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Robust tracking and regulation control for mobile robots
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SUMMARY

This paper presents the design of a new, differentiable kinematic control law that utilizes a damped dynamic
oscillator with a tunable frequency of oscillation to achieve global uniformly ultimately bounded tracking
(i.e., the position/orientation tracking errors globally exponentially converge to a neighbourhood about zero
that can be made arbitrarily small). In contrast to many of the previously developed kinematic tracking
controllers, the proposed controller can be used for the regulation problem as well; hence, a unified
framework is provided for both the tracking and the regulation problem. To compensate for uncertainty in
the dynamic model, we illustrate how the kinematic controller can be used to design a robust nonlinear
controller. Experimental results are presented to demonstrate the performance of the proposed controller.
Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The motion control problem of mechanical systems with non-holonomic constraints has been
a heavily researched area due to both the challenging theoretical nature of the problem and its
practical importance. One example of a non-holonomic system that has received a large amount
of research activity is the wheeled mobile robot (WMR). In recent years, control researchers have
targeted the problems of: (i) regulating the position and orientation of the WMR to an arbitrary
setpoint, (i) tracking a time-varying reference trajectory (which includes the path following
problem as a special case [1]), and (iii) incorporating the effects of the dynamic model during the
control design to enhance robustness. With regard to the control of non-holomomic systerms, one
of the technical hurdles often cited is that the regulation problem cannot be solved via a smooth,
time-invariant state feedback law due to the implications of Brockett’s condition [2]. To deal
with this obstacle, some researchers have proposed controllers that utilize discontinuous control
laws, piecewise continuous control laws, smooth time-varying control laws, or hybrid controllers
to achieve setpoint regulation (see [3, 4], and the references therein for an in-depth review of the
previous work). Specifically, in [5], Bloch et al. developed a piecewise continuous control
structure for locally regulating several different types of non-holonomic systems to a setpoint. In
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Reference [6], Canudas de Wit and Sordalen constructed a piecewise smooth controller to
exponentially stabilize a WMR to a setpoint; however, due to the control structure, the orienta-
tion of the WMR is not arbitrary. One of the first smooth, time-varying feedback controllers that
could be utilized to asymptotically regulate a WMR to a desired setpoint was proposed by
Samson in [4]. Smooth, time-varying controllers were also developed for other classes of
non-holonomic systems in References [7-9]. More recently, in References [10, 11], global
asymptotic feedback controllers for a general class of non-holonomic systems were developed,
and hence, a control solution that could be used to stabilize a WMR to a desired posture was
provided. In order to overcome the slower, asymptotic response of the previous smooth, time-
varying controllers, Godhavn and Egeland [12] and McCloskey and Murray [3] constructed
control laws that locally p-exponentially (as well globally asymptotically) stabilized classes of
non-holonomic systems. Under the assumption of exact model knowledge, McCloskey and
Murray [3] also illustrated how the dynamic model of a WMR could be included during the
control design.

Several controllers have also been proposed for the reference robot tracking problem (i.e. the
desired time-varying linear/angular velocity are specified). Specifically, in Reference [13],
Kanayama et al. utilized a continuous feedback control law for a linearized kinematic model to
obtain local asymptotic tracking; whereas, Walsh et al. [14] obtained local exponential stability
results for a similar linearized model using a continuous, linear control law. In Reference [15],
Jiang and Nijmeijer developed a global asymptotic tracking controller for a WMR; however,
angular acceleration measurements were required. In Reference [16], Jiang and Nijmeijer
provided semi-global and global asymptotic tracking solutions for the general chained system
form, and hence, provided a solution for the WMR tracking problem that removed the need for
angular acceleration measurements required in Reference [15]. In Reference [17], Escobar et al.
illustrated how a field oriented induction motor controller can be redesigned to exponentially
stabilize the non-holonomic double integrator control problem (e.g. Heisenberg flywheel); how-
ever, the controller exhibited singularities. To compensate for parametric uncertainty in the
dynamic model, Dong and Huo [ 18] utilized the kinematic control proposed in Reference [11] to
construct an adaptive control solution for a class of non-holonomic systems that yielded global
asymptotic tracking. We also note that several researchers (see [ 1, 19], and the references within)
have proposed various controllers for the path following problem.

