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Afferent feedback can appreciably alter the pharyngeal phase of swallow. In order to
measure the stability of the swallow motor pattern during several types of alterations
in afferent feedback, we assessed swallow during a conventional water challenge
in four anesthetized cats, and compared that to swallows induced by fixed (20 Hz)
and stochastic (1-20Hz) electrical stimulation applied to the superior laryngeal nerve.
The swallow motor patterns were evaluated by electromyographic activity (EMG) of
eight muscles, based on their functional significance: laryngeal elevators (mylohyoid,
geniohyoid, and thyrohyoid); laryngeal adductor (thyroarytenoid); inferior pharyngeal
constrictor (thyropharyngeus); upper esophageal sphincter (cricopharyngeus); and
inspiratory activity (parasternal and costal diaphragm). Both the fixed and stochastic
electrical stimulation paradigms increased activity of the laryngeal elevators, produced
short-term facilitation evidenced by increasing swallow durations over the stimulus
period, and conversely inhibited swallow-related diaphragm activity. Both the fixed
and stochastic stimulus conditions also increased specific EMG amplitudes, which
never occurred with the water challenges. Stochastic stimulation increased swallow
excitability, as measured by an increase in the number of swallows produced. Consistent
with our previous results, changes in the swallow motor pattern for pairs of muscles
were only sometimes correlated with each other. We conclude that alterations in afferent
feedback produced particular variations of the swallow motor pattern. We hypothesize
that specific SLN feedback might modulate the swallow central pattern generator during
aberrant feeding conditions (food/liquid entering the airway), which may protect the
airway and serve as potentially important clinical diagnostic indicators.
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INTRODUCTION

During ingestion, the pharyngeal phase of swallow is initiated
and regulated by a host of sensory afferents in the oral,
pharyngeal, and laryngeal cavities (Pommerenke, 1928; Kahrilas
and Logemann, 1993; Ertekin et al., 2000; Hiss et al., 2001;
Humbert et al., 2009; Pitts et al., 2013; Spearman et al., 2014;
Huff et al., 2018). Changes in temperature, food size and texture,
or taste can significantly modulate the swallow motor pattern,
and are used by speech-language pathologists as therapeutic
options to treat swallowing disorders (dysphagia) (Bushmann
et al., 1989; DePippo et al., 1992; Hiss et al., 2001; Kendall,
2002; Butler et al., 2004; Daniels et al., 2004, 2007; Clave et al.,
2008; Troche et al., 2008; Humbert et al., 2009; Yamamura et al.,
2010). While the clinical literature demonstrating these effects is
robust, very little is understood about their mechanism of action.
If these mechanisms are elucidated, specific sensory treatment
parameters could be optimized for maximal therapeutic effect.

Historically, much of the basic investigation into the swallow
pattern generator has been performed under fictive conditions
(deafferented and paralyzed) using fixed-frequency electrical
stimulation of the superior laryngeal nerve (SLN) (Gia, 1958;
Doty, 1968; Miller, 1982; Dick et al., 1993). The SLN branches off
the vagus nerve and provides both sensory and motor innervation
to the larynx. While its stimulation can readily evoke a series
of rhythmic swallows, it also strongly suppresses breathing, and
there is limited information about how that pattern compares
to a more natural stimulus condition. The key features of the
swallow in an experimentally reduced preparation are a burst
on the hypoglossal nerve followed by a burst on the vagus
nerve (Gestreau et al., 1996, 2000; Roda et al., 2002; Bautista
and Dutschmann, 2014; Bautista et al., 2014; Hashimoto et al.,
2019). However, natural deglutition is complex and involves
variable motor sequences produced by an array of muscles,
and also includes inspiratory (e.g., diaphragm) muscle activation
(“schluckatmung”) that is thought to produce negative intra-
thoracic pressure to aid in propelling the bolus through the
esophagus (Pitts et al., 2013, 2015a,b; Spearman et al., 2014).
During normal breathing and swallow, laryngeal afferents are
stimulated, producing variable sensory frequency patterns with
discharge rates from 10 – 184 Hz, which are transmitted by
the SLN (Storey, 1968; Bradley et al., 1983). This corresponds
to stochastic-like afferent nerve firing discharge which can
stimulate multiple behavior responses including apnea, swallow,
and cough. Recent work has also demonstrated short-term
facilitation of swallow duration (Horton et al., 2018) in response
to SLN stimulation, which contrasts with the classical view
of swallow as a strictly stereotypical motor event (Miller and
Scheeington, 1916; Doty and Bosma, 1956; Doty, 1968; Miller,
1982). Additionally, the SLN carries afferent fibers which, which
stimulated, can ultimately evoke laryngeal closure during swallow
(Jafari et al., 2003), however this activity is not essential for the
onset of the normal swallow sequence (Kitagawa et al., 2002).
The vallecular space near the epiglottis is also innervated by SLN
afferents (except in humans), and when food/liquid accumulates
in this space behind the tongue, reflexive swallow occurs. When
swallow is induced by delivering milk to the vallecular space of

