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Abstract

This manuscript presents a kernelized predictor corrector (KPC) method
for fractional order initial value problems, which replaces linear interpola-
tion with interpolation by a radial basis function (RBF) in a predictor-
corrector scheme. Specifically, the class of Wendland RBFs is employed
as the basis function for interpolation, and a convergence rate estimate
is proved based on the smoothness of the particular kernel selected. Use
of the Wendland RBFs over Mittag-Leffler kernel functions employed in a
previous iteration of the kernelized method removes the problems encoun-
tered near the origin in [11]. This manuscript performs several numerical
experiments, each with an exact known solution, and compares the results
to another frequently used fractional Adams-Bashforth-Moulton method.
Ultimately, it is demonstrated that the KPC method is more accurate but
requires more computation time than the algorithm in [4].
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1. Introduction

Given the initial value problem involving the Caputo fractional deriva-
tive, Dq

∗ for q > 0,

Dq
∗y(s) = f(s, y(s)) such that

dk

dsk
y

∣∣∣∣
s=0

= yk0 . (1.1)

Here s ∈ [0, T ] ⊂ R, k = 0, ..., [q], and [·] is the largest integer less than or
equal to q. The Caputo fractional derivative is defined as

Dq
∗f(s) :=

1

Γ(α− q)

∫ s

0
(s− τ)α−q−1 dα

dτα
f(τ)dτ,

where α = �q�. An equivalent expression to that of (1.1) is given as a
Volterra integral equation (cf. [4]):

y(s) =

[q]∑
k=0

sk

k!
y
(k)
0 +

1

Γ(q)

∫ s

0
(s− τ)q−1f(τ, y(τ))dτ. (1.2)

The form given in (1.2) is more conducive to numerical methods than
the form given in (1.1) and was leveraged in [4] to establish a fractional or-
der Adams-Bashforth-Moulton (ABM) method. Unlike integer order IVPs,
where it is possible to use only a small number of local samples to obtain
an accurate estimation of a function’s derivative, a history of f(·, y(·)) over
[0, s] must be curated to estimate the solution of a fractional IVP at s. The
maintenance of an accurate approximation of the solution to (1.1) then
becomes a matter of determining an effective method that is also computa-
tionally efficient. In [7], a predictor corrector method was developed that
utilizes piecewise constant estimations of f for the predictor and a piece-
wise linear estimation of f for each corrector step. Further development
of the ABM method for fractional order IVPs can be found in [5, 6], and
the method is presented in the book [4]. The ABM method as conceived
in [4] was modified in [11] for the development of a kernelized predictor
corrector (KPC) method where the corrector term incorporates kernelized
interpolation.

Kernelized interpolation allows for a flexible choice of interpolants,
where each selected kernel function provides a different numerical method
suited for functions in different function classes as in [14]. A major draw-
back of the kernelized method is that it is hard to achieve a comprehensi-
ble convergence rate across all kernel functions. In [11], the Mittag-Leffler
RKHS was introduced where the kernel functions of that space are eigen-
functions of the Caputo fractional derivative, and [11] leveraged the Mittag-
Leffler space for a KPC method. The Mittag-Leffler space received a deeper
development as a RKHS in [12]. However, the Mittag-Leffler kernel func-
tions suffer from a vertical asymptote at the origin, which interferes with the
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generation of an accurate numerical method at the origin as demonstrated
in [11]. This lack of continuous differentiability aligns with [4, Theorem
6.27] where continuous differentiability of solutions of fractional order ini-
tial value problems is guaranteed everywhere but the origin. The focus of
[11] was the development of the Mittag-Leffler RKHS as a means to esti-
mate a function’s Caputo fractional order derivative, and does not provide
convergence rate guarantees for the KPC when using the Mittag-Leffler
kernel. Specifically, in [11], the convergence criteria for the kernelized nu-
merical method is expressed in terms of a Hilbert space norm, rather than
the convenient convergence rates in terms of the separation between time-
steps, h, found in [4]. Moreover, the vertical asymptotes expressed by the
basis functions at the origin cause numerical issues, where extremely large
errors are obtained for small step-sizes in Figure 3 for the KPC method
using the Mittag-Leffler kernel.

This manuscript establishes that a convergent rate estimate in terms of
the step size can be extracted from the KPC method through the proper
selection of kernel functions. In particular, existing results for interpolation
by radial basis functions (RBFs) (cf. [3, 9, 14]) can be leveraged to yield
convergence rate estimates for the KPC method. In addition, the use of
the Wendland RBF as a kernel function for the KPC method avoids the
difficulties introduced at the origin when using the Mittag-Leffler kernel
functions and improves upon the performance of the KPC method using
the Mittag-Leffler kernel function as demonstrated in Figure 3.