From a review of the literature, it seems that we can make the following observations for the
previously developed kinematic controllers: (i) the tracking controllers do not solve the regulation
problem (i.e. restrictions on the reference model trajectory signals prohibit extension to the
regulation problem), (ii) the stability results for the differentiable, kinematic controllers tend to be
global asymptotic instead of global exponential, (iii) the heavy reliance of Barbalat’s Lemma and
its extensions during the kinematic stability analysis appear to prohibit the use of robust
nonlinear controllers [20] for rejection of uncertainty associated with the dynamic model (i.e. the
Lyapunov derivative is negative semi-definite in the system states as opposed to negative definite),
and (iv) some of the kinematic controllers are not differentiable (e.g. see the kinematic controller
developed in Reference [3]), and unfortunately, the standard backstepping procedure, often used
for incorporating the mechanical dynamics, requires that the kinematic controller be differenti-
able (see the discussion in Reference [3]). In an attempt to address the above issues, we present the
design of a new, differentiable kinematic control law that achieves global uniformly ultimately
bounded (GUUB) tracking control for a WMR. That is, the position and orientation tracking
errors globally exponentially converge to a neighbourhood about zero that can be made
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arbitrarily small. Since the kinematic tracking controller does not restrict the reference model in
any way, the proposed kinematic controller can also be used for the regulation problem; hence,
we present a unified control framework for both the tracking and regulation problem. Moreover,
since the proposed kinematic controller is differentiable, we illustrate how standard backstepping
techniques can be used to design a nonlinear robust controller that compensates for uncertainty
associated with the dynamic model (i.e. parameter uncertainty and additive bounded distur-
bances). We note that the proposed kinematic controller does not utilize explicit sinusoidal terms
in the feedback controller; rather, a damped dynamic oscillator with a tunable frequency of
oscillation is constructed. Roughly speaking, the frequency of oscillation is used as an auxiliary
control input to cancel odious terms during the Lyapunov analysis. It should be noted that the
proposed solution to the kinematic problem is crucial for developing the proposed robust
controller for the dynamic model (i.e. the Lyapunov derivative is negative definite in the system
states as opposed to negative semi-definite).

The paper is organized as follows. In Section 2, we transform the kinematic model of a WMR
into a form which facilitates the subsequent control development. In Section 3, we present the
control development and corresponding stability analysis to illustrate GUUB tracking for the
kinematic model. In Section 4, we develop the dynamic model for a WMR which facilitates
the subsequent control development and stability analysis. In Section 5, we reconfigure the
controller to illustrate GUUB tracking for the dynamic model. Experimental verification of
the controller’s performance is presented in Section 6. In Section 7, we present some concluding
remarks.

2. KINEMATIC PROBLEM FORMULATION

2.1. WMR kinematic model

The kinematic model for the so-called kinematic wheel under the non-holonomic constraint of
pure rolling and non-slipping is given as follows [3]:

4 =S(qv (n
where q(t), §(t) e R are defined as
q= [xc Ve B:IT: q = [xc )‘}c 0]T (2)

xo{t), v(t), and O(t) € R' denote the linear position and orientation, respectively, of the centre of
mass (COM) of the WMR, X(t), y(t) denote the Cartesian components of the linear velocity of the
COM, 6(t) e R" denotes the angular velocity of the COM, the matrix S(g) € R**? is defined as
follows:

cosd 0
S(@)={sinf 0O (3)
0 1

and the velocity vector v(t) € R? is defined as
v="[v, v2]" =[v 61 4
with v,(f) € R' denoting the linear velocity of the COM of the WMR.
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2.2. Control objective

As defined in previous work (e.g. see [ 13, 15]), the reference trajectory for the WMR 1is generated
via a reference robot which moves according to the following dynamic trajectory:

4 = S(q)v; (5)

where S(-) was defined in (3), g,(t) = [x:o(t) yeelt) 0t)]" € R denotes the desired time-varying
position and orientation trajectory, and v,(t) = [v,,(t) v,2()]" € R? denotes the reference time-
varying linear and angular velocity. With regard to (5), it is assumed that the signal v(t) is
constructed to produce the desired motion and that v.(t), 9,(¢), ¢.(¢), and 4.(t) are bounded for all
time.

