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LYAPUNOV-BASED SET POINT CONTROL OF THE
ACROBOT

E. Zergeroglu,* W.E. Dixon,* D.M. Dawson,* and A. Behal*

Abstract

In this paper, we present an alternative approach for set point
control of the acrobot. The primary control objective is to regulate
the first link at any desired position. A Lyapunov-based control
algorithm, which is applicable to both the directly driven and the
remotely driven acrobot, is proposed. The controller ensures that
the first link is asymptotically driven to the desired set point,
provided some sufficient conditions on the controller gains and the
physical parameters are satisfied. Both simulation and experimental
results are presented to illustrate the performance of the proposed
control law.
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1. Introduction

While many established nonlinear control schemes have
been developed for fully actuated mechanical systems (e.g.,
robot manipulators), there does not seem to be a consensus
with regard to nonlinear control solutions for underactu-
ated systems (e.g., inverted pendulum, acrobot, etc.). Due
to its underactuated nature and highly nonlinear dynam-
ics, control of the two-degree freedom acrobot has become
one of the benchmark control design problems for under-
actuated systems. In the past, the two acrobot configura-
tions that are primarily discussed in the literature are the
directly driven acrobot and the remotely driven acrobot.
The directly driven acrobot (i.e., see [1]) is characterized
by the control torque being applied directly to the second
link while the remotely driven acrobot (i.e., see [2]-[4]) is
characterized by the control torque being applied between
the two links.

Much of the previous acrobot control research focused
primarily on applying linearization techniques. For exam-
ple, in [1}, Hauser et al. used an approximate nonlinear
model that is full state linearizable while Spong [2] pre-
sented swing-up control algorithms based on partial feed-
back linearization. In (3], Bortoff presented a technique for
the construction of a pseudo-linear controller that is inti-
mately related to extended linearization and gain schedul-
ing (i.e., a nonlinear function of the state is used to sched-
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ule the gains of a linear controller among a continuum of
operating points). In [4] Davidson et al. introduced a state
feedback linearizing controller which uses spline function-
based interpolation to construct the controller. In (5] and
[6], Boone presented both optimal control and intelligent
control techniques for the control of the acrobot.

In this paper, our primary control objective is to
asymptotically position the first link of the acrobot at any
desired angular position. To faciliate_this_control objec-
tive, we introduce a counterweight connected to the first
link of the acrobot to allow the acrobot to balance in
every position. To achieve the control objective, we use
a Lyapunov-based approach that: 1) utilizes a saturated
feedback torque input control, 2) uses a desired set point
position for the second link, and 3) restricts the value for
the counter-weight to be within a certain range. These
three elements of the design work together to ensure that
the first link is driven to the desired position and ensure
that all signals remain bounded during closed-loop oper-
ation. This paper is organized in the following manner.
Section 2 describes the dynamic models for both the di-
rectly driven and remotely driven acrobot configurations
and presents some associated properties used in control de-
velopment. Section 3 presents the control formulation and
stability analysis. Simulation and experimental results are
presented in Section 4 and Section 5, respectively. Section
6 contains some concluding remarks.

2. Mathematical Model

The mathematical model for the two-link robotic system,
known as the acrobot, can be written using the Euler-
Lagrange formulation described in [7] as follows:

M(9)§+ Vin(q,4)d + Fag + G(g) = K7 1)

where q(t), ¢(t), and §(t) € R? denote the link posi-
tion, velocity, and acceleration, respectively, M(q) € R2%2,
Vm(g,4) € R**2) and G(q) € R? represent the inertia
matrix, centripetal-Coriolis matrix, and the gravitational
vector, respectively, Fy € R2%2 denotes the constant diag-
onal matrix of viscous friction coefficients, 7 € R! is the
torque control input, and K € R?is a transmission vector
explicitly defined as follows:



T
K= [ 01 ] for the directly driven acrobot
)

T
K= [ k1 kz] for the remotely driven acrobot

where k| and k, are constants that depend on the proper-
ties of the mechanical elements used for torque transmis-
sion (i.e., pulleys, belts, etc.).