decerebrate piglets (Thexton et al., 2007, 2009), the motor pattern
is modified by the presence of other rhythmic oral movements
(suckling). This indicates that afferent feedback from natural
stimuli can influence pharyngeal swallow motor pattern, and that
this is brainstem-mediated.

Previous work has defined characteristics of swallow motor
pattern based on deterministic repetitive SLN stimulation, and
suggests that repetitive swallows are produced by changes in
excitability of the swallow central pattern generator (CPG)
(Jean, 2001). Previous studies have not systematically compared
swallows evoked by electrical SLN stimulation to those evoked
by a natural stimulus (e.g., water in the oropharynx or
vallecula). Thus, it remains uncertain if the repetitive swallow
motor patterns produced in response to SLN stimulation
are directly comparable to a natural stimulus, or if the
addition of variability in the stimulation parameters can be
used experimentally to produce motor patterns akin to a
natural stimulus. We tested the hypothesis that swallow-related
upper airway and inspiratory (diaphragm and parasternal:
schluckatmung) muscle activity is modified by use of fixed
frequency and stochastic SLN electrical stimulation versus
oral water infusion.

MATERIALS AND METHODS

Experiments were performed on four spontaneously breathing
adult cats. Ethical approval of the protocol was confirmed by the
University of Florida and University of Louisville Institutional
Animal Care and Use Committees (IACUCs). The animals were
initially anesthetized with sevoflurane (3–5%) via inhalation
and then transitioned to sodium pentobarbital (35–40 mg/kg
i.v.); supplementary doses were administered as needed (1-
3 mg/kg i.v.). A dose of atropine sulfate (0.1–0.2 mg/kg, i.v.)
was given at the beginning of the experiment to reduce airway
secretions. Cannulas were placed in the femoral artery, femoral
vein, and trachea. An esophageal balloon was placed via an oral
approach to measure pressure in the mid-thoracic esophagus.
Arterial blood pressure and end-tidal CO2 were continuously
monitored. Body temperature was monitored and maintained
at 37.5 ± 0.5 ◦C using a pad. Arterial blood samples were
periodically removed for blood gas analysis. PO2 was maintained
using air mixtures with enriched oxygen (25-60%) to maintain
values above 100 mm Hg if needed.

Muscle activity was recorded via electromyography (EMG)
using bipolar insulated fine wire electrodes according to the
technique of Basmajian and Stecko (1962). Eight muscles were
used to evaluate swallow occurrence: mylohyoid, geniohyoid,
thyrohyoid, thyropharyngeus, thyroarytenoid, cricopharyngeus,
parasternal, and costal diaphragm. These muscles span the
actions during the pharyngeal phase of swallow: (a) mylohyoid,
geniohyoid and thyrohyoid for hyolaryngeal elevation; (b)
thyropharyngeus for inferior pharyngeal constriction; (c)
cricopharyngeus for upper esophageal sphincter regulation;
(d) thyroarytenoid for laryngeal adduction; and (e) parasternal
and costal diaphragm for inspiratory (schluckatmung) activity
(Pitts et al., 2013, 2015a,b; Spearman et al., 2014). As in our

Frontiers in Human Neuroscience | www.frontiersin.org 2 April 2020 | Volume 14 | Article 112

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00112 April 7, 2020 Time: 17:2 # 3

King et al. Inspiratory Activity During Swallow

previous publications, swallow duration was defined as onset of
the mylohyoid burst to the end of the thyropharyngeus burst.

