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Abstract Halteres, the modified rear wings of Diptera,

have long been recognized as sensory organs necessary for

basic flight stability. These organs, which act as vibrating

structure gyroscopes, are known to sense strains propor-

tional to Coriolis accelerations. While compensatory

responses have been demonstrated that indicate the ability

of insects to distinguish all components of the body rate

vector, the specific mechanism by which the halteres are

able to decouple the body rates has not been clearly

understood. The research documented in this report

describes a potential mechanism, using averaged strain and

strain rate at the center of the haltere stroke, to decouple the

inertial rate components. Through dynamic simulation of a

nonlinear model of the haltere 3-dimensional trajectory,

this straightforward method was demonstrated to provide

an accurate means of generating signals that are propor-

tional to three orthogonal body rate components. Errors

associated with residual nonlinearity and rate-coupling

were quantified for a bilaterally reconstructed body rate

vector over a full range of pitch and yaw rates and two roll

rate conditions. Models that are compatible with insect

physiology are proposed for performing necessary signal

averaging and bilateral processing.

Keywords Diptera � Haltere � Flight stability �
Strain rate � Campaniform sensilla

Abbreviations

dF1 Dorsal ‘hicks papillae’

dF2 Dorsal basal plate

dF3 Dorsal scapal plate

vF1 Ventral ‘hicks papillae’

vF2 Ventral scapal plate

MEMS Micro electro mechanical sensor

mnb1 First basalar motor neuron

c Haltere stroke angle

h Out of plane deflection angle
ax
* b

Angular rate vector of reference frame ‘‘b’’

with respect to frame ‘‘a’’
aa
*b

Angular acceleration of reference frame ‘‘b’’

with respect to frame ‘‘a’’

P
*

12 Position vector from point 1 to point 2

Xi Angular rate component in the haltere reference

frame

Wi Angular rate component in the body frame
ea
*1

Acceleration vector of point 1 with respect to

frame ‘‘e’’
ev
*1

Velocity vector of point 1 with respect to frame

‘‘e’’

f Critical damping ratio for out-of-plane motion

xn Haltere out-of-plane natural frequency

b̂1; b̂2; b̂3 Unit vectors defining the ‘‘b’’ reference frame

r Haltere radius of gyration

Introduction

The halteres of Diptera (Fig. 1) are well established as

organs necessary for flight stabilization. The mechanism by

which the stabilization occurs was debated between the

18th and the first half of the twentieth century, with some
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arguing that the haltere was a ‘‘stimulant’’ for flight motor

function, others claiming the haltere functioned as an

inertial balancing system, and still others claiming the

halteres were a gyroscopic sensory mechanism (Fraenkel

and Pringle 1938; Fraenkel 1939). However, the work of

Pringle (1948) provided a firm basis for viewing the haltere

as a gyroscopic sensor, optimized for sensitivity to Coriolis

forces. The Coriolis force occurs when an object with mass

and a finite velocity is constrained to move in a fixed path

within a reference frame that is rotating. The Coriolis force

is proportional to the reference frame rotation rate, so if

through an appropriate strain sensor the force is measured,

then a signal is available for rate damping in a stabilizing

control loop. Pringle initially did not recognize the ability

of the mechanical configuration of the halteres to distin-

guish between pitch (transverse axis) and roll (longitudinal

axis) rotations and therefore assumed the use of the halteres

was limited to yaw (vertical axis) rotations. This position

was later recanted (Pringle 1957) based on the findings of

Faust (1952) that demonstrated stabilizing wing reflexes

associated with pitch, yaw and roll in Calliphora. It was

not until much later that Nalbach reviewed in detail the

significance of all forces acting on the halteres (Nalbach

1993) and elaborated on the potential benefits of non-

orthogonality of the haltere pair (Nalbach 1994). A number

of authors have demonstrated the compensatory reactions

of the head and wings to independent components of the

body rate vector, thereby demonstrating the role of halteres

in both image stabilization and attitude control (Faust

1952; Sandeman and Markl 1980; Hengstenberg et al.

