2
2

)
2(1 − τ̇ )

r2

− kb

2

(
2�−1η + kbγ

2
2

)
r2
τ − ω(1 − τ̇ )

ˆ t

t−τ
V̇ 2(θ)dθ

+ωτ V̇ 2 + kb
(
2�−1η + kbγ

2
2

)
τ̈

2(1 − τ̇ )2

ˆ t

t−τ
r2(θ)dθ. (25)
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After using Young’s inequality and Assumption 3, the
following inequalities can be developed:

kb|ez ||r | ≤ kb

(
γ 2

1

4
r2 + 1

γ 2
1

e2
z

)
(26)

kb(1 − τ̇ )|ez||rτ | ≤ k2
bγ

2
2

2
r2
τ + 2

γ 2
2

e2
z (27)

kb�
−1η(1 − τ̇ )|r ||rτ | ≤ kb�

−1η
(
r2 + r2

τ

)
. (28)

By applying the Cauchy–Schwarz Inequality

|ez|2 =
∣∣∣∣
ˆ t

t−τ
(V̇ (θ)× 1)dθ

∣∣∣∣
2

≤
ˆ t

t−τ
|1|2dθ

ˆ t

t−τ
V̇ 2(θ)dθ ≤ τ

ˆ t

t−τ
V̇ 2(θ)dθ. (29)

Using Assumptions 2 and 3, (7), (12), (15), (16), and
(26)–(28), the expression in (25) can be upper bounded as

V̇L ≤ −kbr2 + ε2|r | + ζ1‖z‖|r | + kbγ
2
1

4
r2

+
(

kb

γ 2
1

+ 2

γ 2
2

)
e2

z + kb
(
2�−1η(3 − 2τ̇ )+ kbγ

2
2

)
2(1 − τ̇ )

r2

−ω(1 − τ̇ )

ˆ t

t−τ
V̇ 2(θ)dθ + k2

bωτr2

+
(
2�−1η + kbγ

2
2

)
ϕ2

2kb(1 − τ̇ )2

ˆ t

t−τ
V̇ 2(θ)dθ. (30)

Using (13) and (29), (30) is upper bounded and grouped as

V̇L ≤ −kb1r2 + ζ1‖z‖|r | − kb2r2 + ε2|r |
−

(
kb3 −

kbγ
2
1

4
− kb

(
2�−1η(3 − 2τ̇ )+ kbγ

2
2

)
2(1 − τ̇ )

− k2
bωτ

)
r2

−
(
ω(1 − τ̇ )−

(
2�−1η + kbγ

2
2

)
ϕ2

2kb(1 − τ̇ )2

)ˆ t

t−τ
V̇ 2(θ)dθ

+ τ
(

kb

γ 2
1

+ 4

γ 2
2

) ˆ t

t−τ
V̇ 2(θ)dθ − 2τ

γ 2
2

ˆ t

t−τ
V̇ 2(θ)dθ.

(31)

Completing the squares in (31) and using (29) yields

V̇L

≤ −
(

kb3 − kbγ
2
1

4
− kb

(
2�−1η(3 − 2τ̇ )+kbγ

2
2

)
2(1−τ̇ ) −k2

bωτ

)
r2

− 1

τ

(
ω(1−τ̇ )−τ

(
kb

γ 2
1

+ 4

γ 2
2

)
−

(
2�−1η + kbγ

2
2

)
ϕ2

2kb(1 − τ̇ )2

)
e2

z

− 2τ

γ 2
2

ˆ t

t−τ
V̇ 2(θ)dθ + ζ 2

1

4kb1

‖z‖2 + ε2
2

4kb2

. (32)

Using the definition of β1 in (21) and z in (17), the expression
in (32) is upper bounded as

V̇L ≤ −
(
β1 − ζ 2

1

4kb1

)
‖z‖2 + ε2

2

4kb2

− 2τ

γ 2
2

ˆ t

t−τ
V̇ 2(θ)dθ.

