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Technical Notes and Correspondence

LaSalle-Yoshizawa Corollaries for Nonsmooth Systems

Nicholas Fischer, Rushikesh Kamalapurkar, and Warren E. Dixon

Abstract—In this technical note, two generalized corollaries to the
LaSalle-Yoshizawa Theorem are presented for nonautonomous sys-
tems described by nonlinear differential equations with discontinuous
right-hand sides. Lyapunov-based analysis methods that achieve asymp-
totic convergence when the candidate Lyapunov derivative is upper
bounded by a negative semi-definite function in the presence of differential
inclusions are presented. A design example illustrates the utility of the
corollaries.

Index Terms—LaSalle’s Theorem, nonlinear control systems, sliding
mode control.

I. INTRODUCTION

Various Lyapunov-based analysis methods have been developed for
differential inclusions in literature for both autonomous (cf. [1]–[9])
and nonautonomous (cf. [6], [10]–[13]) systems. Of these, several sta-
bility theorems have been established which apply to nonsmooth sys-
tems for which the derivative of the candidate Lyapunov function can
be upper bounded by a negative-definite function: Lyapunov’s gener-
alized theorem and finite-time convergence in [8], [10]–[14] are ex-
amples of such. However, for certain classes of controllers (e.g., adap-
tive controllers, output feedback controllers, etc.), a negative-definite
bound may be difficult (or impossible) to achieve, restricting the use of
such methods.
Matrosov’s Theorem [15] provides a framework for examining the

stability of equilibrium points (and sets through various extensions)
when the candidate Lyapunov function has a negative semi-definite
decay. Various extensions of this theorem have been developed (cf.
[16]–[20]) to encompass discrete and hybrid systems to establish sta-
bility of closed sets. In particular, [19] (see also the related work in
[16] and [17]) extended Matrosov’s Theorem to differential inclusions,
while also addressing the stability of sets.
In contrast to Matrosov Theorems, LaSalle’s Invariance Principle

[21] has been widely adopted as a method, for continuous autonomous
(time-invariant) systems, to relax the strict negative-definite condition
on the candidate Lyapunov function derivative while still ensuring
asymptotic stability of the origin. Stability of the origin is proven
by showing that bounded solutions converge to the largest invariant
subset contained in the set of points where the derivative of the
candidate Lyapunov function is zero. In [22], LaSalle’s Invariance
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Principle was modified to state that bounded solutions converge to the
largest invariant subset of the set where an integrable output function
is zero. The integral invariance method was further extended in [23]
to differential inclusions. As described in [24], additional extensions
of the invariance principle to systems with discontinuous right-hand
sides were presented in [4], [6], [9] for Filippov solutions and [25] for
Carathéodory solutions.
Various extensions of LaSalle’s Invariance Principle have also been

developed for hybrid systems (cf. [24], [26]–[30]). The results in [26]
and [29] focus on switched linear systems, whereas the result in [30]
focuses on switched nonlinear systems. In [28], hybrid extensions of
LaSalle’s Invariance Principle were applied for systems where at least
one solution exists for each initial condition for deterministic systems
and continuous hybrid systems. Left-continuous and impulsive hybrid
systems are considered in extensions in [27]. In [24], two invariance
principles are developed for hybrid systems: one involves a Lyapunov-
like function that is nonincreasing along all trajectories that remain in
a given set, and the other considers a pair of auxiliary output functions
that satisfy certain conditions only along the hybrid trajectory. A re-
view of invariance principles for hybrid systems is provided in [31].
The challenge for developing invariance-like principles for nonau-

tonomous systems is that it may be unclear how to even define a set
where the derivative of the candidate Lyapunov function is stationary
since the candidate Lyapunov function is a function of both state and
time [32], [33]. By augmenting the state vector with time (cf. [34],
[35]), a nonautonomous system can be expressed as an autonomous
system: this technique allows autonomous systems results (cf. [36] and
[37]) to be extended to nonautonomous systems. While the state aug-
mentation method can be a useful tool, in general, augmenting the state
vector yields a non-compact attractor (when the time dependence is
not periodic), destroying some of the structure of the original equation;
for example, the new system will not have any bounded, periodic, or
almost periodic motions. Some results (cf. [38]–[40]) have explored
ways to utilize the augmented system’s non-compact attractors by fo-
cusing on solution operator decomposition, energy equations or new
notions of compactness, but these methods typically require additional
regularity conditions (with respect to time) than cases when time is kept
as a distinct variable.
The Krasovskii-LaSalle Theorem [41] was originally developed for