1986; Dickinson 1999; Bender and Dickinson 2006). Heide

(1983) performed extensive research associated with the

haltere phase tuning of the first basalar motor neuron

(mnb1) in control of wing kinematics. This was followed

by a number of related studies of flight motor control, e.g.,

Tu and Dickinson (1994, 1996).

Pringle (1948) and Nalbach (1993) recognized that each

haltere, due to its large amplitude motion, is sensitive to two

orthogonal rate components in its plane of motion, and,

further, describe the distinct impacts of the vertical and

horizontal rate components on the haltere. The vertical rate

component, Xx in Fig. 2, generates a force with twice the

frequency content of the horizontal component. This

knowledge has been the basis for the acceptance, with

incomplete understanding, of the apparent ability of flies to

distinguish between body rate components. Given the

Fig. 1 Characteristic locations of the halteres and their strain sensors.

Fields of campaniform (# of sensilla): dF1: dorsal ‘Hicks papillae’

(17), dF2: dorsal basal plate (100), dF3: dorsal scapal plate (110),

vF1: ventral ‘Hicks papillae’ (10), vF2: ventral scapal plate (100). Not

shown are the large and small chordotonal organs
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Fig. 2 As the haltere beats back

and forth the velocity

component perpendicular to Xx

changes sign at twice the

frequency as the component

perpendicular to Xy. This results

in a Coriolis force with two

distinct frequency components
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haltere specific rate components, variations of bilateral

summing and differencing allow construction of signals

proportional to components of the body rate vector in any

body-fixed direction. Studies have demonstrated the loca-

tion and activation of both ipsilateral and contralateral

neural pathways between the halteres and the muscles of the

wing and neck (Sandeman and Markl 1980; Fayyazuddin

and Dickinson 1996, 1999). Further studies have demon-

strated visual pathways to the halteres allowing speculation

of a feedforward process that introduces virtual rate ‘‘errors’’

into the control loop through the manipulation of a complex

of muscles at the base of the haltere (Chan et al. 1998).

The objective of the current research is to use the

techniques of engineering mechanics to analyze the haltere

and thereby establish the fundamental quantities required

for and mathematical limitations associated with recon-

struction of body rate components. The only viable

mechanism documented so far for decoupling of the two

haltere rate components has been frequency demodulation

(Wu and Wood 2006). In contrast to frequency demodu-

lation, the methods of this paper demonstrate the potential

to use strain and strain rate encoded by the mechanore-

ceptors at the base of the haltere to measure the same two

rate components. This measurement is possible due to the

natural decoupling of the rate components at the center of

the haltere stroke and the approximately linear nature of

the governing equation of motion. An error analysis is also

provided that illustrates how relative errors inherent in the

measurement of all three body rate components can be

inferred due to the nonlinearities in the ‘‘true’’ equations of

motion. These results have implications to interpretation of

past experimental results and understanding of sensory

structures associated with the halteres.

Methods

Previous work on haltere mediated reflexes (Dickinson

1999) describes the physical geometry of the fruit fly,

Drosophila melanogaster. This description of the geometry

(Fig. 3) is used as a starting point for the haltere analysis in

this paper. The predominant characteristics of the biological

system used in the current development are the amplitude of

the haltere stroke and the configuration of the halteres with

respect to the mid-sagittal and transverse planes of the fly

body. The halteres on Drosophila oscillate in a plane that is

tilted back roughly thirty degrees toward the mid-sagittal

plane. The line that defines the intersection of the haltere

stroke plane with the sagittal plane is rotated toward the

head by approximately twenty degrees so that at the top of

its stroke the tip of the haltere is in a more anterior position

than at the bottom of the stroke as shown in Fig. 3. How-

ever, since the line of intersection of the haltere planes is,

for convenience, used to define the body yaw axis, x̂3; the

value of this angle is arbitrary. For the purpose of this study

the intersection of the haltere planes is assumed to be fixed

relative to the body. The wing beat frequency, which was

nominally 215 Hz in the data reported by Dickinson (1999)

for Drosophila, varies significantly both within and

between species. For the sake of analytical convenience, a

haltere frequency of 200 Hz was used in simulations where

general effects of out-of-plane stiffness and damping

impact on the trajectory were simulated.