To facilitate the subsequent control synthesis and the corresponding stability proof, we define
the following transformation:

w —OcosO +2sinf® —0sinf—2cosf O
Zl = O O 1
Zy cos 0 sin 8 0

bd]

(6)

D=

where w() e R' and z(t) = [z.(t) zx()]T € R? are auxiliary tracking error variables, and
(1), 7(1), 0(r) € R* denote the difference between the actual Cartesian position and orientation of
the COM and the reference position and orientation of the COM as follows:

)EZXC—XN, ﬁ:yc_yrca (7:6—0,. (7)

After taking the time derivative of (6) and using (1)-(5), and (7), we can rewrite the tracking error
dynamics in terms of the auxiliary variables defined in (6) as follows:

w=u'Jz+f
i=u (®)
where J € R**? is defined as
i
f(z, v, t) e R is defined as
f=2(v2z5 — v,y 8I0Z)) (10)

and the auxiliary variable u(t) = [u(t) u,(t)]" € R? is defined in terms of the WMR position and
orientation, the WMR linear velocities, and the desired trajectory as follows:

W= T 'y Ura b= Tu+ v, cosf + U2 (Xsinf — jcos 6) (11)
- vy cos - Ura
where the matrix T € R%*? is defined as follows:
Xsinf — ycost) 1
Tzr 1y )o] (12)
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3. KINEMATIC CONTROL DEVELOPMENT

Our control objective is to design a kinematic controller for the transformed WMR kinematic
model given by (8). To facilitate the subsequent control development, we define an auxiliary error
signal Z(t) € R? as the difference between the subsequently designed auxiliary signal z4(t) € R? and
the transformed variable z(t), defined in (6), as follows:

F=z4—z (13)

3.1. Control formulation

Based on the kinematic equations given in (8) and the subsequent stability analysis, we design the
auxiliary signal u(t) as follows:

u=u, —k,z (14)

where the auxiliary control term u,(t) € R is defined as

kow+
a:< 1‘22 f)JZd"i—QlZd (15)
d
the auxiliary signal z,4(t) is defined by the following oscillator-like relationship:
b k
Zq = b_d Z4 <~1W52—+f+ le>J2d, 24(0)z4(0) = 3(0) (16)
d d

the auxiliary terms Q,(w, z, v,, t) € R* and 4(t) € R! are defined as

b k
Q) =k, + 20 4 w[Evt] (17)
()d 6d
and
6d:a0exp(—a1[)+81 (18)

respectively, kq, k,, 0, 00y, & € R! are positive, constant control gains, and f(z, v,, t) was defined
in (10).

Remark 1
Motivation for the structure of (16) is obtained by taking the time derivative of zjz4 as follows:
d B k
—(2hzg) = 22824 = 220 L za + I—W;'—er wQ; JJzg (19)
dt d4 05

where (16) has been utilized. After noting that the matrix J of (9) is skew symmetric, we can rewrite
(19) as follows:

d . o
3 (zaza) = 25—" z)zs. (20)
d

As result of the selection of the initial conditions given in (16), it is easy to verify that

ZgZd = ||Zd||2 = (5§ (21

Copyright { 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:199-216
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is a unique solution to the differential equation given in (20). The relationship given by (21) will be
used during the subsequent error system development and stability analysis.

Remark 2

Note that the exponential term in (18) is not necessary for the subsequent stability analysis.
That is, if a, is selected as o, = 0 then the subsequent stability proof is still valid. The motivation
for selecting a4 # 0 is to provide the designer with increased flexibility with regard to ensuring
that the control effort is maintained at a reasonable magnitude. Specifically, for the case of large
initial tracking error, the magnitude of the control could possibly be reduced through the
selection of .

Remark 3
Note that based on (10), we can place an upper bound on f(z, v,, t) as follows:
f< 4zl (22)
where we utilized the fact that
Isin(z,)] < |z11; (23)

furthermore, we can utilize (13) to upper bound f(z, v,, t) as follows:

S <4ldl(izall + 121 (24)

3.2. Error system development

To facilitate the closed-loop error system development, we substitute (14) for u(¢), add and
subtract u} Jz, to the resulting expression, utilize (13), and exploit the skew symmetry of J defined
in (9) to rewrite the dynamics for w(t), given by (8), as follows:

W=ulJs —ulJzy +f (25)

where the fact that JT = — J was utilized. Finally, by substituting (15) for only the second
occurrence of u,(t) in (25) and then utilizing the equality given by (21), the skew symmetry of
J defined in (9), and the fact that J'J = I, (note that I, denotes the standard 2 x 2 identity
matrix), we can obtain the final expression for the closed-loop error system for w(¢) as follows:

W=uJZ — kw. (26)

To determine the closed-loop error system for Z(¢), we take the time derivative of (13), substitute
(16) for Z4(t), and then substitute (8) for Z(t) to obtain
Sd <k1W +f

Z =23 63

dq

+ WQl>JZd —u 27

After substituting (14) for u(t), and then substituting (15) for u,(t) in the resulting expression, we
can rewrite the expression given by (27) as follows:

)
225—(12d+W91JZd_led+kZZ' (28)
d

Copyright ) 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:199-216
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After substituting (17) for only the second occurrence of Q(t) in (28) and using the fact

that JJ = —1,, we can cancel common terms and rearrange the resulting expression to
obtain
2 - kaw +
Z = — k;Z + WJ[(lT—f)]Zd + led:| (29)
d

where (13) has been utilized. Finally, since the bracketed term in (29) is equal to u,(?) deﬁr}ed
in (15), we can obtain the final expression for the closed-loop error system for Zz()
as follows:

5= k5 + wlu,. (30)

3.3. Stability analysis

Theorem 1

Provided the desired trajectory (i.e. v,(t), (1), gt), and ¢,(t)) is selected to be bounded for all
time t > 0, the kinematic control law given in (14)-(18) ensures the position and orientation
tracking errors defined in (7) are GUUB in the sense that

IZ(0), 1501, 10()] < Boexp( — yot) + Prey (31)

where ¢, was defined in (18), and f,, B, and y, € R are some positive constants.
Y P

Proof. To prove Theorem 1, we define the following non-negative, scalar function denoted by
V(w(t), Z(t)) e R" as follows:

V=iw 417 (32)

[

After taking the time derivative of (32) and making the appropriate substitutions from (26) and
(30), we obtain the following expression:

V=w[—kw+uiJZ]+ Z"[ — kyZ + wlu,] (33)

After utilizing the fact that JT = — J and cancelling common terms, we obtain the following
expression:

V=—kw*—ki"Z. (34)

Next, we can use (32) to upper bound V(w(t), Z(¢)) as follows:
V < — 2 min(k,, ky)V. (35)

Standard arguments can now be employed to solve the differential inequality given in (35) as
shown below

V < exp( — 2 min(ky, k;)6)V (w(0), 2(0)). (36)

Copyright € 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:199-216
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Finally, we can utilize (32) to rewrite the inequality given by (36) as
W 1(w(t), 2(t) ]| < exp( — min(k,, k2)D)[I'Y 1 (w(0), Z(0)] (37)
where the vector W (w(t), Z(t)) € R> is defined as
¥, =[w 1" (38)

Based on (37) and (38), it is straightforward to see that w(z), Z(t) € £, After utilizing (13), (21),
and the fact that 7 (1), d4(t) € £, we can conclude that z(t), z4(t) € £,.. Based on these facts,
we can now use (14)-(18), and (21) to show that u,(r), Z4(t), Q(¢), u(t) € £,. Now, in order to
illustrate that the Cartesian position and orientation signals defined in (1) are bounded, we
calculate the inverse transformation of (6) as follows:

0 1(0sin® +2cost) - Fsind|[z]
=0 —3(@cosh + 2sinb) —%cosé)J{zzJ. (39)
1

0 0 w

Since z(t) € Z,., it is clear from (7) and (39) that (t), 6(t) € £,.. Furthermore, from (7), (39), and the
fact that w(t), z(t), 0(t) € £,,, we can conclude that £(t), j(1), X (), y(t) € Z,. We can utilize (11),
the assumption that the desired trajectory is differentiable, and the fact that 0(t), u(s)
(1), ¥(1) € &, to show that v(t) € Z,,; therefore, it follows from (1)—~(4) that (1), %:(1), Vel(t) € L.
We can now employ standard signal chasing arguments to conclude that all of the remaining
signals in the control and the system remain bounded during closed-loop operation.

In order to prove (31), we first show that z(¢) defined in (6) is GUUB by applying the triangle
inequality to (13) to obtain the following bound for z(t)

D= e

Izl < 2] + llzall < exp( — min(ky, ko)) (w(0), ZO)| + ao exp( —ay8) + & (40)
where (18), (21), (37) and (38) have been utilized. The result given in (31) can now be directly
obtained from (37), (38), (39), and (40). O

4. DYNAMIC PROBLEM FORMULATION

Practical issues (e.g. robustness to uncertainty in the dynamic model) provide motivation to
include the dynamic model as part of the overall control problem. As a result of this motivation,
we describe the dynamic model of the WMR and then demonstrate how the integrator backstep-
ping technique along with simple modifications to the proposed kinematic controller can be
utilized to develop a robust controller for the WMR dynamic model.