periodic systems, with several generalizations also existing for not
necessarily periodic systems (e.g., see [6], [42]–[45]). In particular,
a (Krasovskii-LaSalle) Extended Invariance Principle is developed
in [45] to prove that the origin of a nonautonomous switched system
with a piecewise continuous uniformly bounded in time right-hand
side is globally asymptotically stable (or uniformly globally asymp-
totically stable for autonomous systems). The result in [45] uses a
Lipschitz continuous, radially unbounded, positive-definite function
with a negative semi-definite derivative (condition C1) along with an
auxiliary Lipschitz continuous (possibly indefinite) function whose
derivative is upper bounded by terms whose sum are positive-definite
(condition C2).
Also for nonautonomous systems, the LaSalle-Yoshizawa Theorem

(i.e., [33, Theorem 8.4] and [46, Theorem A.8]), based on the work in
[21], [47], [48], provides a convenient analysis tool which allows the
limiting set (which does not need to be invariant) to be defined where
the negative semi-definite bound on the candidate Lyapunov deriva-
tive is equal to zero, guaranteeing asymptotic convergence of the state.
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Given its utility, the LaSalle-Yoshizawa Theorem has been applied, for
example, in adaptive control and in deriving stability from passivity
properties such as feedback passivation and backstepping designs of
nonlinear systems [21]. Available proofs for the LaSalle-Yoshizawa
Theorem exploit Barbalat’s Lemma, which is often invoked to show
asymptotic convergence for general classes of nonlinear systems [33].
In general, adapting the LaSalle-Yoshizawa Theorem to systems where
the right-hand side is not locally Lipschitz has only recently been ex-
plored. The result in [49] presents three invariance-like semistability
theorems that utilize similar arguments to the LaSalle-Yoshizawa The-
orem under the assumption that the system dynamics are uniformly
bounded. Alternatively, using Barbalat’s Lemma and the observation
that an absolutely continuous function that has a uniformly locally in-
tegrable derivative is uniformly continuous, the result in [50] proves
asymptotic convergence of an output function for nonlinear systems
with disturbances. The result in [50] is developed for differential
equations with a continuous right-hand side, but [50, Facts 1–4] pro-
vide insights into the application of Barbalat’s Lemma to discontinuous
systems.
In this technical note, we present two corollaries to the LaSalle-

Yoshizawa Theorem for nonautonomous systems with right-hand side
discontinuities that are essentially locally bounded, uniformly in , uti-
lizing Filippov solutions and Lipschitz continuous and regular Lya-
punov-like functions whose time derivatives can be upper bounded by
negative semi-definite functions. Applicability of one of the corollaries
is illustrated for an example problem.

II. PRELIMINARIES

Consider the system

(1)

where denotes the state vector,
is Lebesgue measurable and essentially locally bounded, uniformly in
and is an open and connected set. Existence and uniqueness of
the continuous solution are provided under the condition that the
function is Lipschitz continuous. However, if contains a discon-
tinuity at any point in , then a solution to (1) may not exist in the
classical sense. Thus, it is necessary to redefine the concept of a solu-
tion. Utilizing differential inclusions, the value of a generalized solu-
tion (e.g., Filippov [51] or Krasovskii [52] solutions) at a certain point
can be found by interpreting the behavior of its derivative at nearby
points. Generalized solutions will be close to the trajectories of the ac-
tual system since they are a limit of solutions of ordinary differential
equations with a continuous right-hand side [13]. While there exists a
Filippov solution for any arbitrary initial condition , the so-
lution is generally not unique [5], [51] .
Definition 1. (Filippov Solution): [51] A function

is called a solution of (1) on the interval if is absolutely
continuous and for almost all

where is an upper semi-continuous, nonempty, compact
and convex valued map on , defined as

(2)

denotes the intersection over sets of Lebesgue measure zero,
denotes convex closure, and
.
Remark 1: One can also formulate the solutions of (1) in other ways