Section 2 reviews features of the Wendland RBFs that are pertinent for
the present manuscript. Section 4 gives an outline of the KPC algorithm,
and the corresponding convergence analysis is given in Section 5. After a
discussion concerning implementation of the algorithm using the Wendland
RBFs in Section 6, several numerical experiments are performed in Section
7 and the results are discussed in Section 8.

2. Review of the Wendland radial basis functions

Kernel functions and RBFs in particular are utilized throughout ap-
proximation theory and machine learning. A radial basis function is derived
from a function, Φ ∈ C(Rn) ∩L1(Rn), and given as K(x, y) = Φ(‖x− y‖2)
where x, y ∈ R

�. The most commonly used kernel function is that of the
Gaussian RBF, K(x, y) = exp(‖x − y‖2). Corresponding to kernel func-
tions are their native reproducing kernel Hilbert spaces, defined in [14] as
follows.

Definition 2.1. Given Φ ∈ C(Rn) ∩ L1(Rn) the native space cor-

responding to Φ, NΦ(R
n), consists of those functions g such that ĝ√

Φ̂
∈

L2(Rn).
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The native space, NΦ(R
n), is a reproducing kernel Hilbert space with

inner product 〈f, g〉NΦ(Rn) :=
〈
f̂ /

√
Φ̂, ĝ/

√
Φ̂
〉
L2(Rn)

and kernel function

K(x, y) = Φ(‖x − y‖2) such that 〈f,K(·, y)〉NΦ(Rn) = f(y) for all y ∈ R
n

and f ∈ NΦ(R
n) (cf. [14]).

The kernels featured in this manuscript are based on Wendland func-
tions. For a function φ : R → R such that the mapping t → tφ(t) is in
L1[0,∞], define Iφ(τ) := ∫∞

τ tφ(t)dt (cf. [14]). Set φp(τ) := (max{0, (1 −
τ)})p and φd,r = Iφ[d/2]+r+1. For d, r ∈ N, the Wendland RBFs are defined
as (c.f. [14])

K(x, y) = Φd,r(x− y) := φd,r(‖x− y‖2).

The Wendland functions have several desirable features. The Wendland
RBF, Φd,r, is a positive definite RBF on R

d, which means that linear com-
binations of translates of the Wendland RBFs can interpolate any finite col-
lection of points. The function Φd,r is compactly supported, a polynomial
on its support, and has continuous derivatives of up to order 2r. Finally,
the native space corresponding to Φd,r is norm equivalent to a Sobolev
space, which means the native space is as general as that used for most
well established numerical methods (cf. [8]). To facilitate the development
of improved convergence rates, Theorem 2.1 is adapted and specialized
from [14, Theorem 11.17] and establishes convergence rate guarantees of
an approximation determined by interpolants in a native Hilbert space.∗
In particular, the native space for the Wendland RBFs is the Sobolev space
Hd/2+k+1/2(Rn) (c.f. [14, Theorem 10.35]).

Theorem 2.1. For d, r ∈ N, let Φd,r = φd,r(‖ · ‖) be a Wendland
RBF (cf. [14]). Further let I ⊂ R be a compact interval. Let sf,X be
the RBF interpolant, determined by Φd,r, to f in the RBFs native space
over I, NΦd,r

(I), and X = {x1, ..., xN}. Fix α ∈ N0 (α < k). There exists
constants C, h0 > 0 such that∣∣∣∣ dαdxα

f(x)− dα

dxα
sf,X(x)

∣∣∣∣ ≤ Ch
r+1/2−α
X,I ‖f‖NΦ(I)

for all x ∈ I provided that hX,I := supy∈I infx∈X ‖x− y‖ < h0.

∗ Each RKHS over X has uniquely defined function K : X × X → R such that for
any finite collection of points in X, say x1, ..., xm, the Gram matrix (K(xi, xj))

m
i,j=1 is

positive definite. Moreover, for each such function there is a corresponding RKHS, which
is denoted as the kernel function’s native space (c.f. [14, Theorem 10.10] or [2]). For a
radial basis function K(x, y) = Φ(‖x − y‖) the native space is denoted by NΦ(X) and
NΦ when the domain is understood.
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There are two standard (and equivalent) representations for sf,X given
in Theorem 2.1. The most direct representation arises from the kernels as
basis functions:

sf,X(x) =
N∑
i=1

wiΦd,r(x− xi). (2.1)

