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Stationary motorized cycling assisted by functional electrical stimulation (FES) is a popular
therapy for people with movement impairments. Maximizing volitional contributions from
the rider of the cycle can lead to long-term benefits like increased muscular strength and
cardiovascular endurance. This paper develops a combined motor and FES control
system that tasks the rider with maintaining their cadence near a target point using
their own volition, while assistance or resistance is applied gradually as their cadence
approaches the lower or upper boundary, respectively, of a user-defined safe range.
Safety-ensuring barrier functions are used to guarantee that the rider’s cadence is
constrained to the safe range, while minimal assistance is provided within the range to
maximize effort by the rider. FES stimulation is applied before electric motor assistance to
further increase power output from the rider. To account for uncertain dynamics, barrier
function methods are combined with robust control tools from Lyapunov theory to develop
controllers that guarantee safety in the worst-case. Because of the intermittent nature of FES
stimulation, the closed-loop system is modeled as a hybrid system to certify that the set of
states for which the cadence is in the safe range is asymptotically stable. The performance of
the developed control method is demonstrated experimentally on five participants. The
barrier function controller constrained the riders’ cadence in a range of 50 ± 5 RPM with an
average cadence standard deviation of 1.4 RPM for a protocol where cadence with minimal
variance was prioritized and used minimal assistance from the motor (4.1% of trial duration)
in a separate protocol where power output from the rider was prioritized.

Keywords: functional electrical stimulation (FES, ) cycling, barrier function, safety-critical, euler-Lagrange, control
design

1 INTRODUCTION

Stationary cycling assisted by functional electrical stimulation (FES) can lead to long-term benefits
for people with movement impairments due to neurological conditions such as stroke, spinal cord
injury, traumatic brain injury, cerebral palsy, multiple sclerosis, and others Johnston et al. (2008);
Ferrante et al. (2008); Hooker et al. (1992); Janssen et al. (2008); Trevisi et al. (2012). Individuals with
neurological conditions can exhibit varying degrees of muscle control. For people with little to no
volitional control, the FES cycling therapy must be supported by an electric motor, which provides
additional torque about the pedal crank to maintain a beneficial cadence, as in studies such as Cousin
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et al. (2020); Hooker et al. (1992); Bellman et al. (2017); Duenas
et al. (2020); Trevisi et al. (2012). When possible, electric motor
support should be minimized in lieu of torque produced by the
rider’s muscles via either FES or their own volition, which leads to
higher intensity training by increasing the rider’s heart rate and
oxygen uptake Hooker et al. (1992). Higher intensity training is a
key factor in attaining long-term outcomes like increased
muscular strength, cardiovascular endurance, bone mineral
density, and caloric consumption Ouellette et al. (2004);
MacKay-Lyons and Makrides (2002); Mohr et al. (1997). In the
rehabilitation literature outside of cycling, various assist-as-needed
approaches such as Asl et al. (2020); Dao and Yamamoto (2018);
Pehlivan et al. (2015); Ding et al. (2014) encourage volitional
contributions from the user. Relatively few works have
investigated FES- and motor-assisted cycling programs where the
primary objective is to encourage volitional contributions
Harrington et al. (2012); Rouse et al. (2020); Johnston and
Wainwright (2011). The objective of this work is to design
controllers for both the electric motor and FES stimulation that
facilitate volitional cycling by minimizing machine assistance while
ensuring that the rider’s cadence is constrained to a user-
defined range.

The kinematics of the rider’s legs during stationary cycling are
such that applying FES to their muscles produces non-negligible
torque only in certain regions of the crank cycle. To maximize
torque production, stimulation patterns often feature
discontinuous jumps triggered as a function of the crank angle
by discrete logic variables. The interaction of the resulting
continuous-time and discrete dynamics results in a hybrid
control system. Barrier functions, or control barrier functions
(CBF), can be used to design controllers for hybrid systems that
ensure safety by rendering sets of states either forward invariant
or asymptotically stable Ames et al. (2019); Maghenem and
Sanfelice (2021); Glotfelter et al. (2017). This technique builds
on ideas from the theory of control Lyapunov functions (CLF).
CLFs are used to enforce particular constraints on the control
input that result in a decrease in a Lyapunov function for states
outside of the safe set Freeman and Kokotovic (1996); Sanfelice
(2013). However, CLF-based approaches have typically not
provided constructive methods for designing the control input
at states in the safe set. Recent developments regarding CBFs have
filled this gap by providing a systematic approach for extending
the input constraints onto the safe set in a way that reduces the
control effort on the interior of the set Ames et al. (2016). A
popular approach for implementing CLF- or CBF-induced input
constraints is with pointwise optimal control laws which, for
certain classes of dynamics, take the form of quadratic programs
(QP). Compared to past assist-as-needed control schemes, which
have used methods such as deadzone functions Asl et al. (2020) or
impedance control Ding et al. (2014), barrier functions can
constrain the state within a broader class of safe sets.
Moreover, the cost function in the accompanying pointwise
optimal control law is customizable, leading to a range of
possible controllers. Our preliminary work in Isaly et al.
(2020) integrated zeroing CBFs with robust control tools from
Lyapunov theory to synthesize a QP for an uncertain,
continuous-time, motor-only cycling system. The controller in

Isaly et al. (2020) constrains the rider’s cadence within a user-
defined range while encouraging volitional pedaling by using
minimal motor control effort. However, the more complex case
where the rider is also stimulated by FES was not considered.

In this work, we extend the development of Isaly et al. (2020)
to account for the hybrid dynamics introduced by adding FES
stimulation. The resulting controller applies assistance based on
the rider’s performance. FES assistance is only applied when the
cadence cannot be maintained at a target value through volitional
effort alone. Similarly, assistance from the electric motor is
applied only when the combined FES and volitional efforts are
insufficient. The controller accommodates a broad range of
functional impairments and volitional ability by featuring
customizable parameters, including nominal control inputs
and tunable width of the safe range. Moreover, the rider’s
safety is assured because the electric motor constrains the
rider’s cadence to a uniformly globally asymptotically stable
set through a continuous feedback controller. The continuity
of the motor control law is an improvement upon the
breakthrough strategy in Rouse et al. (2020) for encouraging
volitional pedaling. In that work, no control effort was applied
within a user-defined region, while the electric motor and FES
were turned on discontinuously at the boundary of the region.
Outside the region, assistive control effort switched discretely
between FES and electric motor assistance to ensure that the
electric motor did not prevent FES from inducing power output
by the rider. In contrast, we decouple the motor and FES
controllers and use more sophisticated design tools to develop
a motor control law that is a continuous function of the cadence
tracking error. The result is more comfortable training for the
rider, while the staggered application of FES before motor effort
still allows power output from the rider to be prioritized.