(33)

After using (12), (19), (20), and the following inequality:ˆ t

t−τ

ˆ t

s
V̇ 2(θ)dθds ≤

ˆ t

t−τ
sup

s∈[t−τ,t ]

ˆ t

s
V̇ 2(θ)dθds

= τ sup
s∈[t−τ,t ]

ˆ t

s
V̇ 2(θ)dθ

= τ

ˆ t

t−τ
V̇ 2(θ)dθ (34)

the expression in (33) can be bounded as

V̇L ≤ −
(
β1 − ζ 2

1

4kb1

)
‖z‖2 + ε2

2

4kb2

− 1

γ 2
2 ω

P

− 2τkb(1 − τ̇ )

γ 2
2

(
2�−1η + kbγ

2
2

) Q. (35)

From the definition of y in (18), (35) can be upper bound as

V̇L ≤ −β2||y||2 + ε2
2

4kb2

(36)

where β2 ∈ R
+ is defined as

β2 � min

{
β1 − ζ 2

1

4kb1

,
1

γ 2
2 ω
, inf

τ,τ̇

{
2τkb(1 − τ̇ )

γ 2
2

(
2�−1η + kbγ

2
2

)
}}
.

Using (23), the expression in (36) can be written as

V̇L ≤ −β2

λ2
VL + ε2

2

4kb2

. (37)

Finally, the differential equation in (37) can be solved as

VL ≤ VL(0)exp

(
−β2

λ2
t

)
+ ε2

2λ2

4kb2β2

(
1−exp

(
−β2

λ2
t

))
. (38)

From (38), VL is globally uniformly ultimately bounded.
Using (22), r and ez are also bounded such that

|r | ≤
√

2�VL(0) exp

(
−β2

λ2
t

)
+�ε2

2λ2

2kb2β2

(
1−exp

(
−β2

λ2
t

))
(39)

|ez| ≤
√

2VL(0) exp

(
−β2

λ2
t

)
+ ε2

2λ2

2kb2β2

(
1 − exp

(
−β2

λ2
t

))
.

(40)

The expressions (4), (39), and (40) can be used to conclude
that |e| is globally uniformly ultimately bounded. Finally,
from (1) and (3), the control input V is bounded.

VI. EXPERIMENTS

Experiments were conducted to examine the performance of
the controller developed in (12). Surface electrical stimulation
was applied to the quadriceps muscle group to produce an
isometric torque about the knee joint. The torque produced at
the knee joint was measured by a force transducer, and the
EMD was approximated as the time lag between the control
signal onset and the torque onset where the estimated values
were used in the control input. In addition, the experiments
examined the time-varying aspect of the EMD.

Eight healthy subjects (age 25.8 ± 3.2 years) participated
in the trials after giving written informed consent, as approved
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TABLE I

RMS ERRORS, EMD, AND CONTROL EFFECTIVENESS ESTIMATES DURING NMES-INDUCED TORQUE TRACKING TRIALS

Fig. 1. Experimental apparatus in isometric contractions. (1) Force trans-
ducer. (2) Surface electrodes. (3) Torque produced at the knee joint. (4) Force
measured by the force transducer. (5) Constant knee-joint angle.

by the Institutional Review Board at the University of Florida.
Participants were asked to sit in a modified leg extension
machine (LEM). Fig. 1 illustrates the experimental setup used
to measure the force while the stimulus was delivered. Using
the measured moment arm length, the force exerted on the
LEM from the lower shank was converted into a torque and
used in the controller. The developed controller was tested
on each participant’s right leg twice: the torque tracking
exercise lasted 2 min and was repeated after 15 min of rest.
A current-controlledstimulator (RehaStim, Hasomed GmbH,
Germany) was used to deliver a modulated stimulation pattern
to each participant’s quadriceps femoris muscle group
via bipolar surface electrodes while the participant was
asked to remain passive. The utilized electrodes were
3′′×5′′ PALS� electrodes, provided as compliments by
Axelgaard Manufacturing Company Ltd. The electrical stim-
ulation pattern was composed of pulses with a constant pulse
frequency of 30 Hz and a constant pulse amplitude of 90 mA,

while the pulsewidth was varied according to (12). Since the
stimulator used in the experiments has a greater resolution in
pulsewidth (20–500 μs in steps of 1 μs) than pulse amplitude
(0–126 mA in steps of 2 mA) and since the uncertain model
in (1) is equivalent regardless of which stimulation parameter
is varied, the control input in (12) was implemented as a
pulsewidth modulated input, without loss of generality. The
desired torque profile was selected to be smooth and periodic
with high (fatiguing) and low (resting) plateaus.