The coefficients, wi ∈ R, are uniquely determined by the samples (xi, f(xi))
and are determined by solving the matrix equation (Φd,r(xi−xj))

N
i,j=1w = f

where w = (w1, ..., wN )T and f = (f(x1), ..., f(xN ))T . The second repre-
sentation is given by

sf,X(x) =

N∑
i=1

f(xi)u
∗
i (x), (2.2)

where u∗i (x) =
∑N

j=1 ũjΦd,r(x− xj) arise from the solution of the equation

(Φd,r(xi − xj))ui = ei where ui = (ũ1, ..., ũN )T and ei = (δi1, ..., δiN )T

resulting in ui(xj) = δij (here δij is the Kronecker delta function) (cf.
[3, 14]). A key feature exploited in this manuscript of the cardinal functions,
u∗i , can be found in [3], as follows.

Lemma 2.1 ([3]). For uniformly spaced points, |∑N
i=1 u

∗
i (x)| ≤ C

√
N ,

where C is a positive constant independent of x and N .

3. Wendland RBFs for estimating Caputo fractional derivatives

As motivation for the KPC algorithm presented in Section 4, this sec-
tion demonstrates that the Wendland RBFs can be leveraged to produce an
estimate for a function’s fractional derivative without the drawbacks found
using the Mittag-Leffler kernel function near the origin in [11].

The advantage of applying the Mittag-Leffler kernel functions to the
problem of estimating a function’s fractional derivative arises from the
eigenfunction property of the kernels with respect to the Caputo fractional
derivative. To estimate a function’s Caputo fractional derivative, the func-
tion could be sampled and interpolated by linear combinations of Mittag-
Leffler kernels, and then the Caputo fractional derivative could be estimated
by multiplying the weights by the eigenvalues of the kernels. However, the
Mittag-Leffler kernel functions have a singularity in their derivatives at the
origin. This means that while convergence guarantees could be made in
any neighborhood away from the origin, undesirable errors could still occur
in a neighborhood of the origin.

In [11], this limitation was addressed in several ways. Particular to
the approach of this manuscript, convergence guarantees were given in [11,
Theorem 2.5], where continuous differentiability of a kernel function of a
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degree higher than that of the fractional derivative allows convergence of the
fractional derivatives of kernel based interpolants to that of the interpolated
function. Theorem 3.1 provides an improvement over [11, Theorem 2.5] for
the particular case of the Wendland RBF kernels. Theorem 3.1 follows
immediately from Theorem 2.1.

Theorem 3.1. For d, r ∈ N, let Φd,r = φd,r(‖ ·‖) be a Wendland RBF.
Further let I ⊂ R be a compact interval. Let sf,X be the RBF interpolant,
determined by Φd,r, to f in the RBFs native space over I, NΦd,r

(I), and
X = {x1, ..., xN}. Fix q ∈ R+ such that α = �q� and α < k. There exists
constants C, h0 > 0 such that

|Dq
∗f(x)−Dq

∗sf,X(x)| ≤ Ch
r+1/2−α
X,I ‖f‖NΦ(I)

for all x ∈ I provided that hX,I := supy∈I infx∈X ‖x− y‖ < h0.

P r o o f. Write

Dq
∗f(x)−Dq

∗sf,X(x)=
1

Γ(α−q)

∫ x

0
(x−τ)α−q−1

(
dα

dτα
f(τ)− dα

dτα
sf,X(τ)

)
dτ,

(3.1)
and note that the term inside of the parentheses of (3.1) can be estimated as
in Theorem 2.1. Theorem 3.1 then follows by recognizing that the function
ω(x) :=

∫ x
0 (x− τ)α−q−1dτ is well defined, increasing, and bounded over I.

�

Considering Theorem 3.1 and the subsequent Theorem 5.2, it can be
seen that the Wendland RBF kernels have an advantage over the Mittag-
Leffler kernels in establishing convergence rate estimates for both estimates
of a function’s fractional derivative as well as for the KPC method for
FODEs. In particular, the Wendland RBF kernel functions do not suffer
the same drawbacks near the origin as that of the Mittag-Leffler kernel
functions.