Surgical placement of EMGs proceeded as follows: the
digastric muscles were blunt dissected away from the surface
of the mylohyoid and electrodes were placed medially in the
left mylohyoid. A small horizontal incision was made at the
rostral end of the right mylohyoid followed by an incision
down the midline for approximately 5 mm to reveal the
geniohyoid muscle. Electrodes were placed 1 cm from the caudal
insertion of the geniohyoid muscle. The thyroarytenoid muscle
electrodes were inserted through the cricothyroid window into
the anterior portion of the vocal folds, which were visually
inspected post-mortem. Minor rotation of the larynx and
pharynx counterclockwise revealed the superior laryngeal nerve,
which facilitated placement of the thyropharyngeus muscle
electrodes. The thyropharyngeus is a fan shaped muscle with the
smallest portion attached to the thyroid cartilage; electrodes were
placed in the ventral, caudal portion of the muscle overlaying
thyroid cartilage within 5 mm of the rostral insertion of the
muscle. To place electrodes within the cricopharyngeus muscle,
the larynx and pharynx were rotated counterclockwise to reveal
the posterior aspect of the larynx. The edge of the cricoid cartilage
was located by palpation and electrodes were placed in the
cricopharyngeus muscle just cranial to the edge of this structure.
Thyrohyoid muscle electrodes were inserted approximately 5 mm
rostral to the attachment to the thyroid cartilage; those for the
parasternal muscle were placed in the third intercostal space,
just adjacent to the sternum, and the costal diaphragm EMGs
were placed transcutaneously just under the xiphoid process. The
positions of all electrodes were confirmed by visual inspection
(following electrode placement and post-mortem) and by EMG
activity patterns during breathing and swallow, as we have
previously published (Pitts et al., 2013, 2015b, 2018; Spearman
et al., 2014).

The right SLN was unilaterally exposed and bipolar hook
electrodes were placed on the intact nerve. Voltage thresholds
for evoking swallow were determined at the beginning of the
experiment using fixed frequency (20 Hz) stimulus, and for
the experimental condition the voltage was set at 1.5 times
higher than threshold necessary for producing at least one
swallow (4.4 ± 0.7 V). Non-deterministic stimulation frequencies
were produced by a custom MATLAB (MathWorks; Natick,
MA) program that shuffled inter-pulse intervals instantaneously
corresponding to 4-40 Hz. Pulse parameters were controlled from
a host PC interfaced to a custom electrical stimulator through
a commercial interface board (QPID terminal board, Quanser;
Markham, ON, Canada).

Conditions
To initiate swallow via water, a bolus of approximately 3 ml was
infused into the pharynx via a 1-inch long piece of polyethylene
tubing (P.E. 90) (placed rostral to the faucial pillars) attached to
5 ml syringe. All water trials for each animal were performed
by the same researcher to maintain stimulus consistency. Fixed
frequency electrical stimulation was produced at 20 Hz, while the
stochastic condition was produced across the range of 1-40 Hz
(median of 20 Hz), each for 20 second series (see Figure 1).

All stimuli were presented three times, separated by a minimum
inter-stimulus interval of one minute; the presentation was
randomized within each animal and across animals.

Signal Analysis
Raw EMG signals were filtered (200-5000 Hz), rectified, and
integrated with time constant of 20 ms. Swallow was identified
by sequential bursts of the mylohyoid, geniohyoid, thyrohyoid,
thyroarytenoid, and thyropharyngeus as well as a decline in tonic
(followed by a burst) EMG activity of the cricopharyngeus (UES).
Swallows that could not be differentiated from other behaviors
(i.e., licking, cough, laryngeal elevation, laryngeal adductor reflex
and aspiration reflex) were excluded from analysis. To avoid
analyzing data from spontaneous swallow activity, the EMG
activity was included in the analysis if the swallow occurred
within 30 seconds of the initial water or within the stimulus
duration. Reported maximum EMG values were calculated as a
percentage of maximum for each muscle across the experiment
for normalization across animals (i.e., the maximum EMG
amplitude for each muscle was 100%).

Statistical Analysis
A mean ± standard deviation (SD) was calculated for each
measure and animal including all induced swallows, and
then averaged for each condition across animals (Table 1).
For statistical analysis of group differences by condition, an
ANOVA with Fisher’s least significant difference post hoc tests
were performed as appropriate (Table 1). To assess short-
term facilitation, a repeated-measures ANOVA was performed
comparing the first swallow in the series to each subsequent
swallow with Fisher’s least significant difference post hoc tests
performed as appropriate, similar to procedures performed
by Horton and colleagues (2018) (Table 1). A difference was
considered significant if the p-value was less or equal to 0.05.
To assess relationships between changes in EMG amplitude and
duration during swallow, Pearson’s product moment correlations
(r) were calculated comparing all amplitude measures across
conditions (Table 2).