I, :length of link i

¢, center of mass of link i

q, :i"joint variable

Figure 1. Acrobot, coordinate reference frames.

From Fig. 1, we can derive the expressions for the
components of the inertia matrix as follows:

My =mic} + mal? + mack + 2malycy cos(gz)
+m3c§ -+ Il + 12 =+ 13
Mz = M1 = mac} + malicp cos(qa) + I

Mz =mayci + 1,

)
where M;; represents the ij-th component of the inertia
matrix, and m;, ¢;, l;, and I; denote the mass, center
of mass, length, and inertia for link 1, link 2, and the
counter-weight (i = 3), respectively. From Fig. 1, we can
also obtain expressions for the centripetal-Coriolis matrix
and the gravitational vector as follows:

) —malicy sin(g2)d2 —malica sin(gz) (g1 + g2)
Vin(g,4) = ) _
malica sin (g2) ¢y 0

and:

(91 — g3) sin(q1) + g2 sin(q; + g2)

] (5)
g2sin(qy + ¢2)

G(g) =

4)
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where the constants g;, 92, and g3 are given by:

91 = (myc1 +maly)g g, = (mac2)g g3 = (macs)g

(6)

and g denotes the gravitational constant. From the defi-
nitions given in (3) and (4), the standard skew symmetric
relationship between the inertia and centripetal-Coriolis
matrices is given as follows:

o (gM(q)—vm(q,q))mo VeeR: (1)

where M(g) denotes the time derivative of the inertia
matrix.” As an aid in the subsequent analysis, we also note
that the gravitational energy of the system shown in Fig. 1
can be defined as follows:

U(g) = g1 (1 - cos(qy))
+92 (1 - cos(q1 + g2)) + g3 (1 + cos(q1)) ®

where the partial derivative of U/ (g) € R! with respect to
q(t) is equal to the gravitational vector as shown below:

oU(q) _Touw) a T
5 =G =[%a @]

9)

3. Control Development

The primary objective is to design a controller that regu-
lates the first link of the acrobot to any desired constant
position. In order to unify the development for both the
remotely driven and the directly driven acrobot, we define
a new state variable y(t) € R? as follows:

N
Y2

where y, () and y,(t) denote the elements of y(t), S € R2*2
is a constant, nonsingular transformation matrix defined
as follows:

y= =S¢ (10)

S11 0

S= (11)

521 822

and the elements s;;, s21, and soo are selected to satisfy
the following equality:

STK = (12)

1

where K was defined in (2). In addition to satisfying

(12), the subsequent stability analysis requires that the

elements s11, 21, and 835 be selected to satisfy the following

inequality:
S11 $21

A particular choice for the matrix S which is nonsingular
and satisfies (12) is given below:

(13)




ky O

S= (14)

1
_kl %

It also important to note that the choice for S given by
(14) also satisfies (13) since for our acrobot and for the
acrobot given in [3], k; is a negative number, and k, is a
positive number.

After premultiplying both sides of (1) by ST and
utilizing (10), we can obtain the following transformed
dynamic equation for the acrobot:

STM@)Si+5TVin(y, 9)Sy+ ST FaSy + STG(y) = STKr
(15)
Motivated by the structure of ( 15), and the desire to
obtain a dynamic model similar to (1), we define M* (y) =
STM(®)S, Va(0,4) = STVn(y,9)S, F* = STFS, and
G*(y) = STG(y), in order to rewrite (15) as follows:

0
M*)j+ Vo, 9+ F g+ G*(y) = T (16)

where (12) has been utilized, G*(y) is explicitly given by:

Gi(y)
G3(y)

G (y) = (17)

and the auxiliary functions G}(y) and G%(y) are defined -

by:

G1(y) = s11 (sinsn1y1) (91 — g3)

+ (511 + $21) g2 8in (81191 + $21y1 + Sa2292) (18)

G3(y) = s2aga sin (81191 + S2191 + s2292) (19)