4.1. WMR dynamic model

The dynamic model for a WMR similar to the kinematic wheel can be easily expressed in the
following form:

M3 + F(v) + Ty = Bt (41)

where i(t) € ®? denotes the time derivative of v(t) defined in (4), M € R** 2 represents the constant
inertia matrix, F(v) € R? represents the friction effects, Ty(f) € R? represents a vector of unknown,
bounded disturbances, 7(t) € R? represents the torque input vector, and B € R2*2 represents an
input matrix that governs torque transmission.
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To facilitate the subsequent control design, we premultiply (41) by T and substitute (11) and
(12) for v(t) to obtain the following convenient dynamic model:

Mi + N = Br (42)

where M = T"MT, N = T"(MTu + F(v) + Tq + MII), B= T"B, and I1€ R? is given by
- [ﬁ,, cos g—vr,(?sin  + 0,,(% sinf — j cos 0) + v,2(%6 cos 0 + X sin 0 + 70 sin()—f/cos@)}
ler

(43)

The dynamic equation of (42) exhibits the following property which will be employed during the
subsequent control development and stability analysis.

Property 1
The transformed inertia matrix M is symmetric, positive definite, and satisfies the following
inequalities [21]:
my[|E)* < ETME < mylz, w)I€® VEeR® (44)
where m; is a known positive constant, m,(z, w) € R' is a known, positive bounding function
which is assumed to be bounded provided its arguments are bounded, and ||| is the standard

Euclidean norm. Based on the fact that M is symmetric and positive definite, we can use (44) to
show that the inverse of M satisfies the following inequality:

1

mo(z, w)

_ 1
I!éHZééTM”5<m—IIéH2 View? (43)

5. DYNAMIC CONTROL DEVELOPMENT

5.1. Control formulation

Based on the desire to incorporate the dynamic model in the control design, we design a robust?
controller for the dynamic model given by (42). To this end, we design the control torque input
7(t) as follows:

© = (B)" (R + kyma(z, win + vg) (46)
where #(t) € R? denotes the kinematic tracking error signal defined as follows:
n=ug—u (47)

u4(t) € R? denotes the desired kinematic control signal
Ug = U, — k»z (48)
f

u,(t) was defined in (15), m,(z, w) was defined in (44), £(n, w, z4, z, 1) € R? is a best guess estimate o
the dynamic term denoted by (1, w, z4, z, t)€ R? which is explicitly defined as

 Roughly speaking, the controller will be designed to reject parametric uncertainty and additive bounded disturbances.
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208 W. E. DIXON ET AL.

the auxiliary robust control term vg(#, w, zq, z, t) € R? is defined as

my(z, winp?

= Tnlp + e (>0)

Ur

ks, &, € R' are positive, constant control gains, and the bounding function p(n, w, z4, z, t) € R' is
constructed to satisfy the following inequality:

p =M Yk — & + MJzw + M2)]. (51)

To facilitate the construction of p(+), the closed-form expression for 1,4(t) used in (49) is calculated
in Appendix A.

Remark 4
One method for constructing £(*) and p(-) used in (46) and (50) is to note that part of () can be
linear parameterized as follows:

Miig + TY(MTu + F(v) + MTI) = Yd¢ (52)

where ¢ € R? contains the unknown constant system parameters, and the regression matrix
Ya(n, w, z4, 2, t) € R**? contains known functions. Hence, K(-) could be constructed as follows:

R(-) = Ydo (53)

where ¢(t) € R” denotes the constant, best-guess parameter estimate vector. To satisfy (51), it
would be an easy matter to use upper and lower bounds of the maximum parameter error and the
additive bounded disturbance to construct p(-) as follows:

p= | MY (Yy0 + Ty + MJzw + M3)| (54)
where q;(t) € ‘R? is defined as shown below

b=¢—¢. (55)

5.2. Error system development

To facilitate the closed-loop error system development, we inject the auxiliary control input u(t)
into the open-loop dynamics of w(t) given by (8) by adding and subtracting the term ulJz to the
right-hand side of (8) and utilizing (47) to obtain the following expression:

W=—ulJz+n"Jz+f (56)

After substituting (48) for uy(t), adding and subtracting u; Jz, to the resuiting expression, utilizing
(13), and exploiting the skew symmetry of J defined in (9), we can rewrite the dynamics for w(z) as
follows

W= —ulJzg +ulJi + 4" Jz +f. (57

By utilizing the same techniques illustrated in the kinematic control development, we can obtain
the final expression for the closed-loop error system for w(t) as follows:

W= —kw+uldi+n"Jz (58)

Copyright ' 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:199-216
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To determine the closed-loop error system for Z(t), we take the time derivative of (13), substitute
(16) for Z4(t), and then substitute (8) for Z(t) to obtain

. 0 k
Z=_dZd+< 1‘;2+f+ le>sz+n—ud (59)
d

where the auxiliary control input ugt) was injected by adding and subtracting ug4(t) to the
right-hand side of (59), and (47) was utilized. After substituting (48) for u4(t) and then substituting
(15) for u,(f) in the resulting expression, we can rewrite (59) as follows:

.0
Z = —5—(1 Z4 —+ WQ]‘]Zd — led -+ kzZ + 7] (60)
d

Based on the same procedure as described in the kinematic control development, we can now
obtain the final expression for the closed-loop error system for () as shown below

7 =—kyZ+ wlu, + 1. (61)

In order to develop the closed-loop error system for n(t), we take the time derivative of (47),
substitute for #(f) from (42), and then rearrange the resulting expression to obtain the following
expression:

. ——1 53
i = M~ — Br) (62

where (49) has been utilized. After substituting for the control torque input 7(¢) defined in (46), we
obtain the closed-loop error system for x(t) as follows:

H=— kyma(z, M~y + M~ Yk — & + MJzw + M2) — M "'og — Jzw — 2 (63)

where Jzw + 7 has been added and subtracted to the right-hand side of (63) to facilitate the
following stability analysis.

5.3. Stability analysis

Theorem 2

Provided the desired trajectory (i.e. v (t), 6,(¢), ¢:(t), and g,(t)) is selected to be bounded for all
time t >0, the dynamic control law given in (15)—(18), (46)-(50) ensures the position and
orientation tracking errors defined in (7) are GUUB in the sense that

Ix(e)l, |90, 10()| < \/ﬁz exp( — 71f) + €283 + Baexp( — y2t) + Pse (64)

where ¢, and ¢, are defined in (18) and (50), respectively, and B, f3, Bas Bs » 71, and y, € R* are
some positive constants.

Proof. To prove Theorem 2, we define the following non-negative, scalar function denoted by
Va(w(t), 2(t), n(t)) € R' as follows:

240", (65)

Copyright € 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:199-216
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After taking the time derivative of (65) and making the appropriate substitutions from (58), (61),
and (63), we obtain the following expression:

Vy = wl — kyw + ulJz + qJz] + 5[ — kyZ + wlu, + 7]
+ 0" [—kama(z,w) M~ + M~ Yk — R+ MJzw + MZ) — M " 'vg — Jzw — 2], (66)

After cancelling common terms, utilizing (51), and substituting (50) for vg(r), we obtain the
following upper bound for V,(w(z), 2(t), n(t)) of (66) as follows:

; - "M~ "np?
Vy < —kyw? — k272 — kymy(z, win™M ™'y + I:N’?“P — my(z, w) 7} (67)
nlp + e
Then by utilizing (45), we note that Vy(w(t), Z(t), #(1)) of (67) can be upper bounded as follows:
~ T Inl*p*
NS—AW +ZZ+nn)+|lnlp———— (68)
Inllp + &2
where A € R' is a positive constant defined as
A =min{ky, k,, ks }. (69)

After noting that the bracketed term in (68) is less than or equal to ¢,, we can use (65) to obtain the
following new upper bound for Vy(w(t), Z(t), n(t)):

V, < — 2AV, + &, (70)

Standard arguments can now be employed to solve the differential inequality given in (70) as
follows:

V, <exp(—2A0)V,(w(0), 2(0), n(0)) + ;—/2\ (I —exp(—2A1)). (71)

Finally, we can utilize (65) to obtain the following inequality:

I 2(w(t), (), nO)] < /exp(—2A1) [¥2(w(0), Z(0), 7(0))]|> + &2(1 — exp(—2An)/A (72)
where the vector W,(w(t), Z(t), #(t)) € R° is defined as
¥, =[w " g']" (73)

Based on (72) and (73), it 1s straightforward to see that w(t), Z(t), n(t) € &£, After utilizing (13),
(21), and the fact that Z(t), d4(t) € &, we can conclude that z(t), z4(t) € £,,. From (15) to (17), the
time derivative of (13), (47), (48), (58), (61) we can show that uy(t), u(t), Z4(t), Z(t), (t), W(t), Qy(t),
u(t) € &, Now, using standard signal chasing arguments and the development in Appendix A, we
can conclude that all of the remaining signals in the control and the system remain bounded
during closed-loop operation.