Experimental trials were performed on five able-bodied
participants to demonstrate the effectiveness and versatility of
the developed control system. The barrier function controller
was shown to effectively constrain the cadence to a range of
50 ± 5 RPM for all but a negligible amount of time, and to
outperform the controller in Rouse et al. (2020) and uncontrolled
volitional pedaling for a protocol where minimal cadence variation
was prioritized. The barrier function controller had a lower
cadence standard deviation (Avg. 1.4 RPM) and constrained the
cadence to a smaller range relative to the comparison cases, but
generally produced more assistive torque from the motor than the
controller in Rouse et al. (2020). To show howmotor assistance can
be reduced to prioritize power output from the rider, an alternative
protocol was designed where the customizable parameters were
configured with a wider safe range and a nominal amount of
resistance from the motor. In the alternative trial, the motor was
producing assistive torque for only 4.1% of the entire trial duration.

2 DYNAMIC MODEL

2.1 Hybrid Systems
The development in this work is based on the hybrid systems
framework described in Goebel et al. (2012). A hybrid system
H � (C, F,D, G) with state x ∈ X ⊂ Rn is modeled by
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H :
_x ∈ F(x) x ∈ C
x+ ∈ G(x) x ∈ D.

{ (1)

When the state is in the flow set C ⊂ Rn, it is allowed to evolve
continuously according to the set-valued flow map F: Rn6Rn.
When the state is in the jump set D ⊂ Rn, it is allowed to change
discretely according to the jump map G: Rn6Rn. When x ∈ C ∩
D, either behavior is possible. The notion of a solution to H is
defined precisely in Goebel et al. (2012), Def. 2.6. Briefly, a
solution to H is a function (t, j)1ϕ(t, j) defined on a hybrid
time domain dom ϕ ⊂ R≥0 × N and is parameterized by the
ordinary time variable t ∈ R≥0 and the discrete jump variable
j ∈ N. The set-valued mappings F and G map points in Rn to
subsets of Rn so that, for example, the inclusion x+ ∈ G(x)
represents the fact that if a trajectory jumps from the state
ϕ(t, j), then its state ϕ(t, j + 1) at the next discrete time
instant is a point in the set G(ϕ(t, j)).

Remark 1. Previous results (cf. Rouse et al. (2020); Bellman
et al. (2017); Rouse et al. (2021)) have analyzed the dynamic
model in the subsequent section using switched-systems tools.
The decision to use a hybrid model here was motivated by the fact
that forward invariance via barrier functions is not well
characterized for switched systems, nor are many results
available regarding the stability of noncompact sets. Hybrid
systems can model broad classes of switched systems Goebel
et al. (2012, Section 2.4).

2.2 Open-Loop Dynamics
Analogous to Eq. 1, one can also consider hybrid systems with
inputs Sanfelice (2013). We use such a system to describe the
control design but present our stability analysis in terms of a
closed-loop system with the form in Eq. 1. The open-loop cycle-
rider system is modeled as a continuous-time system
Hu � (Cu, Fu). Subsequently, discrete dynamics will be
introduced due to the design of the controller. Adapting the
model from our previous work in Bellman et al. (2017) and Isaly
et al. (2020), the cycle’s Euler-Lagrange dynamics are modeled
using the flow map

_z ∈ z2
M−1 z1( ) τu(z, u) − τF(z)[ ][ ]bFu(z, u), (2)

and flow set CubR2 × U . In (2), the state is z ∈ R2, where z1
denotes the cycle’s measurable crank angle, and z2 is the
calculable angular velocity (equivalently, the rider’s cadence).
The system has control inputs1 ub(ue, uM), where ue ∈ R is
the current input to the cycle’s electric motor, and uM ∈ R6 is a
vector of the electrical stimulation intensity inputs um ∈ R, for
each muscle m ∈ Mb LQ, LG, LH, RQ, RG, RH{ }. The elements
of M indicate the quadriceps femoris (Q), gluteal (G), and
hamstring (H) muscle groups for the left and right legs,
respectively. The control inputs take values in the set
UbR × UM, where UMb[0, �u]6 ⊂ R6 indicates that the
muscle control inputs are bounded by the constant �u> 0 for

the rider’s safety and comfort. The continuously differentiable
function M: R→R>0 denotes the inertial forces from the cycle
and rider’s legs. The set-valued mapping τF: R26R defines the
dynamics of the system as

τF(z)bτb z2( ) + Vp(z)z2 + G z1( ) + P(z) + T d + T vol, (3)

where τb: R→R denotes the unknown torque due to viscous
damping in the cycle, and Vp: R

2 →R, G: R→R, and
P: R2 →R are the unknown centripetal-Coriolis, gravitational,
and passive viscoelastic tissue forces, respectively, applied by the
combined human-cycle system. The aforementioned functions
are continuous according to the dynamic models in Bellman et al.
(2017) and Idsø (2002). According to the model in Bellman et al.
(2017), the centripetal-Coriolis term is related to the mass and
cadence by Vp(z) � 1

2∇M(z1)z2. In Eq. 3, T vol ⊂ R and T d ⊂ R

are sets used to model all of the possible values of the rider’s
volitional effort and other unknown disturbances, respectively2.
The continuous function τu: R

2 × U→R describes the torque
produced by the control inputs and is defined as

τu(z, u)bceue + τFES z, uM( ),
where ce > 0 is the known electric motor control constant
relating input current to output torque. The torque generated
from FES inputs to the rider’s muscles τFES: R

2 × UM →R is
given by

τFES z, uM( )b ∑
m∈M

gm(z)um, (4)

where the continuous functions gm: R
2 →R denote the

uncertain control effectiveness of each muscle. For each
m ∈ M, let the closed set Qm ⊂ R denote the portion of the
crank cycle when a particular muscle m is stimulated, which is
selected based on a minimum threshold for the torque transfer
ratio of each muscle group. In particular, there exist kinematic
deadzones in the crank cycle where no muscle is able to produce
useful torque Cousin et al. (2020).

The following properties of the cycle-rider system in Eq. 2 are
derived from a detailed dynamic model, as discussed in Bellman
et al. (2017).

Property 1. The inertial term is upper- and lower-bounded as
c I ≤M(z1)≤ �cI for all z1 ∈ R, where c I, �cI > 0 are known
constants.

Property 2. The centripetal-Coriolis parameter is upper-
bounded as |Vp(z)|≤ cV|z2| for all z ∈ R2, where cV > 0 is a
known constant.

Property 3. The torque generated by gravity is upper-bounded
as |G(z1)|≤ cG for all z1 ∈ R, where cG > 0 is a known constant.

Property 4. The torque generated by the rider’s viscoelastic
tissues is upper-bounded as |P(z)|≤ cP1 + cP2|z2| for all z ∈ R2,
where cP1, cP2 > 0 are known constants.

Property 5. The torque due to viscous damping is upper-
bounded as |τb(z2)|≤ cb|z2| for all z2 ∈ R, where cb > 0 is a
known constant.