Remark 1: Since S is defined as a constant, nonsin-
gular matrix, it is trivial to show that the skew-symmetric
property defined in Property 1 still holds for the trans-
formed dynamic model given in (16). In addition, we note
that it is easy to show that M*(y) and F* are positive def-
inite, symmetric matrices. Furthermore, according to (9),
we can define the following relationship a—UB‘éﬂ = G*(y)
where U”(y) denotes the gravitational energy of the system
in terms of y(t) and is explicitly given by:

U*(y) = g1 (1 — cos(s1131))
+92 (1 — cos(s11y1 + 2191 + S22%2))
+93 (1 + cos(s1111)) (20)
Hereinafter, the control development and the stability

analysis will be performed on the transformed remotely
driven acrobot dynamics given by (16).
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3.1 Control Formulation

Given a desired constant set point position for link 1
(denoted by g41), our primary control design objective is
the design of a torque control input 7(t) to ensure that the
actual position of link 1 is asymptotically regulated to g4;.
To achieve the primary control design objective, we also
design a desired set point position for link 2 (denoted by
g42) and restrict the value for the counter-weight g3 to be
within a certain range. According to the transformation
given by (10), we define the desired set point for the
variable y(t) as follows:

Ya=S5"¢q (21)

where gg and y4 € R2 are explicitly defined as follows:

Yd1 qd1

dd =
qd2

Ya = (22)

Yaz

From (21) and (11), it is a straightforward matrix operation

to show that:
Yd1 _ 5%
Yd2 — 821941 + 942

811822 822
Based on the transformed dynamics given in (16), the
above transformation given by (21), and the subsequent
stability analysis, we define the control torque input for
the remotely driven acrobot as follows:

(23)

7 = G3(ya) ~ kp tanh(ys — ya2) — ky 2 (24)

where k, and k, € R are positive controller gains, G3(+)
was defined in (19), and y45 is defined as follows:

1 . 93—91) 811 ) . }
= —sin sin(s
vdz 822 s {( 92 811 + 821 (s1131)

_ S+ 8y
$22
the g;’s were defined in (6), and ya is given by (23). To
ensure that a solution for y4z exists, we require that the
value for the counter-weight g; be designed to satisfy the
following condition:

Yd1 (25)

0<]Al <1 (26)

where the constant A is defined as follows:
A= (93“91)( o1 ) (27)

92 811 + 821

After substituting (24) into (16), we obtain the following
closed-loop system:

M* ()i + V(1,99 + F*y + G*(y)

> (28)
G3(ya) — kp tanh(yz — yaz) — kuo



Remark 2: 1t is easy to show that (10) and (23) can
be used to rewrite the controller given by (24) and (25) in
terms of the joint space variables as follows:

. s . 1,
T = g2S228in(qa1 + qaz) — ky (‘ 31123122 g + ;qz)
2

821 1
—k,tanh | — — 4+ — - 29
P ( 511522 (91 — ga41) 52 (g2 de)) (29)

For the directly driven acrobot, the S matrix defined in
(11) is the 2 x 2 identity matrix; hence, according to (11)
and (29), the corresponding control input for the directly
driven acrobot is given by:

T = g28in(ga1 + gaz) — kp tanh(gz — gaz) — kugy  (30)

We note that the condition given by (13) is not required
during the stability analysis for the directly driven acrobot.

3.2 Stability Analysis

Theorem 1: Given the dynamic equation for the remotely
driven acrobot in (16), the proposed controller given in (24)
and (25) ensures global asymptotic set point regulation in
the sense that:

}E& qi(t) = qa1 (31)

if the S matrix defined in (11) satisfies the condition given
by (13), the value for the counter-weight g is designed to
satisfy (26), and the control gain kp is selected according
to:

kp > max {y1,73} (32)

where 7, and +; are scalar constants defined as follows:

8$11822T
= |(gs - 2 33
= Jlgs - gn) (2021 ) (33)
and:
_|shish (93— 91) g2 (34)
4

where axiliary variable p is defined as:

0= (91— gs) s}, cos(s11ya,)