RESULTS

All three stimulus conditions produced apnea and repetitive
swallows: water (3.2 ± 0.5), fixed frequency (7.5 ± 2.6),
and stochastic (9.2 ± 2.5) electrical stimulation. Of note, the
stochastic stimulation produced significantly more swallows
compared to the fixed frequency stimulation (p = 0.005), due to a
difference in time from the initiation of the stimulation to the first
swallow [fixed (4.2 ± 0.9 s), stochastic (2.7 ± 0.4 sec; p = 0.01)].

There was a significant effect of condition on the EMG
amplitude (percent of maximum) of mylohyoid, geniohyoid,
thyrohyoid, thyropharyngeus, parasternal, and costal diaphragm
(Table 1). Electrical stimulation (fixed and stochastic) increased
the mylohyoid (∼120%), geniohyoid (∼200%), and thyrohyoid
(137%) amplitude compared to water (Figures 1–3). Stochastic
stimulation also increased thyropharyngeus amplitude by 138%
compared to water (Figures 1–3). Conversely, there was
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FIGURE 1 | Example trial of the stochastic electrical stimulation condition illustrating the stimulation artifact and plot of stimulation frequency in Hz. Activity on the
thyrohyoid marks the occurrence of the eight swallows. Note the amplitude and duration facilitation on the thyrohyoid EMG and the duration facilitation on the
thyroarytenoid EMG. The stimulus artifact is also present on the thyroarytenoid EMG.

significant depression of the costal diaphragm EMG amplitude
by electrical stimulation (fixed and stochastic; ∼75%) and of the
parasternal by fixed electrical stimulation (41%) compared to
water (Table 1 and Figures 2, 3). There was no significant effect
of condition on swallow duration (Table 1 and Figure 3).

There was evidence of short-term facilitation with fixed
electrical stimulation (i.e., significant increase in EMG amplitude
when compared to the first swallow in the series; see Figure 3 and
Table 1) on the mylohyoid (p = 0.01) with significant increases
starting at the second swallow (p = 0.004), continuing through
the third (p = 0.006), fourth (p = 0.001), and fifth (p = 0.007)
in the series (Table 1). During stochastic stimulation there was
evidence of short-term facilitation on the thyrohyoid (p = 0.02)
starting at the third swallow (p = 0.006), continuing through the
fourth (p = 0.002), fifth (p = 0.01) and sixth (p = 0.01); and
the thyropharyngeus (p = 0.05) starting at the fourth swallow
(p = 0.05), continuing through the fifth (p = 0.008) and sixth
(p = 0.02) in the series (Table 1).

For swallow duration there was evidence of short-term
facilitation with fixed and stochastic stimulation (Figure 3;
Table 1). Significant increases in swallow duration with fixed
stimulation (p = 0.005) started at the third swallow (p = 0.02),
continuing through the fourth (p = 0.02) and fifth (p = 0.005);
stochastic stimulation facilitation (p = 0.03) started at the third
swallow (p = 0.001), continuing through the fourth (p = 0.04),
fifth (p = 0.04) and sixth (p = 0.01) swallow in the series.

Table 2 is a matrix showing all Pearson Product moment
correlations for EMG amplitudes and swallow duration

combined across all conditions. This analysis resulted in six
moderate correlations: mylohyoid and geniohyoid (r = 0.48);
mylohyoid and thyrohyoid (r = 0.54); UES (cricopharyngeus)
and parasternal (r = 0.49); UES (cricopharyngeus) and costal
diaphragm (r = 0.54); parasternal and costal diaphragm (r = 0.61);
and geniohyoid to swallow duration (r = 0.57).

DISCUSSION

Modulation of afferent feedback is an important component in
determining the stability of a reflexive motor pattern. This is the
first study to demonstrate the differential effects of water infusion
vs. electrical stimulation (stochastic or fixed) of the SLN on
swallow production. The effects of electrical stimulation included
significant increases in upper airway muscle (mylohyoid,
geniohyoid, thyrohyoid, and thyropharyngeus) EMG amplitudes,
and significant depression of the schluckatmung activity
evidenced by the decreases in diaphragm (fixed and stochastic)
and parasternal (fixed) EMG amplitudes. Additionally, there is
evidence of short-term amplitude facilitation of the mylohyoid
with fixed frequency stimulation, and of the thyrohyoid and
thyropharyngeus with stochastic frequency stimulation.