1For vectors x ∈ Rn , y ∈ Rm , (x, y)b[xT, yT]T. 2The addition of a point a ∈ R and a set B ⊂ R is defined as a + Bb a + b: b ∈ B{ }.
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Property 6. The torques generated by system disturbances are
bounded so that T d � [−cd, cd], where cd > 0 is a known constant.

Property 7. Due to physical limitations of the rider, the
volitional muscle torque is bounded so that T vol � [−cvol, cvol],
where cvol > 0 is a known constant.

Property 8. For each m ∈ M, the muscle control effectiveness
is upper-bounded so that |gm(z)|≤ �cm for all z ∈ R2, where �cm > 0
is a known constant.

Property 9. The set-valued mapping Fu: R
2 × U6R2 is outer

semicontinuous, locally bounded, and convex-valued. These
properties follow from continuity of the defining functions
and from Properties 6 and 7.

3 CONTROL DESIGN

Figure 1 shows a schematic of the staggered control regions for
the developed system. The volitional range is a region near the
setpoint z2d where the control inputs are zero, thereby forcing the
rider to pedal on their own volition (optionally, a nominal amount of
assistance or resistance can be provided based on the needs of the
rider). When the cadence is slower than z2d, FES assistance is
provided before assistance from the electric motor. When the
cadence is faster than the setpoint, only the electric motor is used
because creating resistive torquewith FES by stimulating antagonistic
muscles is undesirable. The rider or clinician can modify the amount
of control effort provided and the size of the controlled regions using
parameters adjusted for the specific individual.

3.1 Control Objective
To formalize the control objective, we define the tracking error e
as the deviation of the cadence state z2 from a constant setpoint
z2d > 0,3

ebz2 − z2d. (5)

The primary control objective is to guarantee a safe and
effective therapy by constraining the rider’s cadence to the safe
set Sb{z ∈ R2: eL ≤ e≤ eH}, where eL < 0 < eH are user-defined
constants. The FES control inputs attempt to constrain the rider’s
cadence to the secondary set SFESb{z ∈ R2: e≥ eFES}. Because
the FES inputs are only intermittently available and must be less
than the comfort threshold �u, the cadence may not remain within
SFES. However, this construction is useful for design purposes. To
ensure that FES stimulation is active before torque is added by the
electric motor, the design specifies that eL < eFES < 0.

The goal is to synthesize, in a systematic way, controllers that
render a given set of states uniformly globally asymptotically
stable (UGAS) while using the minimum required effort inside
the set of interest.4 Combining ideas from CLF theory with recent
developments regarding CBFs, this task is accomplished by using
a QP to enforce a constraint on the control input that is induced

by a candidate barrier function. The following lemma, presented
in a more generic form than in our preliminary work in Isaly et al.
(2020), gives conditions under which a QP-based control law with
a single constraint is feasible and locally Lipschitz continuous.
The closed-form solution of the QP in the absence of a nominal
controller (but including the case of multiple control inputs) has
also been presented in Freeman and Kokotovic (1996, Section
4.2.2) and was developed in detail in Xu et al. (2015), Thm. 8. In
those works, the feasibility condition was guaranteed by assuming
the existence of a CLF or CBF, respectively. Because the addition
of a nominal controller is a minor extension of the available
literature, we do not present a proof of the result. Lemma 1
applies to the control laws developed in the subsequent sections.

Lemma 1. Let the functions a: Rn →R, b: Rn →R, and
unom: R

n →R be locally Lipschitz on Rn and satisfy the
following feasibility condition:

a(z) � 00b(z)< 0. (6)

Then the set-valued mapping �U: Rn6R defined by
�U(z)b u ∈ R: a(z)u + b(z)≤ 0{ } is non-empty for all z ∈ Rn

and the controller

up(z)b argmin
u∈R

u − unom(z)| |2
s.t. a(z)u + b(z)≤ 0

(7)

is locally Lipschitz on Rn, and, for any point zp such that
a(zp) � 0, there exists a neighborhood N (zp) such that u*(z) �
unom(z) for all z ∈ N (z*). Furthermore, the controller in Eq. 7
has a closed-form solution given by

up(z) � −b(z)
a(z) a(z)unom(z) + b(z)> 0

unom(z) otherwise.

⎧⎪⎪⎨⎪⎪⎩ (8)

FIGURE 1 | Illustration of the regions of applied control effort as a
function of cadence. No control effort is applied in the volitional range near the
setpoint z2d. The electric motor control input increases when the cadence
approaches the boundaries defined by eH and eL, and the FES control
signal does the same near eFES. The size of each region is adjustable. The
cadence range between eH and eL is rendered asymptotically stable by the
developed control system.

3Using the transformation in Eq. 5, we frequently use e in place of the cadence
state z2.
4A set that is UGAS is also forward invariant, meaning that trajectories starting
inside the set remain in the set for all of time.
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Note that there is no division by zero in Eq. 8 since Eq. 6
implies that u*(z) � unom(z) when a(z) � 0. Also note that the
claim regarding the neighborhood about points for which a(z*) �
0 does not hold in general if the inequality in Eq. 6 is changed to
b(z)≤ 0.

3.2 Motor Control Design
In this section, the electric motor control input is designed to
ensure that the safe set S � {z ∈ R2: eL ≤ e≤ eH} is UGAS for a
given z2d > 0. Our development is based on the design procedure
described in Isaly et al. (2020) and the theoretical results for
hybrid systems in Maghenem and Sanfelice (2021) and Goebel
et al. (2012), where Maghenem and Sanfelice (2021) considers
barrier functions specifically. The safe set S is encoded by the
barrier function candidate Be: R

2 →R defined as

Be(z)b1
2
M z1( ) e2

β(e) − 1( ) (9)

where

β(e)b e2L e≤ 0
e2H e> 0.{

Equivalent to the original definition, we have
S � {z ∈ R2: Be(z)≤ 0}. The barrier function is designed to be
continuously differentiable while encoding the potentially
asymmetric (about e � 0) boundary of the set S.

While barrier functions are typically associated with forward
invariance, they are naturally extensible to enforcing the stronger
property of asymptotic stability. Asymptotic stability is beneficial
for real-world applications since it guarantees robustness to
perturbations from the safe set. For continuous-time systems,
the stronger asymptotic stability condition is embodied in the
definition of a zeroing CBF (ZCBF) Xu et al. (2015). Inspired by
the ZCBF approach in our preliminary work in Isaly et al. (2020)
and the work regarding CLFs for hybrid systems in Sanfelice
(2013), we constrain the control input according to the so-called
regulation map ~U: R26U defined as

~U(z)b u ∈ U: 〈∇Be(z), f〉≤ − ce(e), ∀f ∈ Fu(z, u){ }, (10)

where

ce(e)bkb1
e2

β(e) − 1( ), (11)

and kb1 > 0 is a control gain. In the stability analysis of Section 4,
we show that selecting a continuous controller from ~U ensures that
Be acts as a Lyapunov function for the closed-loop dynamics
outside the set S. In particular, the condition in Eq. 10 will be
used to apply Proposition 3.27 of Goebel et al. (2012) to conclude
that S, redefined to include some additional states, is UGAS.