+g2 (811 + 821)% cos((s1; + $21)¥Yd1 + S22Yd2)

Proof: In order to prove Theorem 1, we utilize the
following nonnegative function:

V = 39T M* @)y + P) (35)

where the potential energy-like function P(y) is defined as:

P(y) =U"(y) -~ y"G*(ya) — (U*(ya) — 43 G*(va))

+kpIn (cosh (y2 — yao)) (36)

G*(y) was defined in (17), and U *(y) was defined in (20).
Utilizing Lemma A.1 in Appendix A, we show that if the
control gain k,, is selected according to (32) then P(y) > 0;
thus, V() is nonnegative. After taking the time derivative
of (35), substituting (36) and (28), and employing the
skew-symmetry property given in (7), we have the following

expression:
V= —gTF§ - §7G"(y)
o ]
+y°
G3(ya) — kp tanh(ys — yan) — kyg2
. OU* T o .
+yT—3y(—yl = §7G"(ya) + kptanh(ys — yaz)jn  (37)

After recalling that @%ﬂ = G*(y) (see (17) and (20)),
utilizing (10) and (17), we can simplify the expression for
V(t) of (37) to yield:

V=—y"F"§ — ki — 2G5 (va) (38)

From (18) and (25), it is apparent that ys has been
selected to ensure that Gj(ys) = 0; hence, we can upper
bound V(1) of (38) as follows:

V<-Fg)? (39)

As a result of (39), V(t) of (35) must be decreasing
or constant; therefore, since V'(¢) is nonnegative, we know
that V(t) € Leo. Since V(t) € Loo, we can see from (35),
(36), and Lemma A.1 in Appendix A that §(t) € £2
(note M*(y) is positive definite). From the saturated
feedback structure of 7(t) given in (24) and the fact that
Y(t) € Loo, we can see that 7(t) € Loo. From the structure
of the dynamics given in (16) (i.e., M*(y) is invertible
and bounded for all y(t), V;:(y,y) is bounded for all
y(t) and bounded y(t), F* is a constant matrix, and
G*(y) is always bounded), we have §(t) € £2, (i.e., 3(t) is
uniformly continuous) since y(t) € £2,, 7(t) € Loo. After
taking the time derivative of (28), we can also show in
a similar manner that %(t) € £2 (i.e., §(t) is uniformly
continuous) since y(t), §(t) € £2,. Since V(t) € Lo, it
is now a straightforward manner to show that ¢(t) € £2;
hence, since §(t), §(t) € L2, and §(t) € L2, we can
apply a corollary to Barbalat’s Lemma [8] to show that
tl_l’rgo y(t) = 0. Since tl.x_’r& y(t) = 0 and §j(t) is uniformly
continuous, we can directly apply Barbalat’s Lemma [8] to
show that tl_l’rg i(t) = 0. Since tl.l.’& y(t), 4(t) = 0, we can
pass the limit on the closed-loop system given in (28) to
obtain:

lim {s1, (sins1191) (g1 — g3)
t—o0
+(s11+ 821) g2 sin (s1191 + 2141 + S2252)} = 0 (40)
tl_xglo {82292 8in (81191 + 82191 + S2212)

—82293 sin (Sllydl + 8$21¥Yd1 + 322yd2) + kp tanh(yz - ydz)}
=0 (41)
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In Lemma A.1 of Appendix A, we show that if the control
gain k, is selected according to (32), then the only solution
for (40) and (41) is:

Am (¥ —ya) =0 (42)
Now according to (10) and (21), we have:
7-94=5(y - ya) (43)

hence, since the matrix S is defined to be nonsingular as
given by (14), the result given by (31) follows difectly from
(42) and (43). QED

Remark 3: As mentioned in Remark 2, the S matrix
defined in (11) is selected as the 2 x 2 identity matrix,
and the control is given by (30) for the directly driven
acrobot. By following the same steps outlined in the proof
of Theorem 1, we obtain the same stability result as that
given by (31) for the directly driven acrobot, provided the
value for the counter-weight 93 is designed to satisfy (26),
and the control gain ky is selected according to (32). We
again note that the condition given by (13) is not required
during the stability analysis for the directly driven acrobot.