Fixed Versus Stochastic Stimulation
Our observations suggest that the stochastic stimulation
increased excitability in the swallow CPG as evidenced by a
reduction in the time to the first swallow, increases in EMG
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TABLE 1 | Means and standard deviations (SD) for EMG amplitude (% maximum) and total swallow duration changes across the three conditions (ANOVA) and evidence of short-term facilitation
(repeated-measures ANOVA).

Mylolyoid Geniohyoid Thyrohyoid Thyroarytenoid Thyropharyngeus UES (Cricopharyngeus) Parasternal Costal diaphragm Swallow duration

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Water (W) SW#

1 63 ± 16 49 ± 33 59 ± 20 66 ± 12 44 ± 38 63 ± 28 77 ± 32 75 ± 23 588 ± 121

2 69 ± 15 34 ± 23 57 ± 38 86 ± 19 49 ± 35 50 ± 16 70 ± 41 76 ± 28 561 ± 84

3 55 ± 8 26 ± 19 42 ± 23 66 ± 12 54 ± 46 78 ± 20 50 ± 12 87 ± 15 423 ± 87

62 ± 13 36 ± 25 53 ± 27 73 ± 14 49 ± 39 64 ± 22 66 ± 28 79 ± 22 524 ± 98

20 Hz fixed (F)

1 53 ± 10 72 ± 20 57 ± 17 71 ± 8 34 ± 28 37 ± 25 36 ± 23 20 ± 21 605 ± 81

2 78 ± 10* 68 ± 7 68 ± 7 63 ± 6 49 ± 37 39 ± 22 29 ± 13 22 ± 22 612 ± 95

3 76 ± 10* 75 ± 18 76 ± 6 64 ± 3 46 ± 31 46 ± 22 42 ± 23 20 ± 22 726 ± 122*

4 82 ± 13* 74 ± 11 80 ± 10 73 ± 13 57 ± 37 51 ± 32 40 ± 23 20 ± 20 731 ± 95*

5 76 ± 7* 82 ± 14 81 ± 15 66 ± 10 57 ± 29 49 ± 21 50 ± 35 19 ± 20 830 ± 120*

73 ± 10 74 ± 14 73 ± 11 67 ± 8 49 ± 32 44 ± 24 39 ± 23 20 ± 21 701 ± 103

1–20 Hz variable (V)

1 62 ± 17 72 ± 20 51 ± 4 63 ± 4 41 ± 29 42 ± 13 50 ± 31 21 ± 20 557 ± 29

2 62 ± 13 67 ± 3 67 ± 3 69 ± 10 52 ± 22 46 ± 20 46 ± 30 21 ± 21 644 ± 69

3 70 ± 17 76 ± 20 82 ± 17* 68 ± 10 50 ± 22 52 ± 20 53 ± 36 20 ± 21 644 ± 38*

4 80 ± 14 78 ± 17 87 ± 13* 79 ± 20 69 ± 13* 53 ± 23 47 ± 33 19 ± 21 724 ± 116*

5 82 ± 6 76 ± 13 77 ± 15* 72 ± 9 82 ± 16* 52 ± 31 49 ± 29 19 ± 20 794 ± 160*

6 76 ± 9 77 ± 15 78 ± 10* 75 ± 6 73 ± 5* 57 ± 34 46 ± 36 19 ± 20 785 ± 90*

74 ± 14 72 ± 13 73 ± 10 70 ± 10 68 ± 16 57 ± 23 51 ± 31 21 ± 21 691 ± 84

p value** 0.01 <0.001 0.001 0.8 0.03 0.2 0.01 <0.001 0.08

Post hoc W vs. F 0.003 <0.001 0.001 0.6 0.003 <0.001

W vs. V 0.008 <0.001 0.001 0.03 0.2 <0.001

F vs. V 0.6 0.6 0.9 0.2 0.3 0.9

Swallow number (SW#) is expressed as 1 to n; condition means and SD are represented in bold below each condition; ANOVA p-values and significant post hoc tests are expressed at the bottom; significant short-term
facilitation is expressed as a * to the right of the swallow measure. *Facilitation analysis: significant change compared to the first swallow in the series, **Significant change by condition. Significant if p < 0.05; significant
values are bolded.
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TABLE 2 | Pearson correlations comparing EMG amplitudes (% maximum) and the total swallow duration (ms).