Remark 2. The definition of a ZCBF requires that
ce(z)bα(Be(z)) for an extended class K function a Xu et al.
(2015). However, requiring dependence of γe on the barrier
function candidate can be restrictive, and is not necessary to
obtain theoretical guarantees. Because the value of the functionM
in Be is unknown and cannot be implemented in a control law, we
use γe instead of the typical ZCBF-based selection when defining

~U in Eq. 10. For both ZCBFs and the choice of γe in Eq. 11, the
mapping in Eq. 10 enforces asymptotically stabilizing conditions
on the barrier function at states outside the safe set.

The regulation map in Eq. 10 is not directly useful for design
purposes because uncertainty in the dynamics prevents
computation of the inequality (i.e., constraint) used to
define ~U . In the rest of this section, we develop a new
regulation map based on a computable constraint that is
implementable in a QP like Eq. 7. The resulting QP-based
controller is a locally Lipschitz selection of ~U . To compensate
for the uncertainty introduced in Eq. 10 by Fu, we employ
Lyapunov-based robust control techniques to develop a worst-
case upper bound of the inner product in Eq. 10. For any
(z, u) ∈ Cu and f ∈ Fu(z, u),

〈∇Be(z), f〉 ∈
1
2
∇M z1( )z2 e2

β(e) − 1( )
+ 1
β(e) e τu(z, u) − τF(z)( ).

(12)

The product 1
β(e) eτF(z) contains the term

1
β(e) eVp(z)z2 � 1

β(e) e(Vp(z)e + Vp(z)z2d), leading to a
cancellation with the term 1

2∇M(z1)z2( e2

β(e)) since
1
2∇M(z1)z2 � Vp(z). Using Properties 2-7, it can then be
shown that the unknown terms in Eq. 12 are upper bounded,
for some constants c1 − c3, as

〈∇Be(z), f〉≤ Ce(e) + 1
β(e) eτu(z, u), (13)

for each (z, u) ∈ Cu and each f ∈ Fu(z, u), where
Ce(e)bc1 + c2|e| + c3e

2.

In Eq. 13, the function τu depends on the motor control input ue
and the muscle control inputs uM. Because the value of the
subsequently designed muscle control input will jump at discrete
instances, it is desirable to decouple the motor input from the muscle
input to ensure the continuity of the motor controller. A continuous
motor controller will be more predictable and comfortable for the
rider. Using Property 8, there exists a constant cM > 0 such that

1
β(e) eτu(z, u) �

1
β(e) e ceue + τFES z, uM( )( )

≤
ce

β(e) eue + cM|e|,
(14)

for all z ∈ R2, ue ∈ R, and uM ∈ UM. Using the definition ofUM in
Section 2, Eq. 14 applies to any muscle controller for which the
inputs are bounded by the positive constant �u. One can then define

Ke(e)bk1 + k2|e| + k3e
2. (15)

Selecting5

5While the gain conditions in Eq. 16will be needed to guarantee that the cadence is
constrained to the set S, uniform global asymptotic stability ensures that the
cadence remains nearby S even if the conditions do not hold (see Section 5.4).
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k1 ≥ c1, k2 ≥ c2 + cM, k3 ≥ c3, (16)

implies that

Ce(e) + 1
β(e) eτu(z, u)≤Ke(e) + ce

β(e) eue (17)

for all z ∈ R2, ue ∈ R, and uM ∈ UM. Since Eq. 17 is an upper
bound for Eq. 13, we define a new regulation map �Ue: R6R as

�Ue(e)b ue ∈ R: Ke(e) + ce
β(e) eue ≤ − ce(e){ }. (18)

The following result summarizes the preceding development
and explains the utility of �Ue.

Proposition 1. Assume k1, k2, and k3 satisfy the gain conditions
in Eq. 16 and z2d > 0. Then, for any z ∈ R2 and uM ∈ UM, if
ue ∈ �Ue(e), it follows that (ue, uM) ∈ ~U(z).

The constraint used to define �Ue in Eq. 18 can be written in the
generic form of Lemma 1. Additionally, since the terms in Eq. 18
are no longer uncertain, the constraint can be enforced with the
following implementable QP:

up
e(e) b arg min

ue∈R
ue − unom

e (e)∣∣∣∣ ∣∣∣∣2
s.t. Ke(e) + ce

β(e) eue ≤ − ce(e),
(19)

where unome : R→R is any locally Lipschitz nominal controller.
According to Lemma 1, with b(z) � Ke(e) + ce(e), the controller
is feasible if e � 0 implies that

Ke(0) + ce(0) � k1 − kb1 < 0. (20)

Since the parameters in Eq. 20 are user-selected, they can be
designed to ensure the inequality holds. Given this gain
condition, the controller has the properties described in
Lemma 1, in particular, it is continuous. The closed-form
solution to Eq. 19 can be developed from Eq. 8. The
controller is implementable in either form but the closed-form
solution is computationally faster and does not require an
optimization package. Note that the piecewise linear function
e 1(ce/β(e))e is locally Lipschitz, from which we derive local
Lipschitz continuity of the controller.

Remark 3. During the experiments in Section 5, we
investigated constant nominal controllers unome bu0 for some
u0 ∈ R. When u0 � 0, the controller is a minimum norm
controller and the motor is off whenever possible while still
ensuring safety. When the rider requires additional assistance,
selecting a positive u0 leads to the motor being biased to assist,
while a negative u0 leads to additional resistance and a more
challenging training program. However, there is no theoretical
obstacle to using a more complex nominal controller (e.g., one
that tracks power).

3.3 Functional Electrical Stimulation Design
To describe the FES control input, we define a concatenated state
vector xb(z, σM, τ) ∈ X , where σM ∈ 0, 1{ }6 is a vector of
switching signals σm ∈ 0, 1{ } defined for each muscle m ∈ M,
τ ∈ R is a timer variable, and XbR2 × 0, 1{ }6 × R is the state

space. The stimulation input to the rider’s muscle groups
upM: X →R6 is defined for each muscle as6

up
m(x)bsat+�u σmu

p
FES(e)( ), (21)

where upFES: R→R will be defined subsequently. The switching
signals are updated at jumps according to the rule

σ+m � 1 z1 ∈ Qm

0 z1 ∉ Qm,
{ (22)

whereQm was defined in Section 2. The update rule specifies that
the rider’s muscles are stimulated in regions where they are
able to produce positive torque. The rule for σm and the
timer variable τ will be used to define a hybrid system in
Section 4.