Remark 4: As far as we know, all of the previous
control algorithms for the acrobot required link position
and link velocity measurements. It should be noted that
the requirement for link velocity measurements can be
eliminated by using a similar method as that given in [9].
Specifically, we redefine the torque control input given by
(24) as follows:

T =G3(ya) — kp tanh(y, — Yaz) — ko€ (44)

where £(t) € R! is a surrogate for link velocity measure-
ments that is generated by the following filter:

P=-p-y (45)

E=p+uy (46)

where p(t) € R! is an auxiliary filter variable which allows

&(t) to be calculated with only link position measurements.

It is easy to show that the auxiliary filter variable p(t) can

be eliminated from (44) and (45) to yield the following
equivalent dynamical expression for ¢ (t):

E=—E+4 (47)
which can be used for analysis purposes. After differenti-
ating the following nonnegative function:

Vo=Vt ke (48)

with respect to time along the new closed-loop system (i.e.,
use (47) and (44) instead of (24)) where V(t) was defined in
(35), we can use the same steps of the proof of Theorem 1
to arrive at the following expression:

Vo= ~i"F" — ko€ — 1G3(ya) (49)
The result of Theorem 1 now directly follows by applying
the same steps in the proof of Theorem 1 to (49) as
illustrated by the development following the expression
given by (38).
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4. Simulation Results

The acrobot configurations defined in (1) and (16) were
simulated using the parameters given in Table 1 with the
viscous friction cofficients F;; = diag{0.5,0,5} to validate
the performance of the proposed controller.

Table 1
Acrobot Parameters

~Link 1 Link 2 Link 3
Link length (m) 0.60 0.60 10.40
Link Mass (kg) 1.95 2.70  |4.76
Center of Mass (m) 0.4909 |0.4300 0.3600
Inertia Values 0.12204|0.5404 | 0.6788

For the directly driven acrobot, the transformation
matrix S defined in (10) was selected as the identity matrix.
Fig. 2 illustrates the link position trajectory for the directly
driven acrobot with the control gains selected as follows:

kp =15.0 k, = 3.0

where the desired link position for the first link is given by
q41 = 90deg, (i.e., gz = —139.46 deg).

150 ; , : :
! ! E
sl [N
g e
= / i ! 5
o 59 7/._.__,._.._.._“._._.-__ . _:; ? % -
) AN N N SR
0 5 10 15 20 25 30
time(sec)
Y T T T T
5 ; ; |
50§ ‘ : :
€ oofo
o | ;
7 s i '*‘??: ——— . ' =
i i i i i B
-200 : :
0 5 10 15 20 25 30
time(sec)
Figure 2. Simulation for directly driven acrobot with
9a1 = 90 degrees, k, = 15.0, and k, = 3.0. After t — 12
sec, g1 = 90.0 degrees, g, = —139.46 degrees.
For the remotely driven acrobot, the transformation
matrix S defined in (10) was selected as the matrix given by

(14), and the transmission vector given by (2) was selected
as follows:
(50)

K= [kl kg]T= [—1.7308 2.6308]T

Fig. 3 illustrates the link position trajectory with the
control gains selected as follows:

kp = 40 k, = 20



where the desired link position for the first link is given by
941 = 90deg (i.e., gg0 = —139.46 deg).

a .I NS
[ 1
s !
- )
o H
I
40 50
! i
i i
= i =1
g | | |
~ H I
s ‘ i |
H t +
i | H
f i t
-150 i i i H
V] 10 20 30 40 50

time(sec)