[53]; for instance, using Krasovskii’s definition of solutions [52]. The

corollaries presented in this work can also be extended to Krasovskii
solutions (see [3], for example). In the case of Krasovskii solutions,
one would get stronger conclusions (i.e., conclusions for a potentially
larger set of solutions) at the cost of slightly stronger assumptions (e.g.,
local boundedness rather than essentially local boundedness).
To facilitate the main results, four definitions are provided.
Definition 2. (Directional Derivative): [54] Given a function

, the right directional derivative of at in the
direction of is defined as

Additionally, the generalized directional derivative of at in the di-
rection of is defined as

Definition 3. (Regular Function): [34] A function
is said to be regular at if for all , the right direc-
tional derivative of at in the direction of exists and

1

Definition 4. (Clarke’s Generalized Gradient): [34] For a function
that is locally Lipschitz in , define the

generalized gradient of at by

where is the set of measure zero where the gradient of is not
defined.
Definition 5. (Locally Bounded, Uniformly in ): Let

. The map is locally bounded, uniformly
in , if for each compact set , there exists such that

, .
The following lemma provides a method for computing the time

derivative of a regular function using Clarke’s generalized gradient
[34] and , from (2), along the solution trajectories of (1).
Lemma 1. (Chain Rule): [6], [56] Let be a Filippov solution of

(1) and be a locally Lipschitz, regular function.
Then is absolutely continuous, exists almost

everywhere (a.e.), i.e., for almost all , and

, where2

Remark 2: Throughout the subsequent discussion, for brevity of no-
tation, let a.e. refer to almost all .

III. MAIN RESULT

For the system described in (1) with a continuous right-hand side,
existing Lyapunov theory can be used to examine the stability of
the closed-loop system using continuous techniques such as those
described in [57]. However, these theorems must be altered for the
set-valued map for systems with right-hand sides which
are not Lipschitz continuous [6], [13], [14]. Lyapunov analysis for
nonsmooth systems is analogous to the analysis used for continuous
systems. The differences are that differential equations are replaced
with inclusions, gradients are replaced with generalized gradients,

1Note that any continuous function is regular and the sum of regular func-
tions is regular [55].
2Equivalently, almost everywhere, for all and

some .
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and points are replaced with sets throughout the analysis. The fol-
lowing presentation and subsequent proofs demonstrate how the
LaSalle-Yoshizawa Theorem can be adapted for such systems.
The following auxiliary lemma from [56] and Barbalat’s Lemma are

provided to facilitate the proofs of the nonsmooth LaSalle-Yoshizawa
Corollaries.
Lemma 2: [56] Let be any Filippov solution to the system in

(1) and be a locally Lipschitz, regular function.

If , then .
Proof: For the sake of contradiction, let there exist some

such that . Then

It follows that on a set of positive measure, which
contradicts that , a.e.
Lemma 3. (Barbalat’s Lemma): [57] Let be a uni-

formly continuous function. Suppose that exists and

is finite. Then

Based on Lemmas 2 and 3, nonsmooth corollaries to the LaSalle-
Yoshizawa Theorem (c.f., [33, Theorem 8.4] and [46, Theorem A.8])
are provided in Corollary 1 and 2.
Corollary 1: For the system given in (1), let be an open and

connected set containing and suppose is Lebesgue measurable
and is essentially locally bounded, uniformly in . Let

be locally Lipschitz and regular such that

(3)

(4)

where and are continuous positive definite functions, is a
continuous positive semi-definite function on , choose and

such that and and is a Filippov

solution to (1) where . Then is
bounded and satisfies

(5)

Proof: Since and ,

is in the interior of . Define a time-dependent set by

From (3), the set contains since

On the other hand, is a subset of since

Thus

Based on (4), , hence, is non-increasing
from Lemma 2. For any and any , the solution
starting at stays in for every . Therefore, any

solution starting in stays in , and con-
sequently in , for all future time. Hence, the
Filippov solution is bounded such that , .
From Lemma 2, is also bounded such that

. Since is Lebesgue measurable from (4),

(6)