As discussed in Section 3.1, it is generally not possible to
maintain the cadence in the set SFES � {z ∈ R2: e≥ eFES} because
the stimulation input upm is limited in magnitude and only
intermittently available. The function upFES in Eq. 21
represents a selection of the input that would render the set
SFES asymptotically stable in the absence of these obstacles (and
subject to some gain conditions). The development of upFES is very
similar to the one in Section 3.2 and is therefore omitted to avoid
redundancy. Moreover, we do not make claims in the
forthcoming stability analysis regarding SFES. The FES input is
defined by the following QP:

up
FES(e) b arg min

uFES∈R
uFES − unom

FES(e)
∣∣∣∣ ∣∣∣∣

s.t. KFES(e) + 1
β2(e)

euFES ≤ − cFES(e).
(23)

where unomFES : R→ R is any locally Lipschitz nominal controller,

KFES(e)bk4 + k5|e| + k6e
2,

cFES(e)bkb2
e2

β2(e)
− 1( ),

and

β2(e)b e2FES e≤ 0
e2H e> 0.{

When e � 0, the feasibility condition (6) in Lemma 1 requires that

KFES(0) + cFES(0) � k4 − kb2 < 0, (24)

under which the function upFES has the properties described in the
lemma. Similar to the previous section, the parameters in Eq. 24
are user-selected and can be designed to ensure the
inequality holds.

When the nominal controller in Eq. 23 is set to unomFESb0, then
from the closed-form solution in Eq. 8 it can be determined that
upFES(e)≤ 0 for all e ≥ 0. In this case, because of the use of the
saturation function in Eq. 21, it follows that u*m(x) � 0 for all
x ∈ X such that e ≥ 0. The inclusion of a nominal controller in the

6The positive saturation function sat+�u : R→R is defined as sat+�u(u) � 0 if u < 0,
sat+�u(u) � u if u ∈ [0, �u], and sat+�u(u) � �u if u> �u.

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 7429866

Isaly et al. Encouraging Pedaling with Barrier Functions

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


QP defining u*FES gives the operator flexibility to provide
stimulation at points where e ≥ 0. When using a nominal
controller with unomFES(e)> 0 for e ≥ 0, FES stimulation
produces torque to increase the cadence above the setpoint
z2d. However, it is always the case that u*FES(e)→ 0 as e→ eH. By
combining nominal assistance from FES with nominal
resistance from the electric motor, a more intense training
program can be designed where the rider must work against
resistive torque from the electric motor to stay near the setpoint.
We provide experimental results for a higher intensity
configuration of the control system in Section 5.

4 STABILITY ANALYSIS

We model the closed-loop system as a hybrid system H �
(C, F,D,G) with state x � (z, σM, τ) ∈ X , where the state
space X was defined in Section 3.3. The hybrid system will
periodically update the muscle switching signals σm according
to the rule in Eq. 22. The timer variable τ increases at a
constant rate until reaching a dwell-time τD > 0, at which
point a jump occurs and each signal in σM is updated.
Governing jumps by a dwell-time prevents multiple jumps
from occurring in the same time instant, and models a
computational implementation of the switching signals,
where the values of the logic variables would be updated
periodically at a fixed sampling frequency. In practice, the
dwell-time τD will be the sampling frequency.

The hybrid system H is defined as follows. The flow map
F: X6X is

_z
_σM

_τ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ∈ Fu z, up(x)( )
0
1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦bF(x),

where up(x)b(upe(e), upM(x)) and Fu is defined in Eq. 2. The
flow set is

Cb x ∈ X : τ ∈ 0, τD[ ]{ }.
Jumps occur when the timer state τ grows to τD,

Db x ∈ X : τ � τD{ }.
The jump map G: X6X is defined component-wise as

G(x)b(z, Gσ(x), 0), where the state z does not change at
jumps (z+ � z), the timer τ resets to zero at jumps (τ+ � 0),
and Gσ : X6 0, 1{ }6 is the outer semicontinuous Krasovskii
regularization of the map in Eq. 22 Goebel et al. (2012), Def.
4.13. For each m ∈ M, the corresponding component of Gσ is
equal to

Gσm(x) �
1 z1 ∈ Qm

0, 1{ } z1 ∈ zQm

0 otherwise.

⎧⎪⎨⎪⎩ (25)

The set-valued case in Eq. 25 indicates that if τ reaches τD
when the state z1 is precisely on the boundary ofQm, the signal σm
may or may not jump. Performing such a regularization leads to

some robustness properties due to the fact thatH is a well-posed
hybrid system Goebel et al. (2012, Ch. 6).

Remark 4. The gain conditions in Eqs. 20, 24must be satisfied
because they lead to the feasibility of the QP-based controllers.
The conditions are restated here for emphasis:

k1 < kb1, k4 < kb2.

Theorem 1. Consider the closed-loop cycle-rider system H.
Assume the control gains satisfy the conditions in Eqs. 16, 20, 24,
and z2d > 0. Then the safe set ~Sb x ∈ C ∪ D: eL ≤ e≤ eH{ } is
UGAS for H. Additionally, H is a well-posed hybrid system.

Proof. Since Be in Eq. 9 is such that
~S � x ∈ C ∪ D: Be(z)≤ 0{ }, the function Be is a valid barrier
function candidateMaghenem and Sanfelice (2021), Def. 3. Using
Lemma 1, the gain conditions in Eqs. 20, 24 guarantee that the
controllers in Eqs. 19, 21, respectively, are feasible. By design,
u*e(e) ∈ �Ue(e) for all e ∈ R and u*m(x) ∈ UM for all x ∈ X .
Proposition 1 then shows that u*(x) ∈ ~U(z) for all x ∈ X . It
follows from the definition of ~U in Eq. 10 that

〈∇Be(z), f〉≤ − ce(e), (26)

for all x ∈ C and each f ∈ F(x). Moreover, the jump map is such
that

Be z+( ) � Be(z), (27)

for all x ∈ D and each (z+, σ+M, τ+) ∈ G(x). The barrier function
does not decrease at jumps, but there is sufficient flow time to
guarantee an overall decrease along solutions. More specifically,
the dwell-time τD ensures that for any solution ϕ to H, if
(t, j) ∈ dom ϕ, then t≥ τD(j − 1). Thus, for any T ≥ 0 and
(t, j) ∈ dom ϕ, if t + j ≥ T then t≥ (τD/(1 + τD))(T − 1). We
use this bound on the flow time to apply Proposition 3.27 of
Goebel et al. (2012).