The equations of motion developed in this study are non-

dimensional and describe the system in terms of its natural

frequency and damping coefficient. The component of the

haltere motion in the primary plane of oscillation is assumed

to be deterministic and purely harmonic as observed in the

Fig. 3 Reference frame

definitions for the halteres, b
and c, and frame x, which

defines the roll (x1), pitch (x2)

and yaw (x3) axis. The angle

beta is arbitrary with this

definition of reference frames
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body reference frame, oscillating through a range of ±90�.

Damping of out-of-plane motion is assumed to be propor-

tional to the angular rate of the out-of-plane motion and the

stiffness proportional to out-of-plane displacement. The

source of stiffness is not specified, whether it is due to the

resiliency of the haltere stalk or the joint and its associated

musculature. The haltere model for out-of-plane motion can

be considered as an equivalent mass at the radius of gyration

of the haltere on a rigid massless structure with a torsional

spring and damper at the base. The actual dynamics and

control of the haltere may be much more complex and is an

area of ongoing research. Chan et al. (1998) describes eight

direct control muscles at the base of the haltere similar to the

muscles at the base of the wing. These muscles could pos-

sibly fine tune the kinematics of the haltere.

The equations of motion are generated without any

small angle assumptions for the purpose of simulating the

haltere trajectory under the influence of constant inertial

body rates. Transients are not considered in this phase of

the research and only the haltere response under the ideal

conditions of constant angular rate were examined to draw

preliminary conclusions about the fundamental limitations

of the haltere or haltere pair. This steady-state assumption

is equivalent to assuming that the body rates have a sig-

nificantly longer period than the period of haltere

oscillation and any associated transients.

Finally, the component of angular rotation of the haltere

in its primary plane is assumed to be sinusoidal. That is, the

angular position c of the haltere in its primary plane of

motion is assumed to be

c ¼ p
2

sin(xtÞ;

where x is the constant beat frequency of the haltere. The

actual profile has been observed to be closer to a saw-tooth

pattern (Nalbach 1993) having a flatter angular velocity

profile for the majority of the stroke and a quicker turn

around at the ends. The sinusoidal model provides an

analytically simpler form that can be used to develop valid

conclusions due to the similar symmetry of motion with

respect to the center of the stroke.

Results

Kinematic assessment

Insight regarding the forces acting in the out-of-plane

direction can be examined by first assuming no out-of-plane

haltere deflection. The right half of Fig. 3 shows the right

haltere and reference frame directions associated with the

haltere and inertial space. In the following sections, hatted

variables represent unit vectors that describe orthogonal

directions for the required reference frames. Left

superscripts describe which reference frame the vector

quantity is observed within. Right superscripts identify the

point or reference frame the quantity characterizes. The

body angular rate vector relative to the inertial frame, ex
* b ¼

ex
* x
; is represented in the right haltere reference frame as

ex
* b ¼ X1b̂1 þ X2b̂2 þ X3b̂3: ð1Þ

In this expression, Xi are the angular velocity

components and b̂i are the body fixed unit vectors as

shown in Fig. 3. The position, velocity and acceleration of

a point mass at the radius of gyration of the haltere are

found through successive differentiation to be

P~02 ¼ P
*

01 þ P
*

12 ð2Þ
ev
*2 ¼ ev

*1 þ bv
*2 þ ex

* b � P
*

12 ð3Þ
ea
*2 ¼ ea

*1 þ ba
*2 þ 2ðex* b � bv

*2Þ þ ex
* b � ðex* b � P

*

12Þ
þ ea

*b � P
*

12:

ð4Þ

In these expressions, 0, 1, and 2 refer to an arbitrary

point fixed in inertial space, a point at the base of the

haltere, and a point at the radius of gyration of the haltere,

respectively. The first acceleration term, ea
*1
; which is the

acceleration of the base of the haltere with respect to the

inertial frame is assumed to be small. The second term, ba
*2

which represents acceleration of the haltere mass as

observed from the body, is entirely in the plane of the

haltere. Nalbach (1993) showed that these primary

accelerations in the plane-of-motion are much higher

than contributions associated with the body angular rates,

and therefore, useful information pertaining to the body

rates is unlikely to be ascertained from in-plane force

measurements. The last term, ea
*b � P

*

12; which involves

the angular acceleration of the body, was also shown by

Nalbach to be a factor of 5 or more less than the third

(Coriolis) term for sinusoidal body oscillations under

50 Hz. The remaining two terms after taking the

appropriate vector products are

2ðex* b� bv
*2Þ ¼ 2r _c½�X2 sinðcÞb̂1

þ ðX1 sinðcÞ þX3 cosðcÞÞb̂2�X2 cosðcÞb̂3�
ð5Þ

ex
* b � ðex* b � P

*

12Þ ¼ r½ð�X2
2 sinðcÞ � X2

3 sinðcÞ
þ X1X2 cosðcÞÞb̂1 þ ðX1X2 sinðcÞ
þ X2X3 cosðcÞÞb̂2 þ ðX1X3 sinðcÞ
� X2

1 cosðcÞ � X2
2 cosðcÞÞb̂3�: ð6Þ

The expression in Eq. 5 is the Coriolis term which

generates out-of-plane ðb̂2Þ force components associated

with the in-plane body rates. These components are
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proportional to 2 _cX1 and 2 _cX3: The other components

represent an in-plane acceleration directed along the stalk of

the haltere proportional to X2. The expression in Eq. 6

describing the centripetal accelerations, also generates out-

of-plane forces on the haltere proportional to X1X2 and

X2X3. The relative magnitudes of _c and X2 will determine

the significance of these centripetal terms. Errors introduced

by these terms are quantified subsequently. If the centripetal

terms are small, the out-of-plane force on the haltere should

be predominantly due to the Coriolis term and therefore will

be associated with the body rate components that are in the

primary plane of the haltere motion. Equations 5 and 6 are

based on the assumption that the haltere is infinitely rigid

and does not deflect out-of-plane. This assumption is the

basis for the previous kinematic analysis of the haltere by

Pringle and Nalbach and is useful for developing intuition

regarding the predominant forces that impact the problem.

In the following section, this assumption is eliminated to

simulate the out-of-plane motion, or equivalently the strains

resulting from that motion.

If the halteres are assumed to measure forces associated

with the Coriolis accelerations, the measured signals should

be proportional to the in-plane body rate components, X1

and X3, as shown in Eq. 5. If two halteres that are initially in

a common plane are rotated out of the plane by an angle a as

shown in Fig. 3, then all three components of the body

inertial rate vector can be reconstructed. The body rate

vector represented in the body-fixed roll, pitch, yaw frame is

ex
* b ¼ W1x̂1 þW2x̂2 þW3x̂3; ð7Þ

where (W1, W2, W3)are the body roll, pitch, and yaw rates,

respectively.

The relationships between the components of the body

rate vector represented in the body roll, pitch, yaw frame

and the components represented in the right haltere frame b̂

and the left haltere frame ĉ are

ex
* b ¼ W1x̂1 þW2x̂2 þW3x̂3; ð7Þ

ex
* x ¼Xb1b̂1 þ Xb2b̂2 þ Xb3b̂3

¼Xc1ĉ1 þ Xc2ĉ2 þ Xc3ĉ3

ð8Þ

W1 ¼ �
Xb3 þ Xc3

2sinðaÞ ð9Þ

W2 ¼
Xb3 � Xc3

2cosðaÞ ð10Þ

W3 ¼ �
Xb1 þ Xc1

2
¼ �Xb1 ¼ �Xc1: ð11Þ

The importance of these transformations is that they

allow a direct calculation of rate components along the

body roll, pitch, and yaw axes, W1, W2, and W3, given the

two rate components that are measurable in each of the

haltere reference frames. The research on halteres by

Pringle (1948) did not recognize the ability of the insect to

combine the output of two halteres and thereby distinguish

between pitch and roll components of the body rate vector.

Pringle initially assumed that the halteres represented a

redundant means of measuring yaw rate. Later

experimental results by Faust (1952) demonstrated the

ability of flies to react independently to each of the body

rates. Nalbach (1994) also published an article that

experimentally demonstrated the bilateral combination of

haltere measurements in Calliphora. Therefore, within the

neural architecture of dipteran insects there may be a basic

representation of Eqs. 9–11, although this does not rule out

fusion of measurements from other sensors that support

inertial stabilization.