Figure 1 presents an example demonstrating the differences in the per-
formance of the Mittag-Leffler kernel function and that of the Wendland
RBF interpolants in estimating the fractional derivative of the sine func-
tion with wavelength 1. A large error committed by the Mittag-Leffler
interpolant can be observed near the origin. A heuristic explanation for
this discrepancy is two fold. The Gram matrix used to interpolate the
data quickly becomes ill-conditioned for dot product kernels, which leads
to errors in the interpolating weights. These errors are amplified near
the origin where each non-constant Mittag-Leffler has a vertical asymptote
when 0 < q < 1. Both figures set q = 1/4, and Figure 1(a) set T = 1 and
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h = 0.005 (the figure is zoomed on the interval [0, 0.1]), whereas Figure
1(b) set T = 2 and h = 0.01.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time t

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Er
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r

Error in Estimating Sine Fractional Derivative - q = 0.5 h = 0.005 T = 1

Mittag-Leffler
Wendland RBF

(a) q = 1/4, T = 1, and h = 0.005
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Er
ro
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Error in Estimating Sine Fractional Derivative - q = 0.25 h = 0.01 T = 2

Mittag-Leffler
Wendland RBF

(b) q = 1/4, T = 2, and h = 0.01

Figure 1. This figure shows the error committed by the
Mittag-Leffler kernel and the Wendland RBF kernel inter-
polants in the estimation of the fractional derivative of the
sine function. The fractional derivative of the sine function
was independently computed using the power series repre-
sentation of the function. It can be seen in both figures that
the error committed in the estimation is poor near the origin
for the Mittag-Leffler kernel function where it is as large as
18 units in Figure 1(b), while the Wendland RBF reports a
consistent error bound.

4. Description of the algorithm

The KPC method developed in [11] is a predictor corrector method that
occurs in two steps. After the selection of collocation points, {tj}nj=0 ⊂
[0, T ], the algorithm begins by computing a predictor

yPk+1 =

[q]∑
j=0

tjk+1

j!
y
(j)
0 +

1

Γ(q)

k∑
j=0

bj,k+1f(tj, yj), (4.1)

where bj,k+1 arise from using a piecewise constant estimation of the integral
in (1.2). For the particular case of equispaced points with spacing h > 0
(i.e. tj = jh), bj,k+1 =

hq

q ((k + 1− j)q − (k − j)q) as in [4].

The corrector in [4] is a piecewise linear interpolation of the data. In this
manuscript, the corrector arises from RBF interpolants and is computed as
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yk+1 =

[q]∑
j=0

tjk+1

j!
y
(j)
0 +

1

Γ(q)

k+1∑
j=0

wj

∫ tk+1

0
(tk+1 − s)q−1K(s, tj)ds, (4.2)

where K is a positive definite kernel function (cf. [11, 13, 14]) and w =
(w0, ..., wk+1)

T solves the matrix equation

(K(ti, tj))
k+1
i,j=0w = f (4.3)

with f = (f(t0, y0), f(t1, y1), ..., f(tk, yk), f(tk+1, y
P
k+1))

T .

To facilitate the development of an error bound of the form O(hk+1/2),
the algorithm is further modified by including a P(EC)μE method intro-
duced in [4]. The P(EC)μE algorithm is a predictor corrector method
where the corrector is iterated μ times to improve accuracy. The predic-

tor, y
[0]
k+1 = yPk+1 is used as the initial condition for the following recursive

definition:

y
[l]
k+1 = βk+1 +

1

Γ(q)
f(tk+1, y

[l−1]
k+1 )

∫ tk+1

0
(tk+1 − s)q−1u∗k+1(s)ds, (4.4)

where

βk+1 =

[q]∑
j=0

tjk+1

j!
y
(j)
0 +

1

Γ(q)

k∑
j=0

f(tj, yj)

∫ tk+1

0
(tk+1 − s)q−1u∗j (s)ds.

The quantity y[l] is called the l-th corrector iteration.
Thus, the algorithm is completely described and results in the numerical

solution to (1.1) given by {(t0, y0), (t1, y1), ..., (tn, yn)} after n iterations.

5. Error analysis

This section establishes a big-oh estimate for the local truncation error
of the KPC method when the Wendland RBFs are employed. The subse-
quent error analysis requires the establishment of convergence rates related
to both the predictor and the corrector steps of the algorithm outlined in
Section 4. Since the predictor is identical to that in [4], the following in-
equality found in [4, Theorem C.1] will be exploited, and in particular, the
inequality corresponds to equally spaced points tj = jh = j · T

n .

Theorem 5.1 ([4]). Let z ∈ C1[0, T ]. Then,∣∣∣∣∣∣
∫ tk+1

0
(tk+1 − τ)q−1z(τ)dτ −

k∑
j=0

bj,k+1z(tj)

∣∣∣∣∣∣ ≤
1

q
‖z′‖∞tqk+1h.