The conditions in Eqs. 26, 27, and the fact that G(x) ⊂ C ∪ D
for all x ∈ D allow us to apply Theorem 1 of Maghenem and
Sanfelice (2021) to conclude that the set ~S is forward pre-
invariant for H. Furthermore, the barrier function Be is a
Lyapunov function for the restricted hybrid system Hr �
(Cr, F,Dr, G) with CrbC ∩ I and DrbD ∩ I , where
Ib x ∈ X : Be(z)≥ 0{ }, which is the restriction of H to the
zero superlevel set of Be. It can be shown that there exists7 a
continuous, positive definite function ρ: R≥0 →R≥0 such that
ρ(|x| ~S)≤ ce(e) for all x ∈ Cr. Using Property 1, there are classK∞
functions8 α1 and α2 such that α1(|x| ~S)≤B(z)≤ α2(|x| ~S) for all
x ∈ Cr ∪ Dr ∪ G(Dr). Thus, Proposition 3.27 of Goebel et al.
(2012) can be applied to conclude that ~S is uniformly globally
pre-asymptotically stable (UGpAS) for Hr Goebel et al. (2012),
Def. 3.6. That ~S is UGpAS for the unrestricted system H follows
from forward pre-invariance of ~S for H, since for any solution ϕ
to H, if ϕ(t, j) ∈ ~S then |ϕ(t′, j′)| ~S � 0 for all (t′, j′) ∈ dom ϕ

7While more general techniques can be developed, it is sufficient here to define
ρ(s)bce(s + eH) if eH ≥ |eL| or ρ(s)bce(eL − s) if eH < |eL|.
8A function α: R≥0 →R≥0 is a class K∞ function if a is zero at zero, continuous,
strictly increasing, and unbounded.
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with t′ ≥ t, j′ ≥ j. Therefore, solutions toHr that terminate on the
boundary of ~S can be extended as solutions toH that remain in ~S.

To conclude that ~S is UGAS9, it remains to show that each
maximal solution to H is complete. Towards this end, we invoke
Proposition 6.10 of Goebel et al. (2012). We first note that the
dynamics satisfy the hybrid basic conditions Goebel et al. (2012),
Asm. 6.5 because C and D are closed; G is outer semicontinuous
and locally bounded; and F is outer semicontinuous, locally
bounded, and convex-valued by Property 9 and Lemma 3.2 in
Sanfelice (2013). It follows that H is a well-posed hybrid system
Goebel et al. (2012), Thm. 6.30. Next, every point x ∈ zC\D has
the component τ � 0. The fact that _τ � 1 implies that
F(x) ∩ TC(x)≠∅ at any x ∈ zC\D, where TC(x) is the
tangent cone to C at x. It is then straightforward to conclude
that the condition (VC) in Proposition 6.10 holds for all x ∈ C\D.
Moreover, G(D) ⊂ C ∪ D. Thus, Proposition 6.10 shows that a
maximal solution is either complete or escapes in finite time by
flowing.

To eliminate the possibility that maximal solutions escape in
finite time by flowing, we first let ϕ be a solution to H. From the
definition of UGpAS in Definition 3.6 of Goebel et al. (2012), the
distance of ϕ from ~S is bounded. From the definition of ~S, the
component of ϕ corresponding to the state e is bounded. Using
this information, we conclude from continuity of e 1 u*e(e) and
the use of the saturation function in the definition of u*M in Eq. 21
that for the concatenated controller u*, the set u*(rge ϕ) is
bounded, where rge ϕb{ϕ(t, j): (t, j) ∈ dom ϕ}. Then, from
boundedness of the e component of ϕ and Properties 2-7, it
can be shown that the set F(rge ϕ) is bounded. It follows that
solutions do not terminate in finite time by flowing (cf.
Kamalapurkar et al. (2020)). Thus, each maximal solution to
H is complete, and ~S is UGAS for H. ■

5 EXPERIMENTAL RESULTS

The developed barrier function controller was tested on five
participants and compared against uncontrolled volitional
pedaling and the 3-Mode (3M) controller developed in Rouse
et al. (2020), Section 3. As described in Section 1, the main idea
behind the 3M controller is to create a region near the setpoint z2d
where no assistance is provided, with discontinuous control effort
being applied on the boundary of the region. In contrast to the
barrier function controller, the electric motor controller for the
3M controller is coupled with FES stimulation via the angular
position state z1, so that the motor is inactive whenever FES is
active, and vice versa.

The barrier function controller can be configured for various
purposes based on the needs of the rider. Generally, there is a
trade-off where smaller user-defined cadence ranges lead to
greater applied control effort. Protocol A was designed to
investigate whether the controller can reduce the variance in

the rider’s cadence by constraining their cadence within a small
range. Such a trial provides a point of comparison with the 3M
controller and uncontrolled volitional pedaling and generates
data where the controller is more active. Protocol B was designed
to show how assistance from the motor can be reduced by
selecting a wider safe range, thereby encouraging more
volitional contributions from the rider. In fact, Protocol B
featured a nominal amount of resistance from the motor,
making the program more challenging and requiring
additional power output from the rider.

Due to COVID-19 related difficulties in scheduling
participants with neurological conditions, the trials for this
demonstration were done with able-bodied subjects. Each
participant gave written informed consent approved by the
University of Florida Institutional Review Board
(IRB201600881). Participants 1-3 were male, participants 4
and 5 were female, and all ranged in age from 21–29 years old.

5.1 Testbed
The experimental testbed consisted of a stationary recumbent
tricycle (TerraTrike Rover) with a 250W, 24 V motor (Unite
Motor Co.) coupled to the drive chain as described in Bellman
et al. (2017), Section 5.1. To measure position and cadence, an
optical encoder with an angular resolution of 20,000 pulses per
revolution (US Digital H1) was mounted to the crank using spur
gears. The motor was actuated using an Advanced Motion
Controls10 motor driver and current-controlled power supply.
Stimulation was delivered to the rider’s quadricep, hamstring, and
gluteal muscle groups via self-adhesive electrodes provided
compliments of Axelgaard Manufacturing Co., Ltd. A current-
controlled stimulator (Hasomed Rehastim) delivered symmetric,
rectangular, and bi-phasic pulses at fixed amplitude (90 mA,
80 mA, and 70 mA for the quadriceps, hamstrings, and
gluteals, respectively) and frequency (60 Hz), while the pulse
width was used as the control input. A desktop computer
running real-time control software (QUARC integrated with
Simulink) was used to interface the controllers and hardware
through a data acquisition board (Quanser QPIDe) with a
sampling rate of 1,000 Hz. For additional safety, an emergency
stop switch was mounted on the cycle to allow the participant to
end the experiment if required.

5.2 Procedure
The primary testing procedure (Protocol A) consisted of 180-s
tests for each of the three configurations (barrier function, 3M,
and volition-only) under consideration. The volitional pedaling
trial was always first, followed by a random selection of either the
barrier function or 3M controller. The riders were asked to track a
setpoint of z2d � 50 RPM. The safe set boundary for the barrier
function controller was encoded by eL � − 5 RPM and eH � 5
RPM, while eFES � − 3 RPM. The inactive region for the 3M
controller was 48–52 RPM, which is comparable to the range
50–55 RPM that was used for the experiments in Rouse et al.