Figure 3. Simulation for remotely driven acrobot with

941 = 90 degrees, k, = 40.0, and k, = 20.0. After + — 20 _

sec g1 = 90.0 degrees, g, = —117.88 degrees.
5. Experimental Results

A schematic representation of the experimental set-up for
the acrobot is given in Figs. 4 and 5. The links and pul-
leys of the acrobot were constructed from aluminium, and
additional weights were placed at the end of link 2 and the
counter-weight, yielding the parameter values given in Ta-
ble 1. The actuator used to apply the control torque to the
second link is a NSK torque controlled switch reluctance
motor system, which includes a high-resolution resolver,
pulse width modulated power amplifier, resolver interface,
and digital control circuitry to control the motor’s output
torque. The motor mounted resolver is used to measure
the angle between the links while a 5000 line BEI encoder
is used to measure the position of the first link. Link ve-
locities are not measured directly but are calculated via a
backwards difference/filtering technique. The control soft-
ware is implemented on an IBM compatible PC containing
a MultiQ 1/0 board manufactured by Quanser Consult-
ing, via the QMotor Graphical User Interface developed at
Clemson University. A frequency of 1 KHz was used for
data acquisition and control implementation.

Control Program
Running on

l— Link 3
(Balancing Edge)
/ ﬁl Encoder ».
i Motor ‘ \
Bearing I \
I
; \
Link | —— . E//P”"eys
Belt IR
il i& (8)
L\ 7 L/
|
ink2=—=1" Bagying |
i
2 H
Side View Front View
Figure 5. Acrobot set-up.

q1 (deg)

(=]

BOR o e bee e

q2 (deg)

1

;
H i i
20 30 40 50 60 70
time {sec)

8
a _...__.‘.1.- e e ]

-150
0

Figure 6. Experiment - g4; = 60 degrees, k, = 85.75,
and k, = 3.65. After t = 55sec ¢1 = 59.92 degrees, q; =
~101.22 degrees.

Figs. 6-8 illustrate the control performance for the
proposed control with desired positions of Gq1 = 60 deg

Interface Box
a Personal

Computer

Figure 4. Experimental set-up.

Motor Contro! Unit
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(i.e., gg2 = —101.16 deg), g41 = 90 deg (i.e., Qa2 = —139.46
deg), and g4 = 180 deg (ie., gz = —180 deg). These
results are as expected in that the actual position, ¢, (t),

and experimental results are presented to illustrate the
performance of the proposed control law.

asymptotically goes to the desired set point g4, while go(t)
asymptotically goes to the corresponding g4, value.

150,- : 1 - y 1
| i i i
5 100/ A A A i i | i
/ SN SRS .
g/ J\ /i;'\ YAVAV. :\/\/\Tf\ | 5
v 50 / é | | i
.
0 10 20 30 40 50
time (sec)
0 T T T T T
! ! : i :
. | | .: 7
R S ; S } ;
g \ | ! ! ; 1
= i ‘ ! i ;
) L S — | i I
i = s | s
i ! H H i
-150 L i : :
0 10 20 30 40 50

time (sec)

Figure 7. Experiment - 941 = 90 degrees, k, = 85.75,
and k, = 3.65. After t = 45sec q1 = 89.65 degrees, q; =
—140.30 degrees.

" N T ,'
200 ___.__/ \\ < : _
- e R ;
150 : > S 1
g // i - | i ;
LS R
50/ -t i ‘I
ol i i j
0 5 10 15 20 25 30
time (sec)
OP T T 5 —
! . !
= : .
34 ! !
3 .100p\— S +
Y \ i :
-150 Y ' ’
wol i T
“o 5 10 15 20 25 30
time (sec)

Figure 8. Experiment - 9a1 = 180 degrees, k, = 85.75,
and k, = 3.65. After £ = 20sec g1 = 180.96 degrees,
g2 = —181.43 degrees.

6. Conclusion

In this paper, we present a control approach to regulate the
first link of the acrobot at any desired position. Provided
some sufficient conditions on the controller gains and the
physical parameters are satisfied, the controller ensures
that the first link is asymptotically driven to the desired
set point. This control objective is achieved via the use
of a desired set point position for the second link and a
counter-weight attached to the first link. Both simulation
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Appendix A

Lemma A.1: If the control gain ky, is selected according to
(32) then the function P(y) defined in (36) is nonnegative.