Therefore, is bounded . Existence of

is guaranteed since the left-hand side of (6)

is monotonically nondecreasing (based on the definition of )
and bounded above. Since is locally absolutely continuous and
is essentially locally bounded, uniformly in , is uniformly

continuous. Because is continuous in , and is on the compact
set , is uniformly continuous in on . Therefore,
by Lemma 3, .
Remark 3: From Def. 1, is an upper semi-continuous,

nonempty, compact and convex valued map. While existence of a Fil-
ippov solution for any arbitrary initial condition is provided
by the definition, generally speaking, the solution is non-unique [5],
[51].
Note that Corollary 1 establishes (5) for a specific . Under the

stronger condition that3 , it is possible to
show that (5) holds for all Filippov solutions of (1). The next corollary
is presented to illustrate this point.
Corollary 2: For the system given in (1), let be an open and

connected set containing and suppose is Lebesgue measurable
and is essentially locally bounded, uniformly in . Let

be locally Lipschitz and regular such that

(7)

(8)

, where and are continuous positive def-
inite functions, and is a continuous positive semi-definite func-
tion on . Choose and such that and

. Then, all Filippov solutions of (1) such that

are bounded and satisfy

Proof: Let be any arbitrary Filippov solution of (1). Then,

from Lemma 1, and (8), , which is the con-
dition in (4). Since the selection of is arbitrary, Corollary 1 can be
used to imply that the result in (5) holds for each .

IV. DESIGN EXAMPLE

The LaSalle-Yoshizawa Corollaries (and the LaSalle-Yoshizawa
Theorem) are useful in their ability to provide boundedness and
convergence of solutions, while providing a compact framework to
define the region of attraction for which boundedness and convergence
results hold. In fact, the region of attraction is provided as part of the
corollary structures. In the case of semi-global and local results, these
domains and sets are especially useful. It is important to note that
Barbalat’s Lemma can be used to achieve the same results (in fact, it

3The inequality is used to indicate that every element of

the set is less than or equal to the scalar .
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is used in the proof for Corollary 1); however, the use of Barbalat’s
Lemma would require the identification of the region of attraction for
which convergence holds and does not provide boundedness of the
trajectories. For illustrative purposes, the following design example
targets the regulation of a first order nonlinear system.
Consider a first-order nonlinear differential equation given by

(9)

where is an unknown, linear-parameteriz-
able, essentially locally bounded, uniformly in function that can be
expressed as where is a vector of un-
known constant parameters and
is the regression matrix for . In addition,
is the control input, is the measurable system state, and

is an essentially locally bounded disturbance
that satisfies

(10)

where is a positive constant, and is a positive,
globally invertible, state-dependent function. A regulation controller
for (9) can be designed as

(11)

where is an estimate of , are gain constants,

and is defined as
. Based on the subsequent stability

analysis, an adaptive update law can be defined as

(12)

where is a positive gain matrix. The closed-loop system is
given by

(13)

where denotes the mismatch . In (13), it is
apparent that the RHS contains a discontinuity in , and the use of
differential inclusions provides for existence of solutions.
Let be defined as and choose a posi-

tive-definite, locally Lipschitz, regular candidate Lyapunov function as

(14)

The candidate Lyapunov function in (14) satisfies the following in-
equalities:

(15)

where the continuous positive-definite functions
are defined as , and , where

are known constants. Then,
and

Since is in , 4

(16)

4For continuously differentiable Lyapunov candidate functions, the general-
ized gradient reduces to the standard gradient. However, this is not required by
the Corollary itself and only assists in evaluation.

After using (13), the expression in (16) can be written as

(17)

where such that if ,
[ 1, 1] if , and if .
Remark 4: One could also consider the discontinuous function in-

stead of the differential inclusion (i.e., the function can alterna-
tively be defined as ) using Caratheodory solutions; how-
ever, this method would not be an indicator for what happens when
measurement noise is present in the system. As described in results
such as [58]–[60], Filippov and Krasovskii solutions for discontin-
uous differential equations are appropriate for capturing the possible
closed-loop system behavior in the presence of arbitrarily small mea-
surement noise. By utilizing the set valued map in the anal-
ysis, we account for the possibility that when the true state satisfies

, (of the measured state) falls within the set .
Therefore, the presented analysis is more robust to measurement noise
than an analysis that depends on to be defined as a known
singleton.
Substituting for the adaptive update law in (12), canceling terms and

utilizing the bound for in (10), the expression in (16) can be upper
bounded as

(18)