In order to prove (64), we first show that z(t) defined in (6) goes to a neighbourhood about zero
exponentially fast by applying the triangle inequality to (13) to obtain the following bound
for z(t):

Izl < 20 + 24 < /exp(—2A0) ¥ 5(w(0), 2(0), 7(0))]* + e2(1—exp(—2A0)/A+ atg exp(— 1) + &4
(74)
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where (18), (21), and (72) have been utilized. The GUUB result given by (64) can now be directly
obtained from (39), (72)-(74). O

Remark 5

Note that unlike most of the previously proposed tracking controllers (see [6, 13, 15], etc.) we
have not imposed any restrictions on the desired trajectory (other than the assumption that
v.(t), 6:(0), g, (1), and ¢,(1) € &), hence, the position and orientation tracking problem reduces to
the position and orientation regulation problem. That is, if the control objective is targeted at
the regulation problem, the desired position and orientation vector, denoted by
gy = [Xee Vee 0,17 € R* and originally defined in (5), becomes an arbitrary desired constant
vector. Based on the fact that g,(t) is now defined as a constant vector, it is straight forward that
v.(t) given in (5), and consequently f(z, v,, t) defined in (10) equal zero. We also note that the
auxiliary variable u(t) originally defined in (11), is now defined as follows:

u=T 'v, v="Tu (75)

where the matrix T was defined in (12). Based on the above simplifications, it is easy to show that
the results given by Theorems 1 and 2 are valid for the regulation problem as well.

6. EXPERIMENTAL VERIFICATION

6.1. Experimental configuration

The proposed robust tracking controller given by (15)-(17), (48), (46), (47) and (50) was imple-
mented on a modified K2A WMR manufactured by Cybermotion Inc. The robot modifications
include: (i) the replacement of the pulse-width modulated amplifiers with a dual channel Techron
linear amplifier, (ii) the replacement of all existing computational hardware/software with a Pen-
tium 133 MHz PC, and (iii) the replacement of the battery bank with an external power supply.
Permanent magnet DC motors provide steering and drive actuation through a 106:1 and a 96:1
gear coupling, respectively. The positions of the steering and drive motors are measured via
Hewlett Packard (HEDS-9000) encoders with a resolution of 0.35%/line, and velocity measure-
ments were calculated via a filtered backwards difference algorithm. A Pentium 133 MHz PC
operating under QNX (a real-time micro-kernel-based operating system) hosts the control
algorithm that was written in ‘C’, and implemented using Qmotor 2.0 (an in-house graphical user
interface). Data acquisition and control implementation were performed at a frequency of 2.0 kHz
using the MultiQ I/O board. In order to measure the tracking error given in (7) we need to
determine the x(¢) and y(t) co-ordinate and the orientation of the WMR. To this end, we obtained
the positions of the steering and drive motors via the aforementioned encoders, and then
calculated the linear and angular velocity measurements via a filtered backwards difference
algorithm. Using the angular position measurement and the linear and angular velocity measure-
ments, we were able to utilize the relationship given in (1) to determine X(¢) and y(t). We were then
able to use a trapezoidal integration routine with (1) to obtain the actual values of the Cartesian
co-ordinates of the WMR. For simplicity the electrical dynamics of the system were ignored. That
is, we assume that the computed torque is statically related to the voltage input of the permanent
magnet DC motors by a constant.
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6.2. Experimental results

The dynamics for the modified K2A WMR are given as follows:

l 1 0 T _ My 0 ljl Fsl 0 Sgn(vl) Fdl 0 25
L1 B o A e | e e |

where m, = 165 kg denotes the mass of the robot, I, = 4.643 kgm? denotes the inertia of the
robot, ro = 0.010 m denotes the radius of the wheels, L, = 0.667 m denotes the length of the axis
between the wheels, and the dynamic and static friction elements are denoted by F.,, F,, F4,, and
Fy5. The desired reference linear and angular velocity were selected as

v, = 0.2(m/s) v, = 0.4 sin(0.5¢) (rad/s) a7

respectively, (see Figure 1 for the resulting reference time-varying Cartesian position and
orientation).

The Cartesian positions and the orientation were initialized to zero, and the auxiliary signal
z4(t) was initialized as follows:

24(0) = [0.01 0.017". (78)

The best guess estimates for the mass and inertia of the WMR were selected to be 50 per cent of
the actual values in order to calculate the feedforward term #(-) given in (53) (note that the static
and dynamic friction components were assumed to be included in the bounded disturbance term
T4 given in (41)). For simplicity, the bounding function p(y, w, zq, z, t) given in (51) was selected as
p = 0.5. The control gains that resulted in the best performance are given below

065 0 ] (79)

ky =555, k, =650, k3=[0 16.0

oo = 0.014, o, =275, & =10, ¢ =075

Note that although k3 of (46) was defined as a scalar constant, we used the values given in (79) to
facilitate the ‘tuning’ process. The position/orientation tracking error of the COM of the WMR
and the associated control torque inputs are shown in Figures 2-4, respectively (note the control
torque inputs plotted in Figure 4 represent the torques applied after the gearing mechanism).
Based on Figures 2 and 3, it is clear that the steady-state position/orientation tracking error is
bounded as follows:

Xl < 8mm, |j] <11mm, |0]<0.85° (80)
wg@h%&—mg@?@@h e L
g_o{?ﬂ ___________ 0 j)@U EDQ )

X Coordinate Frame {m)

Figure 1. Desired cartesian trajectory.