Proof: In order to show that P(y) > 0, it is sufficient
to prove that P(y) has a global minimum at y(t) = ya since
P(y)]yzyd = 0. The critical points of the function P(y) of
(36) are obtained by setting its partial derivative equal to
zero as follows:

OP(y) 0

By 0 (51)

After substituting (17)-(20) into (51), we obtain the fol-
lowing expression:

(91 — 93)s1161 + g2 (511 + $21) 62 0
= (52)

92822 S2 + k'p tanh(yz - ydz) 0
where ¢1and ¢are defined as follows:

§1 = sin(s11y1) — sin (s1,yq;)

2 =

sin ((s11 + $21) Y1 + S2292) — sin ((s11 + $21) Y41 + S22Y4z)



After substituting yz, defined in (25) into the top equation
given in (52), we have:

. 1 .
sin (s11yn) = = sin ((s11 + $21) 41 + 822%2) (53)

where A was defined in (27). After substituting (25) and
(53) into the bottom equation given in (52), and then
rewriting the resulting expression in terms of n(t), we
obtain:

C() = () + ) =0 (54)

where the auxiliary functions ¢;(y;) and ¢, (y1) are defined
as follows:

G(31) = 822924 (sin(s11y1) — sin(snya))  (55)

¢2(%1) = ky tanh (li)
822

and the auxiliary function p(y,) is defined by:

(56)

p(y1) = {sin™" (Asin(s1191)) — sin~* (4 sin(s11%41)) }

— (811 + 821) (%1 — ya1) (57)

Based on (55), (56), and (57), it is obvious that y; (t) = ya
is a critical point of P(y).

We now show that if: 1) the control gain ky is selected
according to (32), 2) the value for the counter-weight g is
designed to satisfy (26), and 3) the S matrix defined in (11)
satisfies the condition given by (13), then y, (t) = ya1 is the
only critical point. To this end, we first lower bound ¢, (y1)
of (56) with the following piece-wise, continuous function
denoted by fp.(y1):

( T
< -
'3 < (ydl 811)

(ya - I—) <y < ¥Ya1
811
fm(yl) =4

: 9
T Ya <y < (yd1 + -—)
S11

™
§ Yy > (ydl + -—)
su)

with:

-1
&= kptanh {—- [2 sin™? (A sin(suy,ﬂ)) + (811 -+ 321) l]}
522 Sn

From the structure of (58), it is straightforward to see that:

[fee(y1)] < |Ga(w1)] (59)

Based on the form of (58), we now show that P(y1)
has only one critical point. First, we prove that the
slope of fpc(y1) is greater than the slope of ¢1(y1) for

the “unsaturated” region given by {(ya1 — ;’1’—1 <y <

168

(ydl + ﬁ) The slope of the “unsaturated” region of
fpe(y1), and the slope of ¢,(y;) are found by taking the

partial derivative with respect to y, (t) as follows:

£ b3
T |\ Yar— — ) <y Lya
811

9 S11

‘—fpc (Z’/l) = (60)
o —761-— Yar <y1 < (ydl + ;7:—1)

s
where the auxiliary variable ¢ was previously defined in
(58).

And:
7]
5;(1 (1) = 511822924 cos(s1191) (61)
To show that the slope of Jpc(y1) is greater than the slope

of (1(y1), we can now use (60) and (61) to formulate the
following two inequalities:

™11

-1
—kptanh {‘{2 Siﬂ'——lr(*‘l sin{s31941)) +-(s11+ s21) —
S22 311J f

> wS2290A cos(81141) (62)

for the region given by (ydl - L) <y £ yq1 and:

S11

-1
kp tanh {—-— ,:2 sin_l (A Sin(.5'11yd1)) - (811 + 321) -W—} }
S22 s1n

> w9292 A cos(s11y1) (63)

for the region given by y4 < 31 < (ydl + 8—’;1) Based on

the expressions given by (62) and (63), we can utilize the
fact that:

in~ 1)<

[sin™ ()] 5

(64)

in conjunction with the conditions given in (26) and (13)
to determine the following sufficient condition on kp:

811522
™ (9s —9) (811 + 821)

to ensure that the slope of f,c(y1) is greater than the slope
of ¢1(y1). From a graph of fpc(y1) and {1 (y1), it is easy to

V-3-Y

(65)

kp>71=

- -see that-if-ky-is selected according to (65) then foe(y1) and

¢1(y1) will intersect only at one point in the region given

by (ydl - l)

811

(54) and (59) to show that P(y;) has only one critical point
for the region given by (ydl - ﬁ) <y < (ydl + L)

s11
We now illustrate how kp can be selected to eliminate

the possibility of critical points from the regions given by
1 < {Ya1 — L) and y; > (ydl + s—’ﬁ) That is, since the

<y < yar + ;%), hence, we can now use

S11
Jpe(y1) function saturates in this region, we can select kp
greater than the maximum value of ¢;(y;) as follows:

811822 w

— ~(66)
S11+ 821 /|

ko > 7 ;,!2 (95 — @) (



to ensure that fpc(y1) +(1(y1) # O for the regions given by

< (ydl —5-)andy > (ydl + % ). Hence, we can use
(54) and (59) to show that ((y;) does not have any critical

points in the regions given by y; < (ydl - ﬁ) and y; >

31, ) 1t is obvious from (65) and (66) that v, > v,
and if k, is chosen as:

o+ 2)

(67)
Note

kp >m

then the only critical point for {(y1) is at y; (¢) =
that (32) is a sufficient condition for (67).

We now show that if: 1) the control gain &, is selected
according to (32), and 2) the value for the counter-weight
93 is designed to satisfy (26), then the critical point y; () =
Yd1 is a global minimum. In order to prove that the critical
point y1(t) = ya: is a global minimum, it is necessary to

show that the matrix —P—&y—l

1j-th elements of the matrix ——P-Sﬂ € R?*2 gre calculated
by taking the partial derlva.tlve of (52) as shown below:

Yd1-

is positive definite. The

8*P(y
( ayg ))n = (g1 — g3) 83, cos(s11y1)
+92 (s11 + 821) cos((s11 + 821) 91 + s2202) (68)
(aZP(y)> _ (BZP(y))
0y® )1 o Jm
= g2522 (811 + $21) cos((s11 + S21) Y1 + S22%2) (69)

(321’(1/)

53 ) = gas3ycos((s11 + 821) Y1 + S2292)
Y 22

+kp (1 - tanh? (y; — yaz)) (70)

To show that the matrix —gﬂ’

we must show that:
>0

(321’ (y)>
oy* /u Y=v4
w((258), (%)
v Ju Y 22

(%), (%))

To validate the top inequality in (71), we set y; equal to
Y41 and substitute yqz from (25) for y, into (68) to yield:

().

+92 (811 + 821)° cos(sin™! {4 sin(s11¥q1)}) > 0

is positive definite,

>0 (71)

Y=ya

= (91 — g3) 53, cos(s11Ya1)
y=va

(72)

where A was defined in (27). After some algebraic manip-
ulations, we can rewrite (72) in the following manner:

5,

= \/,1 — [Asin(s11y41))°

Y=¥Yd
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S1
—A ——
<su + 321) cos(suydl) >0 (73)

After squaring both sides of the inequality given by (73), we
can use (26) and (13) to show that (-"’%‘;Q—)) l > 0.
11

To validate the bottom inequality in (71), we substltute
(68), (69), and (70) into (71), set y; equal to vy, and
substitute y42 from (25) for y,, and simplify the resulting
expression to obtain the following inequality:

A=k [(az;gy))u y:@,j

—571835 (93 — 91) g2 cos(8119a1)

cos((s11 + 521) Y1 + s2292) > 0 (74)

where (72) has been utilized to substitute for (i};ﬁﬂ)
From (74) and (72), we can select k, as follows:

1

5%1352 (93— 91) 92
4

kp >3 = (75)

to validate the bottom inequality given in (75). Note that
(32) is a sufficient condition for (75). QED
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