The set in (17) reduces to the scalar inequality in (18) since in the case
when is defined as a set, it is multiplied by , i.e., when

, . Regrouping similar terms, the expression
in (18) can be written as

(19)

Provided and , the expression in (19) can be

upper bounded as where
is a positive semi-definite function defined on the domain

. The inequalities in (15)
can be used to show that in ; hence, and

in . Since contains the constant unknown
system parameters and in , the definition for

can be used to show that in . Given
that in , in . Since , ,
and in , the control is bounded from (11) and the
adaption law in (12). The closed-loop dynamics in (10) and (13) can
be used to conclude that in ; hence, is uniformly
continuous in .
Choose such that denotes a closed ball,

and let denote the set defined as

(20)

Invoking Corollary 2,
, thus, . The

region of attraction in (20) can be made arbitrarily large to include all
initial conditions (a semi-global type result) by increasing the gain .
Remark 5: For some systems (e.g., closed-loop error systems with

sliding mode control laws), it may be possible to show that Corollary
2 is more easily applied, as is the focus of the example in Section IV.
However, in other cases, it may be difficult to satisfy the inequality
in (8). The usefulness of Corollary 1 is demonstrated in those cases
where it is difficult or impossible to show that the inequality in (8) can
be satisfied, but it is possible to show that (4) can be satisfied for almost
all time.
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V. CONCLUSION

In this technical note, the Lasalle-Yoshizawa Theorem is extended
to differential systems whose right-hand sides are discontinuous. The
result presents two theoretical tools applicable to nonautonomous sys-
tems with discontinuities in the closed-loop error system. Generalized
Lyapunov-based analysis methods are developed utilizing differential
inclusions in the sense of Filippov to achieve asymptotic convergence
when the candidate Lyapunov derivative is upper bounded by a neg-
ative semi-definite function. Cases when the bound on the Lyapunov
derivative holds for all possible Filippov solutions are also considered.
An adaptive, sliding mode control example is provided to illustrate the
utility of the main results.
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Structural Analysis of Laplacian Spectral
Properties of Large-Scale Networks
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Abstract—Using methods from algebraic graph theory and convex opti-
mization, we study the relationship between local structural features of a
network and the eigenvalues of its Laplacian matrix. In particular, we pro-
pose a series of semidefinite programs to find new bounds on the spectral
radius and the spectral gap of the Laplacian matrix in terms of a collec-
tion of local structural features of the network. Our analysis shows that the
Laplacian spectral radius is strongly constrained by local structural fea-
tures. On the other hand, we illustrate how local structural features are
usually insufficient to accurately estimate the Laplacian spectral gap. As a
consequence, random graph models in which only local structural features
are prescribed are, in general, inadequate to faithfully model Laplacian
spectral properties of a network.

Index Terms—Laplacian matrix, spectral.

I. INTRODUCTION

Understanding the relationship between the structure and dynamics
of a network is a central question in the field of network science [1].
Since the behavior of many networked dynamical processes is closely
related with the Laplacian eigenvalues (see [2], [3] and references
therein), it is of relevance to study the relationship between structural
features of the network and its spectral properties.
In this technical note, we study this relationship, focusing on the role

played by structural features that can be extracted from localized sam-
ples of the network structure. We show how structural information ex-
tracted from these local samples can be efficiently aggregated to infer
global properties of the Laplacian spectrum. In particular, we propose
a graph-theoretical approach to relate structural features of a network
with algebraic properties of its Laplacian matrix. Our analysis reveals
that there are certain spectral properties, such as the so-called spec-
tral moments, that can be efficiently computed from these structural
features. Furthermore, applying a recent result by Lasserre [4], we pro-
pose a series of semidefinite programs to compute new bounds on the
Laplacian spectral radius and spectral gap from a truncated sequence
of spectral moments.
The technical note is organized as follows. In the next subsection,

we define terminology needed in our derivations. In Section II, we in-
troduce a graph-theoretical methodology to derive closed-form expres-
sions for the so-called Laplacian spectral moments in terms of struc-
tural features of the network. In Section III, we use semidefinite pro-
gramming to derive optimal bounds on the Laplacian spectral radius
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