Dynamics equation allowing for out-of-plane motion

For the purpose of simulating the dynamics of the haltere,

out-of-plane motion is considered. With the out-of-plane

deflection angle defined as h, summing moments associated

with damping, stiffness, and inertial forces around the base

of the haltere results in the following expression:

€hþ 2fxn
_hþx2

nh¼ _X3 sinðcÞ� _X1 cosðcÞ� _c2 cosðhÞ sinðhÞ
þ 2_c½ðX3 cosðcÞþX1 sinðcÞÞcos2ðhÞ
�X2 cosðhÞ sinðhÞ�
þ ðX2

3 cos2ðcÞþX2
1 sin2ðcÞ

�X2
2ÞcosðhÞ sinðhÞ

þ ðX2X3 cosðcÞþX1X2 sinðcÞÞcosð2hÞ
þ 2X1X3 cosðhÞ sinðhÞcosðcÞ sinðcÞ:

ð12Þ

In Eq. 12, f is the damping ratio, and xn is the natural

frequency that characterizes the out-of-plane stiffness and

mass characteristics of the haltere. In this form, the haltere

can be simulated by varying the out-of-plane natural

frequency relative to the haltere beat frequency as well as

varying the haltere damping characteristics. Again, the

haltere stroke angle is assumed to vary with a simple

characteristic motion c¼ p
2
sin(xhtÞ; with the angular

frequency of the haltere, xh = 200 Hz. The derivation of

Eq. 12 is described in the ‘‘Appendix’’. The relationship

describing the single axis sensitivity of a micro-electro-

mechanical (MEMS) vibrating structure gyroscope can be

found through simplification of this expression (e.g.,

Apostolyuk 2006).1

1 For the case where both h and c are much less than 1, damping is

small, xn
2 � A2xh

2, and xn
2 � xh

2, Eq. 12 reduces to €hþ x2
nh ¼

2X3 _c ¼ 2X3Axh cosðxhtÞ: The forced solution to this equation, h ¼
2X3Axh cosðxhtÞ=x2

n; is the solution for the out-of-plane displace-

ment of the MEMS gyro mechanism.
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Haltere trajectory simulations

Simulations of the developed equation of motion were

executed for a variety of cases with variations in the

damping ratio and out-of-plane stiffness. The intent was to

determine the characteristics of the displacement trajecto-

ries and the impact of nonlinear coupling of out-of-plane

rate components into the in-plane component measure-

ments. All simulations were executed with constant body

rates. For the purpose of generating the plots, the haltere

motion was initiated with no out-of-plane displacement and

the haltere was allowed to transiently respond to the forces

resulting from input body rates. The simulation was exe-

cuted for 40 oscillations, with the last 20 used for making the

plots. Because the haltere reaches a steady state trajectory,

the 20 oscillations overlap, appearing as one closed loop.

The only cases in which the haltere did not reach steady state

were when the out-of-plane natural frequency was signifi-

cantly less than the haltere oscillation frequency, or for low

damping. These plots are not shown since they represent

very large out-of-plane motion for the assumed model,

which would not be representative of the biological system.

Out-of-plane stiffness variations

Figures 4 and 5 show the trajectories associated with a

haltere out-of-plane natural frequency equal to and

double the beat frequency of 200 Hz, respectively. The

plots show out-of-plane displacement in radians as the

ordinate, plotted against the stroke angle of the haltere as

the abscissa. A haltere stroke angle of 0 has the haltere

at the center of the stroke. The X1 input generates the

expected frequency doubled signal as the haltere sweeps

through a semi-circular arc causing the velocity compo-

nent perpendicular to X1 to change sign twice, therefore

the Coriolis force changes sign twice. The haltere

velocity perpendicular to X3 only changes sign once,

giving no frequency doubling effect. The angular dis-

placements peak at approximately half a degree for the

conditions shown. When the natural frequency is sig-

nificantly below 200 Hz, the out-of-plane motion is

driven to very large angles and never reaches a steady

state pattern.