MyHy GeHy ThHy ThAr ThPh UES PS Cos Dia Duration

MyHy 0.48 0.48 0.13 0.27 0.01 −0.17 −0.22 0.33

GeHy 0.39 0.09 −0.06 0.01 −0.24 −0.39 0.57

ThHy 0.27 0.12 −0.11 −0.32 −0.38 0.29

ThAr −0.15 −0.16 −0.17 −0.1 0.15

ThPh −0.04 −0.2 −0.33 0.01

UES 0.54 0.49 0.09

PS 0.61 −1.7

Cos Dia 0.22

All data were pooled across the three conditions: water, fixed and stochastic electrical stimulation. Moderately strong relationships (in bold) are present among
the upper airway muscles (geniohyoid and thyrohyoid with the mylohyoid) and among the inspiratory muscles (parasternal and costal diaphragm) with the upper
esophageal sphincter. [MyHy = mylohyoid; GeHy = geniohyoid; ThHy = thyrohyoid; ThPh = thyropharyngeus; UES = upper esophageal sphincter (aka cricopharyngeus);
PS = parasternal; Cos Dia = costal diaphragm; and Duration = total swallow duration in ms].

FIGURE 2 | Representative EMG examples of repetitive swallow during water infusion and with stochastic electrical stimulation of the SLN. This example
demonstrates the effect of condition on EMG amplitude with a global increase in mylohyoid, geniohyoid, thyrohyoid and a decrease in the parasternal and costal
diaphragm. Additionally, the gray arrows indicate the short-term facilitation across the swallow series on the thyrohyoid and thyropharyngeus. Note the differential
response of the geniohyoid and thyrohyoid to the stimulation even though both are innervated by the same nerve. *Labels a laryngeal adductor reflex. All EMGs in
this figure have been integrated, and the tonic activity on the thyroarytenoid EMG is stimulus artifact.

amplitudes, and an increase in number of swallows produced.
Beyak et al. (1997) demonstrated that an increase in fixed
stimulation frequency shortened latency and increased swallow
number. Our data suggest that adding variance to the electrical
stimulation signal works similarly, and maintains the overall

stimulation delivered. The variance (i.e., noise) in an electrical
signal has been shown to both increase information content of a
signal and increase detection of a weak signal in sensory systems
(Moss et al., 2004). Potential applications that have been explored
could include stabilizing breathing (Paydarfar et al., 1986, 2006)
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FIGURE 3 | (A) Example of changes in the swallow pattern produced by fixed and stochastic frequency stimulation with a water swallow for comparison. There are
small changes in EMG initiation with the stimulation conditions. The vertical dotted line marks onset of the relaxation of the upper esophageal sphincter (UES), which
allows the bolus to pass into the esophagus. Diaphragm activity (termed “schluckatmung”) is present during the water swallow. Short-term amplitude facilitation from
the first to the ninth swallow is seen in EMGs of the mylohyoid with fixed frequency stimulation, and in the thyrohyoid and thyropharyngeus with stochastic
stimulation. Artifact is present on EMGs with stimulation. (B) Box plots of swallow durations for bouts of repeated swallows, during different simulation conditions
(box heights are standardized across all three conditions). *Represents significance p < 0.05.

and the suck-swallow patterns (Finan and Barlow, 1998) in
pre-term infants, and in decreasing tremor and bradykinesia
in parkinsonian patients and rats using deep brain stimulation
(Grill et al., 2001; Brocker et al., 2017). Historically, studies in
deglutition have used only fixed frequency stimulation between
5 and 30 Hz, with a range of 20–30 Hz optimally evoking
rapid continuous swallow with short latencies and low threshold
periods (Bieger et al., 1977; Kessler and Jean, 1985; Ezure et al.,
1993; Oku et al., 1994; Ootani et al., 1995; Sang and Goyal, 2001;
Kitagawa et al., 2009). In the current study, we chose the
parameters to stimulate at a 20 Hz fixed frequency or with
a stochastic pattern where the average was around 20 Hz
using a custom electrical stimulator which appeared to add a
sufficient amount of “noise” to the signal without degrading
the sensory input.