9A setA is UGAS for a hybrid systemH if it is UGpAS and every maximal solution
to the system is complete, meaning the solution is defined on an unbounded hybrid
time domain.

10Advanced Motion Controls supported the development of the testbed by
providing discounts on their branded items.
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(2020). The rider was shown a live plot of their cadence featuring
a visible indication of the setpoint. Due to differences between the
barrier function and 3M controllers, participants were not shown
the boundaries of the safe set11.

The 180 s tests started with a 20 s ramp-up phase where the rider
sat passively while the motor brought their cadence to the setpoint.
To ensure that the presented data represented steady-state operation,
the ramp-up and an additional 20 s after it was excluded from each
dataset in post-processing. For each configuration, there was a
separate warm-up run before the recorded session so the rider
could become accustomed to the controller.

Measurements of the position of the rider’s legs with respect to
the cycle were used to determine the regions of effective torque
transfer Qm for each muscle (see Bellman et al. (2017), Section
5.2) for more details). The cycle was initially operated at 50
RPM and open-loop stimulation was applied to one muscle
group at a time to determine the comfort limit �u for each
muscle. The FES inputs are scaled by the comfort threshold in
addition to being saturated12. The nominal controllers were
unome � unomFES � 0. The control gains were adjusted by plotting the
control inputs as a function of the cadence error, which
produced a visualization of the regions of applied control
effort. Small adjustments to the gains were made for each
participant based on their preferences during the warm-up
run, which is a cause for variation in the data between
participants. Some detailed discussion about the effect of the
barrier function controller gains on performance is provided in
Isaly et al. (2020) (see Remark 1 and Section 5.4).

Additional trials were conducted to highlight unique aspects of
the barrier function controller, which were performed with only
one participant. Protocol B was designed to prioritize power
output from the rider over cadence tracking. For this alternative
trial, the width of the safe range was larger, with eL � − 12 RPM,
eH � 10 RPM, and eFES � − 6 RPM. Because the rider (Participant
#2) was able-bodied, we chose to make the program more
challenging by adding nominal controllers with unome < 0 and
unomFES > 0, which means that near the setpoint the electric
motor produced resistive torque while FES provided
assistance. The boundaries eL and eH were displayed on-screen
for this trial. In Protocol C, Participant #1 was asked to provide no
volitional effort for both the 3M and barrier function controllers
(Figure 4). Because of problems with the 3M controller for this
trial, we did not proceed with testing the no-volition
configuration on other participants.

5.3 Results
Table 1 shows relevant statistics for the three configurations tested
for Protocol A, including the average and standard deviation of the

cadence, percentage of the trial duration for which FES was actively
stimulating, and time spent outside of the safe setS. Two integrals of
the electric motor input are given to distinguish resistive torque, for
which the rider must pedal harder to compensate, and assistive
torque, which implies work done by themotor and not the rider. The
barrier function controller produced the lowest standard deviation in
cadence for each participant and led to greater FES usage, but
generally used more assistive torque from the motor than the 3M
controller. The 3M controller produced less assistive torque because
the electricmotor was off in regions of the crank cycle where FESwas
active. The discrete switching between motor and FES, along with
switching on the boundary of the inactive zone, caused numerous
discontinuities in the 3Mmotor controller;Table 1 shows an average
of 493 switches per trial. For all participants, the riders’ cadence took
values in the range 40.7–56.1 RPM for the 3M controller, 45.4–55.3
RPM for the barrier function controller, and 40.5–59.2 RPM for
uncontrolled pedaling. The barrier function controller constrained
each rider’s cadence to the user-defined range of 45–55 RPM for all
but a negligible amount of time; an average of six sampled data
points or approximately 0.004% of the trial duration. Segments of the
trials for three randomly selected participants are shown in Figure 2.
A zoomed view featuring the FES stimulation input for a single
participant is shown in Figure 3.

Figure 4 shows the trials using Protocol C, where Participant
#1 provided no volitional effort. The barrier function controller
was still able to keep the rider’s cadence within the safe set, while
the 3M controller caused large oscillations; the mean ± SD
cadence for the 3M controller was 43.74 ± 4.94 RPM. The
cadence dropped as low as 31.54 RPM during the 3M trial
because the electric motor was inactive in the shaded regions
of Figure 4. When the motor was next switched on, it
compensated using control action with a maximum magnitude
of 17.74 A, which was relatively large compared to a maximum of
8.13 A for the 3M controller during the Protocol A trials.

The results for Protocol B, where there were nonzero nominal
controllers and a wider safe range, are displayed in Figure 5 and
Table 2. There was high utilization of the electric motor to produce
resistive torque, but low assistive torque production. The assistive
torque was smaller than the Protocol A average and, in particular,
was smaller than Participant #2’s results. The resistive torque was
large and FES wasmore active for Protocol B due to the design of the
nominal controllers. The electric motor deviated from its nominal
value for only 7.7% of the trial duration and was providing assistance
for 4.1% of the trial. The cadence standard deviation was higher than
uncontrolled volitional pedaling, which was most likely because the
control inputs were actively pushing the rider away from the
setpoint. The assistive torque from the barrier function controller
in Protocol B was comparable to the 3M controller in the Protocol A
trials.

5.4 Discussion
The results for Protocol A demonstrate that the barrier function
controller can assist a rider in tracking the cadence setpoint while
constraining their cadence within a user-defined range. Figure 3
shows that the control inputs ramp up before the cadence reaches the
boundaries defined by eH, eL, and eFES, yet are inactive when the
cadence is near the setpoint. Such a ramp-up is demonstrative of

11In the 3M controller, the user defines a region where no control is applied. An
asymptotically stable region will be induced by the selection of the control gains,
but it is not possible to compute this region explicitly. In the barrier function
controller, the user defines the safe set boundary, while a computable region of no-
control is induced by the selection of the control gains, and guaranteed to exist by
Lemma 1.
12Practical improvements like muscle-dependent control gains are not included in
the theoretical development for simplicity.
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how barrier functionmethods can ensure a gradual transition from a
nominal controller, which should be active on the interior of the safe
set, to an invariance-ensuring controller on the boundary of the safe
set. For Protocol A, the width of the nominal control range was fairly
small, while the width was increased for Protocol B.