Auth
or'

s c
op

y



CONVERGENCE RATE ESTIMATES FOR THE . . . 1887

Lemma 5.1 is a slight alteration of the results found in [3] and is nec-
essary for demonstrating the convergence rate estimates for the corrector
steps in Theorem 5.2.

Lemma 5.1. If p ≥ 1, Ω ⊂ R
d satisfying the interior cone condition,

then for quasi-uniform spaced points, ‖u∗i ‖Lp(Ω) ≤ Chd/p.

P r o o f. Since u∗i is a linear combination of continuous compactly sup-
ported functions, u∗i ∈ Lp for every p. The theorem then follows from the
proof of the L2 bound in [3] where 2 is replaced by p ≥ 1. �

Theorem 5.2. Set d, r ∈ N and let f(·, y(·)) ∈ NΦd,r
and suppose that

f is Lipschitz continuous. For q > 1, the P (EC)rE algorithm given in (4.4)
with the kernel function Φd,r commits an error of

|y(ti)− yi| ≤ Chr+1/2.

P r o o f. As in the proof of [4, Lemma C.3], this proof will proceed by
induction on i. For i = 0, the theorem follows automatically via the initial
conditions. Now suppose that |y(ti)− yi| ≤ Chr+1/2 for i = 0, . . . , k.

For l ∈ N take f̂
[l]
k+1(s) =

∑k
i=0 f(ti, yi)u

∗
i (s) + f(tk+1, y

[l]
k+1)u

∗
k+1(s).

From [14] and the Lipschitz continuity of f , it can be seen that

∣∣∣f(s, y(s))− f̂k+1(s)
∣∣∣ ≤

∣∣∣∣∣
〈
f,K(·, s)−

k+1∑
i=0

u∗i (s)K(·, ti)
〉∣∣∣∣∣

+

k+1∑
i=0

|f(ti, y(ti))− f(ti, yi)||u∗i (s)|+ |f(ti, y(ti))− f(tk+1, y
[l]
k+1)|u∗k+1(s)|

≤ C‖f‖hk+1/2 + L
k∑

i=0

|y(ti)− yi||u∗i (s)|+ L|y(tk+1)− y
[l]
k+1||u∗k+1(s)|.

Now consider,

|y(tk+1)− y
[l]
k+1| ≤ (C‖f‖hk+1/2)

∫ tk+1

0
(tk+1 − s)q−1ds
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+ L

k∑
i=0

|y(ti)− yi|
∫ tk+1

0
(tk+1 − s)q−1|u∗i (s)|ds

+ L|y(tk+1)− y
[l−1]
k+1 |

∫ tk+1

0
(tk+1 − s)q−1|u∗k+1(s)|ds

≤ C1‖f‖hk+1/2 + LC2h
k+1/2Mk+1

k∑
i=0

‖u∗i (s)‖L1[0,T ]

+ L|y(tk+1)− y
[l−1]
k+1 |Mk+1‖u∗k+1(s)‖L1[0,T ]

≤ C1‖f‖hr+1/2 + LMC2h
r+1/2(k + 1)h

+ LMC3h|y(tk+1)− y
[l−1]
k+1 |

≤ C1‖f‖hr+1/2 + LMC2Th
r+1/2

+ LMC3h|y(tk+1)− y
[l−1]
k+1 |,

where each constant C1, C2, L > 0 and are independent of h and k. Writing

Pl = |y(tk+1)− y
[l]
k+1| the following recursive inequality is established Pl ≤

C1h
r+1/2 + C2hPl−1. Therefore,

Pr ≤ Chr+1/2 +DhrP0 ≤ Chr+1/2 + D̃hr+1,

with C,D, D̃ > 0 and independent of h and k. Note that P0 = O(h) fol-
lows from Theorem 5.1, since f(·, y(·)) ∈ C1[0, T ]. Also note Mk+1 :=

sups∈[0,tk+1]
(tk+1 − s)q−1 = tq−1

k+1, and M = maxk Mk = T q−1. Thus,

|y(tk+1) − y
[r]
k+1| = Pr ≤ Chr+1/2 and the induction argument is complete.

�

6. The fractional integral of the Wendland functions

It is clear from the results in Section 5 that to leverage the KPCmethod,
it is necessary to compute or estimate the fractional integral of the se-
lected kernel function. The Wendland functions are an ideal choice for
approximating the solution to a fractional differential equation, since Wend-
land RBFs are compactly supported and are polynomials on their support.
Therefore, the fractional integrals of Wendland RBFs can be computed in
closed form using integration by parts on each monomial constituent of
the Wendland RBFs, whose coefficient can be determined recursively as
described in [14, Theorem 9.12].