Copyright ) 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:199-216



ROBUST TRACKING AND REGULATION CONTROL 213

)

- ; ; ; ;
[ 10 20 30 40 50 60
Time [sec]

®)

12 i : ; H
o

30
Time [sec]

Figure 2. Position tracking error: (a) X and (b) y.
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Figure 3. Orientation tracking error g.

Remark 6

The control gain values used in (79) were found as a result of ‘tuning’ the controller until the
position/orientation tracking error improved. Note that similar results may be obtained by
‘tuning’ the controller in a slightly different manner.

Remark 7

Due to unmodeled effects associated with the wheels and the drive mechanism (i.e. slippage,
backlash, etc.), it is impossible to determine the actual position/orientation tracking errors of the
WMR since we must rely solely on position measurements from the encoders. An additional
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Figure 4. Control torque input: (a) steering motor and (b) drive motor.

problem that is associated with the K2A mobile robot is that the encoder that provides angular
position measurements is mounted after the gearing mechanism. Hence, the placement of the
low-resolution angular position encoder after the gearing mechanism results in the problem that
the motor must turn 37.27° before any motion is detected. Since, the angular position measure-
ment is required for calculating both the position and orientation signals (see the discussion in the
experimental configuration section), we believe that the initial chattering observed in Figure 3
and the ‘shift’ in the y-coordinate tracking error in Figure 2 could be associated with the
aforementioned concerns. In addition, we believe that if encoders having a higher resolution
could somehow be mounted before the gearing mechanism then the tracking error bounds given
in (80) could be decreased further.

7. CONCLUSION

In this paper, we have presented the design of a robust nonlinear tracking controller for a mobile
robot system. Through the use of a Lyapunov-based stability analysis, we have demonstrated
that: (i) the position and orientation tracking errors globally exponentially converge to a neigh-
bourhood about zero that can be made arbitrarily small, (ii) the controller provides robustness
with regard to parametric uncertainty and additive bounded disturbances in the dynamic model,
and (ii)) a unified scheme was developed which solves both the tracking and the regulation
problems. In addition to the WMR problem, the proposed kinematic controller can be applied to
other non-holonomic systems (see [5] for exampies), and hence, its applicability extends farther
than the mobile robot problem. Experimental trials on a modified Cybermotion K2A mobile robot
system were used to illustrate the feasibility and the performance of the proposed controller. Future
work will involve the redesign of the proposed kinematic controller to allow it to be used in the
design of an adaptive controller for the compensation of uncertainty in the dynamic model’

Y For several technical reasons associated with the structure of the transformed system given by (8), it is not obvious how
one can redesign the proposed kinematic controller to achieve this objective.
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APPENDIX A

To calculate 1i4(f) , we take the time derivative of (48), substitute for the time derivative of u,(t)
defined in (15), utilize (8) and then add and subtract k,u4 to the left-hand side to obtain

u'd = (M>sz — 2<M>sz + led + <Q] + <klw+f>.]>2d - k2 [Md — 7]] (Al)

83 o3 83

Second, to illustrate that ug(t) € £, we utilize (48), (15)-(17), (26), (9), (13), (18), (21), the time
derivative of Q;(r), and the fact that

|F1< Aol (1Zall + 121D + 4l5didzall + 121 (A2)

to upper bound 4(t) as follows:

iy < (kl_f>12d + <4|lvr||(Hz’d|| + 1121) t4ill5r|i(\!zdll + Ilfl|)>JZd
04 03

kyw + )0 ) 52 2w + )W

_2<( 1W6(31f) d>JZd+£Zd—5_§Zd+( Wég f)WZd

N w(@llv (12l + 121) + 415 NIzl + 121)
) Zq
04

2 = -
- 2((’“—‘”;3—%(32)% + (91 n <5‘V;T+[ >J>z‘d —kyfug—nl.  (A3)
d d

Thus, based on the definition of d4(¢) given in (18) and the fact that w, Z, 24y Up U Wy fy Zas Z, Ug,
ne ¥, (see Theorem 2), it is straightforward to see from (A3) that g(t) € Lo
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