In clinical dysphagia therapy, surface electrical stimulation
(i.e., NMES) uses an 80 Hz fixed frequency (Poorjavad
et al., 2014), and has been successful in short term sessions
(Humbert et al., 2006; Ludlow et al., 2007), but has been
unsuccessful for long term therapeutic uses (Carnaby-Mann and
Crary, 2007; Shaw et al., 2007; Bülow et al., 2008; Bogaardt et al.,
2009; Christiaanse et al., 2011). While the voltage and intensity
of the stimulus have been scrutinized, the frequency parameters
have not. We believe that the current study is the first of many
that are needed to begin testing and optimizing alterations in
stimulation frequency for effective swallow manipulation.

Diaphragm Activity During Swallow
Our recent work has extended the hypothesis that the swallow
pattern generator activates motoneuron pools in the spinal cord
for contraction of diaphragm and parasternal muscles (Spearman
et al., 2014; Pitts et al., 2015a,b). This component of the swallow

pattern has been described by research groups since the 1800’s,
however, there have been very few studies in the modern era.
Rosenthal (1861) was the first to report on the diaphragm
contractions during SLN stimulation, and Arloing (1874) was
the first to provide substantial evidence that these contractions
form an active part of the swallow pattern by creating a
negative deflection. The field termed this activity schluckatmung:
a German word meaning “swallow-breath”. While this may not
be the optimal term to describe this activity, it has continued
to be used in the ensuant literature, for example Marckwald
(1888) and Bosma (1957), Forester and colleagues (Feroah et al.,
2002a,b; Bonis et al., 2011). In recent years, inspiratory motor
drive during swallow has been reported in humans (Wilson et al.,
1981; Hardemark Cedborg et al., 2009) and animals (Gestreau
et al., 1996; Bonis et al., 2011). Previous work by our group
showed that parasternal activity could be modulated through
varying swallow stimuli, and that mechanical stimulation of the
oropharyngeal wall produced parasternal EMG contractions with
increased amplitude and duration (Spearman et al., 2014).

Our hypothesis is that breathing and swallow both involve
an aspiration pump: they use negative pressure to “suck”
air/bolus into the thoracic cavity (swallow also has significant
positive pressure from above the bolus). This is consistent
with McConnel’s theory of the “hypopharyngeal suction pump”
although we hypothesize this pressure is created by inspiratory
muscle activation instead of laryngeal elevation (McConnel
et al., 1987, 1988a,b,c,d; McConnel, 1988). Our current
results demonstrating that electrical SLN stimulation depresses
diaphragm activity during swallow reveal why this was previously
regarded as a non-existent and/or un-remarkable portion of
the swallow pattern, as it would not have been apparent to
most investigators using those common experimental conditions.
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This effect also mirrors what has been observed in the field of
respiratory control. Bellingham and colleagues (Bellingham et al.,
1989) were the first to demonstrate that SLN stimulation induced
central apnea via a chloride-dependent oligo-synaptic pathway
which hyperpolarizes phrenic motoneurons. More recently,
Pilowsky and colleagues (Sun et al., 2011) demonstrated further
effects in the core respiratory CPG by activation of expiratory-
decrementing neurons in the ventral respiratory group, which
in turn inhibit initiation of inspiration. However, we have
demonstrated that using water as a stimulus for swallow can
result in swallow occurrence across all phases of respiration
(Pitts et al., 2013, 2015b; Spearman et al., 2014). We also
previously reported that, in a non-paralyzed freely breathing
animal with water as the stimulus, 16 of 18 inspiratory cells in
the NTS were active during swallow and 7 of these increased
their firing frequency (Pitts et al., 2018). We theorize that, while
SLN stimulation does produce repetitive swallow, it may also
through a secondary mechanism produce apnea (or inhibition of
inspiratory neuronal activity).