Since each kernel function, K(τ, ti), is a function of the time variable,
τ , the integral may be split across the interval about the point τ = ti. That
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is, the fractional integral can be written as

1

Γ(q)

∫ s

0
(s− τ)q−1K(τ, ti)dτ

=
1

Γ(q)

(∫ ti

0
(s− τ)q−1Φd,r(|τ − ti|)dτ +

∫ s

ti

(s− τ)q−1Φd,r(|τ − ti|)dτ
)

=
1

Γ(q)

(∫ ti

0
(s− τ)q−1Φd,r(ti − τ)dτ +

∫ s

ti

(s− τ)q−1Φd,r(τ − ti)dτ

)
,

and each of Φd,r(ti − τ) and Φd,r(τ − ti) are polynomials on the support
of Φd,r. Indeed, since Φd,r(|τ − ti|) is compactly supported on the interval
[ti − 1, ti + 1], the bounds on the integrals may be replaced, setting a =
max{0, ti − 1} and b = min{s, ti + 1}, as

1

Γ(q)

(∫ ti

a
(s− τ)q−1Φd,r(ti − τ)dτ +

∫ b

ti

(s− τ)q−1Φd,r(τ − ti)dτ

)
,

where the integrand is now strictly a polynomial. The bounds a and b may
be adjusted if Φd,r is scaled to different widths.

Specifically, it may be observed that for each m ∈ N:∫ b

a
(s− τ)q−1|τ − ti|mdτ

=

∫ ti

a
(s− τ)q−1(ti − τ)mdτ +

∫ b

ti

(s− τ)q−1(τ − ti)
mdτ

=

m∑
j=0

· m!

(m− j)! · q(q + 1) · · · (q + j)
Qa,b,i,j,m,q

+
m!

q(q + 1) · · · (q +m+ 1)
Q̃s,a,b,m,q,i, where

Qa,b,i,j,m,q :=
(
(−1)m(a− ti)

m−j(s− a)q+j − (b− ti)
m−j(s− b)q+j

)
, and

Q̃s,a,b,m,q,i :=
(
(−1)m(s− a)q+m+1+

(1 + (−1)m+1)(s − ti)
q+m+1 − (tk − b)q+m+1

)
.

Thus, through a combination of the above computation for monomials and
[14, Theorem 9.12], an explicit description of the fractional integrals of the
Wendland RBFs may be obtained.

7. Numerical experiments

This section presents the numerical results from several fractional order
IVPs using the KPC method. Each of the experiments has a corresponding
known analytic solution (cf. [1, 4]), which enables the reporting of precise

Auth
or'

s c
op

y



1890 J.A. Rosenfeld, W.E. Dixon

errors committed by the KPC method. Moreover, the method of [4] is
applied to the same IVPs for the purpose of comparison in Table 1. Figure
2 presents several representative examples of the KPC method and the
method of [4]. These examples can be found in [1, 4].

The results of further experiments are displayed in Figure 3, where the
errors committed by each of the above methods are displayed along with
the errors committed by the KPC method using the Mittag-Leffler kernel
from [11]. Figure 3 gives the errors in estimating the solution to the three
subsequent examples plotted according to a selected step-size, h, ranging
from 0.1 to 0.25. A log-log plot of the data in Figure 3 is presented in
Figure 4, where empirical convergence orders may be inferred.

Example 1. The first example is the most straightforward for frac-
tional order IVPs, Dq

∗y(s) = −y(s) with y(0) = 1 for q > 0. The solution of
this fractional order IVP is given with respect to the Mittag-Leffler func-
tion: y(s) = Eq(−sq).

Example 2. The second example stems from [4], where the example
is used as a benchmark for the ABM method of [4],

Dq
∗y(s) =

40320

Γ(9− q)
s8−q − 3

Γ(5 + q/2)

Γ(5− q/2)
s4−q/2 +

9

4
Γ(q + 1)

+

(
3

2
sq/2 − s4

)3

− (y(s))3/2.

For 0 < q < 2, y(0) = 0, and y′(0) = 0 (when q > 1), the solution to this
example is given as y(s) = s8 − 3s4+q/2 + 9

4s
q.

Example 3. For q > 0, the third example is given as

Dq
∗y(s) = 0.1s − y(s) with y(0) = 1 and y′(0) = 0.

The exact solution for this fractional order differential equation is given in
terms of the Mittag-Leffler function of two parameters:

y(s) = 0.1s(1 − Eq,s(−sq)) + Eq,1(−sq),

where Eα,β(s) :=

∞∑
n=0

sn

Γ(αn+ β)
.