In some situations, increasing the training intensity for the rider
will be preferred over improved cadence tracking. The relevant
statistics are the assistive and resistive torques produced by the
electric motor. Higher assistive torque indicates that less power is
being produced by the rider. The barrier function controller is
versatile and can be tuned to provide more or less interference

from the control inputs. Figure 5 shows a trial using Protocol B
where power output from the rider was prioritized by allowing larger
cadence errors. The system’s operator can allow larger cadence
errors by selecting a wider safe range, which also facilitates the
design of a wider nominal control range. The use of nominal
controllers for Protocol B intensified the training by providing
more FES stimulation and resistance from the motor. The
control inputs were at their nominal values for a significant
portion of the experiment, validating that a wider safe range
leads to less modification of the nominal inputs. The nominal
inputs can alternatively be designed so there is less resistance
from the motor or less control input overall. The fact that the
assistive torque from the barrier function controller was comparable
to the 3M controller suggests that staggering FES assistance before
motor assistance, as in the barrier function controller, is a viable
alternative to discrete switching between FES and motor control, as
in the 3M controller.

A continuous motor controller is more comfortable for the
rider. Continuity is the primary difference between the barrier
function and 3M controller. The 3M controller is discontinuous
whenever the cadence crosses the boundary of the inactive zone,
or the angular position crosses the boundary of the FES
stimulation regions Qm. The resulting large number of
switches for the 3M motor controller is quantified in Table 1.
A particular advantage of the motor being active in the Qm

regions is that the barrier function controller is effective even
when the rider produces little or no volitional effort, as shown in
the trials using Protocol C (Figure 4). The 3M controller caused
large oscillations in the rider’s cadence during Protocol C due to
the discrete switching between FES and motor control. Since FES
cannot always produce enough torque on its own, the cadence
dropped in the FES stimulation regions, which was then met with
large control effort from the motor upon exiting the region.

TABLE 1 | Protocol A: Cycling metrics during steady-state operation (140 second trial).

Participant number

Controller Metric Average 1 2 3 4 5
Barrier Function Avg. Cad. [RPM] 49.97 49.82 49.59 50.85 49.31 50.26

Cad. SD [RPM] 1.38 1.37 1.50 1.54 1.27 1.25
Min/Max Cad. [RPM] 46.2/54.7 46.6/54.2 45.7/54.0 46.5/55.3 45.4/55.1 46.9/54.2

∫ (upe)+ dt (Assistive Torque) [A·s]a 24.82 18.64 15.83 2.79 67.72 19.12

∫ (upe)− dt (Resistive Torque) [A·s]a -20.84 -10.25 -3.93 -33.39 -13.63 -42.99

FES Usage [% trial duration]b 27.33 39.34 33.61 15.77 31.77 16.18
Time Outside S [s]c 0.006 0 0 0.02 0.01 0

3-Mode Avg. Cad. [RPM] 49.66 49.73 48.87 50.79 48.94 49.98
Cad. SD [RPM] 1.83 1.57 1.89 1.62 2.21 1.87
Min/Max Cad. [RPM] 43.2/55.1 44.6/55.5 40.7/53.3 46.3/55.1 40.7/56.1 43.9/55.6

∫ u+e dt (Assistive Torque) [A·s]a 5.87 1.73 14.4 0.22 10.49 2.52

∫ u−e dt (Resistive Torque) [A·s]a -20.32 -8.72 -3.41 -47.39 -16.98 -25.13

FES Usage [% trial duration]b 17.04 12.16 23.42 3.03 31.56 15.05
Num. Motor Switchesd 493 335 414 530 636 549

Volitional Avg. Cad. [RPM] 49.91 49.62 49.13 49.82 50.87 50.11
Cad. SD [RPM] 2.13 2.13 1.81 1.76 2.72 2.21
Min/Max Cad. [RPM] 42.0/56.0 42.4/55.2 40.5/54.8 43.3/54.3 42.0/59.2 41.6/56.6

aIndicates the postive or negative component of the integral, e.g., ∫ u+e dtb∫tf
t0
max ue(z(t)),0{ } dt.

bQuantifies the percentage of the trial duration that FES was active at non-negligible pulse-width values greater than 10 μs.
cComputed as the number of recorded cadence values outside the set multiplied by the sampling time of 0.001 s.
dQuantifies the number of discontinuities in the motor control signal as a function of time.

FIGURE 2 | Cadence and motor control input for 30-s segments of the
trials using Protocol A. Random selection was used to choose which
participants and time periods were plotted. The time axis is offset to zero for
readability. The dashed orange line in the barrier function cadence plot
indicates the boundary of the safe set S, which was not meaningful for the
other two configurations.
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FIGURE 3 | Zoomed view of a 5-s time period during a trial using Protocol A showing the cadence, motor control input, and stimulation pulse-width (PW) for
Participant 5. Random selection was used to choose which participant and time period were plotted. The time axis is offset to zero for readability. A pulse-width
feedforward term of 10 μs was used to facilitate stimulation. The stimulation does not significantly affect the participant at or below 10 μs.

FIGURE 4 |Cadence from a trial using Protocol C, where Participant #1 was asked to provide no volitional effort. The 3M controller was problematic in this scenario
due to switching between FES and motor control. The shaded red regions in the 3-Mode plot correspond to times when the electric motor was switched off.
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There were some small deviations from the safe set because the
asymptotic stability of S is contingent on the selection of control
gains, which must be large enough to compensate for the rider’s
volitional effort and other dynamic effects. In practice, designing
the gains to account for large volitional contributions from the
rider leads to overly constraining the rider during normal
operation. Designing controllers for asymptotic stability, rather
than the weaker property of forward invariance, helps mitigate
these effects. A property known as input-to-state stability, which
is a consequence of the UGAS result in Theorem 1, can be
interpreted as guaranteeing that some nearby set is
asymptotically stable despite unaccounted-for disturbances of
bounded magnitude Xu et al. (2015); Cai and Teel (2009).
Thus, the control gains can be relaxed to favor comfortable
and effective therapy while still ensuring that the cadence
remains nearby the safe set.

6 CONCLUSION

This paper developed new FES and motor controllers that
encourage the rider of a stationary cycle to provide volitional
effort while constraining their cadence within a user-defined
range. Using theoretical advances for barrier functions, the
controllers are minimally invasive while transitioning gradually
to a safety-ensuring controller on the boundary of the safe set.
The control inputs are selected from regulation maps with
sufficient regularity to ensure that optimal selections are
locally Lipschitz functions of the cadence error. Robust control
tools were used to develop the regulation maps, which are subsets
of an original, uncertain map. The uniform global asymptotic
stability of the user-defined safe set was certified with a hybrid
system analysis. In the future, the performance of the controller
can be improved by extending the development to a more
complete dynamic model which accounts for muscle activation
effects such as electromechanical delay in the rider’s muscles.

Experimental results showed that the control system improved
the rider’s cadence tracking and effectively constrained their cadence
within the safe set. The versatility of the controller was demonstrated
with trials featuring two different objectives: improved cadence
tracking or more power output from the rider. A significant next
step is to performmore rigorous experiments on a set of participants
with neurological conditions. These riders have a reduced ability to
provide volitional contributions, so the results are expected to be
significantly different from those of able-bodied riders, andwould be
of interest in more clinically focused literature.
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