Facilitation of Upper Airway Muscles
Short-term plasticity of excitatory synapses has been extensively
studied in both invertebrates and vertebrates (Atwood and
Karunanithi, 2002; Pan and Zucker, 2009). It is characterized
by an enhancement of synaptic transmission after a prolonged
period of stimulation, and can affect the function of neural
circuitry. Potential mechanisms of short-term synaptic
enhancement in swallow were elegantly explained in the recent
paper by Horton et al. (2018). They propose that, because of the
importance of the nucleus tractus solitarius (NTS) in the swallow
motor pathway, several mechanisms could be involved, including
glutamatergic axon terminals (Fortin et al., 1992), activation of
N-methyl-D-aspartate receptors within the NTS (England et al.,
1992), and neurotransmitters such as nicotine (Kalappa et al.,
2011), serotonin, and/or glutamate (Bieger, 1981; Hashim and
Bieger, 1987). The results from the current study also suggest
that facilitation is present or modulated downstream from the
NTS. Our selection of EMGs allows analysis of muscles that are
innervated by the same cranial nerve(s). For example, geniohyoid
and thyrohyoid are both innervated by the hypoglossal nerve
via the first cervical root. While both had significant increases
in EMG amplitude during SLN stimulation compared to water
(geniohyoid by ∼200% and thyrohyoid by 137%), the thyrohyoid
also demonstrated short-term facilitation throughout the
swallow series during variable stimulation (Figure 1). Of all the
upper airway muscles measured, geniohyoid showed the greatest
change in amplitude with SLN stimulation. Interestingly, in the
decerebrate pig studies, geniohyoid was the only muscle that
showed consistent modulation during swallow in the presence vs
absence of natural background rhythmic oral feeding movements
(Thexton et al., 2007, 2009).

Along with Horton et al. (2018), our current results contradict
the classic view that SLN stimulus-induced swallows have
a strictly stereotypical motor action, and instead suggest
that swallow is strongly shaped by frequency and location-
dependent afferent information. Many modern studies also
report significant variance in swallow amplitude. Doty

and Bosma (1956), observed intra-muscle and inter-animal
electromyography (EMG) variability with swallow evoked by
mechanical or electrical stimulation in dogs, cats, and monkeys.
Although not directly indicated, irregular EMG activity was also
reported in certain muscles when attempts were made to alter the
temporal pattern of swallow (e.g., fixing hyoid, applying lingual
traction, opening mouth, etc.). Studies by Thexton et al. (2007,
2009) demonstrated that contractions of certain swallow muscles
are prone to increased variability due to the diversity of fiber
types and the multiple functions they serve throughout different
phases of swallow, and that a “switch” between activation of
fiber types/functions can be provoked by a change in stimulus
condition. In light of these findings, interpretation of swallow
data obtained under SLN electrical stimulation conditions may
need to be re-examined.

While electrical SLN stimulation does trigger swallow, those
swallows are highly modified compared to those of a naturally
induced behavior. From a clinical perspective, stimulation of the
larynx is aberrant, as it would occur if food or liquid had entered
the airway. Thus, the depression of diaphragm activity and
increase in the upper airway muscle activation that we observed
during SLN stimulation may act as protective mechanisms that
would reduce negative pressure on the bolus, increase pharyngeal
clearance, and therefore decrease further aspiration risk. This is
important for interpretation of studies on swallow using reduced
animal preparations.

Limitations of the Experimental Design
The greatest limitation of the experimental design was the
use of anesthesia, and the consequent potential suppression of
airway reflexes. This was chosen because, in anesthetized animals,
continuous SLN stimulation inhibits breathing (Donnelly and
Haddad, 1986). Our choice of experimental preparation allowed
for a train of swallows to be produced without potential
interference from the breathing central pattern generator.
Although it is clear that conditional modulation of the swallow
motor pattern is possible in decorticate animals (Thexton
et al., 2007, 2009), the current results cannot be directly
extrapolated to swallow function in awake animals, because
anesthesia reduces cortical function. Additionally, we did not
direct record from any muscles which are innervated by
the hypoglossal motor nucleus, because the geniohyoid is
innervated via a cervical root. While we do see pre-swallow
oral behaviors in response to water infusion, we did not
observe such behaviors with electrical SLN stimulation, and
do not know how they would have influenced swallow under
those conditions.

CONCLUSION

Electrical stimulation of the SLN produces trains of swallows with
evidence of short-term facilitation of specific EMG amplitudes
and swallow duration. When compared to the fixed frequency
stimulus, stochastic stimulation increased the excitability of the
swallow pattern generator without changing overall current
delivered. SLN stimulation significantly depressed diaphragm
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and parasternal (inspiratory muscles) activity during swallow,
implicating involvement of spinal pathways.
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