8. Discussion

Based on the results of Table 1 the KPC method outperforms the ABM
method in [4] by as much as a factor of 1000 in Example 2 with q = 1.5
and h = 0.025. However, when compared to the computation time of the
ABM method of [4], the competing method outperforms the KPC method
by a factor of 100 in computation time on that particular example. The
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Ex. # q h KPC Time (s) ABM Time (s)
Ex. 1 0.50 0.100 1.6980E-2 2.3884E-1 2.9019E-2 5.7942E-4

0.050 7.4314E-3 7.2242E-1 2.2630E-2 7.4421E-4
0.025 3.5545E-3 2.5432E+0 1.7158E-2 1.5473E-3

1.50 0.100 5.8448E-4 2.0686E-1 2.4579E-2 5.7714E-4
0.050 5.3387E-5 6.8096E-1 8.8500E-3 8.3292E-4
0.025 3.0367E-5 2.5552E+0 3.1491E-3 1.8033E-3

Ex. 2 0.50 0.100 1.1564E-2 2.2703E-1 5.9105E-2 1.3442E-3
0.050 2.4083E-3 6.9801E-1 4.7279E-2 3.5073E-3
0.025 4.6055E-4 2.6205E+0 3.6048E-2 1.0404E-2

1.50 0.100 1.8502E-3 2.6522E-1 1.7140E-1 8.0984E-3
0.050 1.7921E-4 7.8876E-1 5.6541E-2 4.4184E-3
0.025 4.6735E-5 2.6347E+0 1.9915E-2 1.1452E-2

Ex. 3 0.50 0.100 1.6990E-2 2.0278E-1 2.8782E-2 8.6738E-4
0.050 7.4395E-3 6.9359E-1 2.2533E-2 1.2485E-3
0.025 3.5573E-3 2.5337E+0 1.7120E-2 1.6768E-3

1.50 0.100 5.8212E-4 1.9352E-1 2.4329E-2 7.9372E-4
0.050 5.3282E-5 8.0269E-1 8.8055E-3 1.0398E-3
0.025 3.1615E-5 2.4497E+0 3.1412E-3 1.9239E-3

Table 1. This table presents the results of several nu-
merical experiments performed on the examples outlined in
Section 7 with fractional orders of q = 0.5 and q = 1.5 and
step sizes ranging from h = 0.1 to h = 0.025 for an overall
time period of T = 1. The KPC method (whose error at
the time steps is presented in the KPC column of this ta-
ble) was performed using the Wendland redial basis function
Φ3,6. The KPC method is compared to the ABM method
of [4]. Both methods used six corrector steps per time-step.
It can be observed that the KPC method performs as much
as 1000 times better than the ABM method in terms of ac-
curacy, yet the KPC method performed worse in terms of
computation time.

reason for the difference in computation time is the algorithmic complexity
of the two methods. At each time step the KPC method must compute
weights through the solution to a linear system of equations governed by
the Gram matrix corresponding to the points h ∗ j for j = 0, ..., i. Solving
this system of linear equations takes up to O(i3) operations. For the ABM
method of [4], the weights are explicitly described and it is not necessary
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(a) Example 1 with q =
1.5 and h = 0.1.
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(b) Example 2 with q =
0.5 and h = 0.1.
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(c) Example 3 with q =
0.5 and h = 0.1.

Figure 2. The results of three representative experiments
are presented here. In each figure, the red trajectory repre-
sents the ABM method of [4], the blue trajectory represents
the KPC method, and the green trajectory is the known
exact solution for the corresponding example. The spacing
selected for each experiment is h = 0.1, since the differences
between the accuracy of the methods is most apparent at
this resolution.

to recompute the weights at each step. Consequently, each step in the
ABM method of [4] only requires O(i) operations. It should be noted
that the results for the ABM method of [4] uses the algorithm given in
[4]. More recent work such as [10] has introduced algorithms for the ABM
method which improves upon the computational complexity of that found
in [4]. Since the computation times found in Table 1 already differ greatly
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(b) Example 2: q = 1.5
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(c) Example 3: q = 1.5
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(d) Example 1: q = 5.25
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(e) Example 3: q = 3.5

Figure 3. This figure shows the errors committed accord-
ing to the step-size taken in the numerical method. In
Section 7, three different numerical methods were utilized.
These include, the KPC method using the Wendland RBFs
developed in this manuscript (circles), the method of [4]
(pluses), and the KPC method using the Mittag-Leffler ker-
nel function (stars). Figure 3(a) through Figure 3(c) encom-
pass the values presented for q = 1.5 in Table 1, but also
add error values corresponding to the Mittag-Leffler kernel.
The KPC method using the Wendland RBF performed as
well or better than both other methods asymptotically as
h → 0.
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(e) Example 3: q = 3.5