Implementation of the controller in (12) requires the esti-
mation of two parameters. The first parameter is the control
effectiveness� introduced in (2) that relates the input stimulus
to the torque about the knee joint. As described in (6), � is
approximated by a constant B from the measured recruitment
curve of the muscle, obtained in a pretrial test: B was
computed as the linear slope of the recruitment curve which
varied with electrode placement and each individual’s strength.
The control effectiveness estimate was evaluated before each
trial (two per participant).

The second parameter is the EMD. An algorithm was
designed to compute an estimate for the delay in real-time,
based on the definition of EMD (i.e., the time difference
between the onset of electrical activity and the onset of torque
production) and the study in [61]. The EMD was computed
based on the following algorithm.

1) The input pulsewidth and measured torque data were
buffered for one period of the desired trajectory.

2) The two vectors were normalized.
3) The cross correlation between the two normalized vec-

tors was calculated.
4) The index that maximized the cross correlation was

converted into seconds to obtain the time delay between
the two signals.
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Fig. 2. (a) Desired (dashed line) and measured torque (solid line) during
NMES-induced torque tracking trial on Subject 4. (b) Corresponding tracking
error. (c) Control input. (d) Averaged EMD with a 30-s moving window
(solid line, off-line computation) and estimated time-varying EMD
(dashed line, online computation).

The tracking performance for Subject 4 is depicted in
Fig. 2, which includes the error between the desired and
the measured torque, the control input, and the estimated
delay during the trial. The rms errors, EMD measurements,
and control effectiveness estimates are provided in Table I.
The EMD varied in every trial, as depicted in Fig. 3; the
delay variations in Table I are calculated as the variations
between the lowest and the highest value for one trial.

Fig. 3. The solid line represents the mean EMD values for all trials, and
the dashed lines correspond to the mean value + or − the standard deviation.
The EMD calculations were all initialized at 0.1 s, computed online with a
cross-correlation method, and averaged offline with a 30-s moving window.

VII. DISCUSSION

The tracking error remained stable2 with an overall rms
error of 1.45 N · m in the presence of uncertain parameters
and increasing input delays. Although EMD was assumed
to be known and continuous, the experiments proved that
torque tracking was possible despite the fact that the delay
was estimated rather than exactly known. The minimum EMD
over all trials was 74.1 ms (SD 9.1 ms). Vos et al. [61] found
a mean delay of 86 ms for nonfatiguing voluntary contractions
of the vastus lateralis muscle, supporting the delay estimated
during the experiments in fatigue conditions. However, differ-
ent results can be found in the literature, for instance, 8.5 ms
in [46], 17.2 ms in [21], or 27.5 ms in [48]; these discrepancies
may be due to different measurement methods. The delay
estimation performed during the torque tracking indicates that
the delay increases with fatigue (52% increase on average);
Häkkinen and Komi [62] and Zhou et al. [45] found similar
results with EMD increasing 29% and 45%, respectively,
after a fatiguing isometric knee extension. Considering such a
variability in the values, the EMD should be considered in the
control method. Moreover, an overall decrease in the control
effectiveness approximation and an increase in the general
shape of the control input [Fig. 2(c)] illustrated the effect of
fatigue on the muscle characteristics.

This paper provides a Lyapunov-based stability proof for
torque tracking in the presence of a known time-varying
input delay and exogenous disturbance where experiments
were conducted to evaluate the controller’s performance. This
control method accounts for increasing fatigue in the muscles
and may enable longer FES exercises. The controller designed
in this study does not require exact model knowledge
of the muscle parameters, facilitating clinical practice.
However, the EMD needs to be known and the control
effectiveness needs to be estimated; therefore future efforts are
focused on compensating for unknown delays in the control
strategy. Future work will also seek to develop a measurable
time-varying estimate of the control effectiveness to yield
improved tracking performance.

2The tracking error remained bounded within a small neighborhood of the
origin. Although the peak-to-peak error in Fig. 2(b) increased after 60 s, the
stability analysis shows that the gain conditions are more difficult to satisfy for
longer delays. Therefore, increased EMD may explain the increased tracking
error after 60 s.
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