Figure 4. This figure displays a log-log plot corresponding
to Figure 3. Here the log of the error data is plotted against
the logarithm of h. For each collection of data points, a best
fit line is plotted as determined by a least squares fit. The
slope of each line gives an empirical estimate of the conver-
gence order. With the exception of Figure 4(d) and Figure
4(e), it can be observed that both the KPC method using
the Mittag-Leffler kernel and the Wendland RBF outper-
forms that of Diethelm’s method. However, in Figure 4(d)
and Figure 4(e), it can be observed that the Mittag-Leffler
kernel function performs poorly.
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between the KPC and the ABM method as implemented according to [4],
the implementation of more sophisticated algorithms is unnecessary for the
demonstration of the gap in computation time between the methods.

The expense of computational complexity yields improved performance.
Specifically, using the same number of samples of the dynamical systems,
the kernelized method performed much better than the ABM method of
[4]. Heuristically, the better performance arises from the smoothness of
the Wendland basis functions, where in approximation theory, the approx-
imation order is governed by the regularity of the target function and the
basis functions selected. This heuristic is supported by Theorem 5.2 in the
present manuscript.

The results of Theorem 5.2 can be extended to a larger class of kernel
functions than that of the Wendland radial basis functions. In particular,
the necessary property for the successful application of the corrector steps

lies in the Lebesgue constant for cardinal functions, |∑N
i=1 u

∗
i (x)| < C

√
N ,

which is described in [3]. This bound extends to a larger class of basis
functions, which are also described in [3], of which Wendland RBFs are the
most well known examples.

Figure 3 presents the results of further experiments where h takes on
more values than presented in Table 1 for q = 1.5, and shows error values
for larger values of q. Additionally, experiments utilizing the Mittag-Leffler
kernel function were included. In each experiment the Wendland RBF
matches or outperforms the other methods asymptotically as h → 0. The
KPC method using the Mittag-Leffler kernel function frequently matched
the accuracy of that with the Wendland RBF, especially in Example 2.
However, for several values of h it can be observed that the KPC method
using the Mittag-Leffler kernel function generated significantly large er-
rors. In fact, the ranges of h values for Figure 3(d) and Figure 3(e) begin
at different h values of h = 0.07 and h = 0.05 respectively. For smaller val-
ues of h the KPC method using the Mittag-Leffler kernel functions gener-
ated dramatically large and unpredictable errors. Heuristically, the infinite
smoothness of the Mittag-Leffler functions over (0,∞) make them an ideal
candidate for kernel functions that would allow for a faster convergence rate
than the Wendland RBFs, which are only continuously differentiable for a
finite number of derivatives. However, numerical implementation of the
Mittag-Leffler kernel function in the KPC method requires the evaluation
of expressions of the form 1

Γ(q)

∫ s
0 (s − t)q−1Eq(λ

qtq)dt = 1
λqEq(λ

qsq) for λ

near zero. Therefore, any numerical errors in the weights will be amplified
when λ is near zero, as when a center is placed at a time step near the
origin. Thus, Figure 3 establishes the use of the KPC method with the
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Wendland RBFs as a more accurate and consistent method than that of
the competitors.

The empirical convergence rates that can be inferred from the slopes of
the lines found in Figure 4 for the Wendland RBF are smaller than the the-
oretical convergence rates found in Theorem 5.2 given the Wendland RBF
used corresponds to Φ3,6. One possible explanation for Example 2 and Ex-
ample 3 is that the dynamics are both not smooth enough to accommodate
the hypothesis of Theorem 5.2.

9. Conclusion

This manuscript presented a KPC method for the generation of solu-
tions to Caputo fractional order IVPs. The innovation beyond the existing
KPC algorithm in [11] is that a convergence rate estimate is established in
terms of a power of the step size, h, by utilizing properties of the Wendland
RBFs. In addition, the use of the Wendland RBFs over the Mittag-Leffler
kernel functions removes the problems in the KPC method encountered
near the origin in [11], and this improvement is demonstrated in Figure 1,
Figure 3, and Figure 4. The resulting numerical algorithm was compared
to an existing fractional order ABM algorithm that can be found in [4] on
several benchmark examples, and the results of which are shown in Table 1,
Figure 3, and Figure 4. The kernelized method using the Wendland RBF
outperformed the methods of [4] and [11] in terms of accuracy, but had
inferior performance to [4] in computation time.
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