Damping variations

Examples of damping variations are shown in Fig. 6 for

the case of xn = 200 Hz and input body rates of

X1 = X3 = 10 rad/s. These plots demonstrate the signifi-

cant impact that damping variations, whether passively or

actively induced, can have on the haltere trajectory. At low

damping levels, f & 0.01, the trajectory never reached

steady state within the forty oscillation (0.2 s) simulation

time (data not shown).
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Fig. 4 Haltere trajectories for

xn = 200 Hz (left) and

xn = 400 Hz (right). Input

conditions X1 = 10 rad/s,

X2 = X3 = 0 and f = 0.1
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Average haltere position

The haltere displacement averaged with respect to haltere

stroke angle is also shown in Fig. 6. However, when the

average displacement is plotted separately for the two rate

components as in Fig. 7, an interesting characteristic

emerges that may provide insight into a possible mecha-

nism by which the body rates are decoupled by the insect.

Figure 7 demonstrates a natural decoupling of the body

rate components at the center of the haltere stroke. At

c = 0, the averaged magnitude of the response driven by X3

is zero and the averaged slope of the response driven by X1

is zero. If the governing differential equation (i.e., Eq. 12)

that describes the motion of the haltere is approximately

linear, then the final trajectory of the haltere would simply

be the superposition of the response of the two plots shown.

Also, each of these plots would scale in proportion to the

magnitude of the associated body rate since the Coriolis

forces driving the motion are proportional to the respective

body rates. Therefore, by measuring the slope and the

magnitude of the response near the peak of the haltere tra-

jectory, and having tuned in the appropriate proportionality

constants, the body rate components in the plane of the

haltere motion could be directly obtained. These observa-

tions suggest the following hypotheses:

1. An organism with halteres measures a signal propor-

tional to the magnitude of the averaged strain at the

peak of the haltere stroke and takes advantage of the

approximate linearity of the haltere dynamics to

estimate X1 (i.e., X1 is proportional to the averaged

magnitude of the strain at the middle of the stroke).

2. An organism with halteres measures a signal propor-

tional to the magnitude of the averaged strain rate2 at

the peak of the haltere stroke and takes advantage of the

approximate linearity of the haltere dynamics to

estimate X3 (i.e., X3 is proportional to the averaged

magnitude of the strain rate at the middle of the stroke).

Measurements by Pringle (1948) gave indication that the

nerve afferents at the end of the stroke may be over-

whelmed by signals associated with haltere motion

reversal. This would support the supposition that the

response of Coriolis-sensitive sensilla during the middle of

the haltere stroke is of primary use by insects. The
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Fig. 7 Haltere trajectories for

X1 = 10 rad/s (left) and

X3 = 10 rad/s (right) with the

average displacement plotted as

a function of stroke angle

2 Note that the term strain rate can refer to two quantities that are

proportionally related at the center of the haltere stroke. Because the

angular acceleration of the stroke is approximately zero at the middle

of the stroke, the strain rate is proportional to the spatial derivative of

strain (e) with respect haltere position (c). That is

de
dt
¼ de

dc
dc
dt
¼ Const � sgn dc

dt

� �
� de
dc

.
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proposed method of determining the body rates is more

direct than that patented by Wu and Wood (2006). In their

patent, the fundamental frequency doubling is taken

advantage of through a demodulation scheme to separate

the two signals and determine the driving forces. The

method proposed here may be directly realizable using

discrete measurements, although it remains to be proven

that the fields of strain mechanoreceptors (campaniform

sensilla) existing at the base of the haltere encode quanti-

ties proportional to both strain and strain rate.

The described mechanism for measuring the body rates

requires three characteristics of Eq. 12.

1. Linearity

2. Minimal dependence on the out-of-plane body rate X2

3. Two independent forcing functions proportional to the

in-plane body rate components X1 and X3

If these characteristics are met, the response to the two

in-plane body rate components is uncoupled and the two

independent responses are linearly proportional to the

magnitudes of the respective body rates. By making vari-

ous approximations associated with small displacement

angles and the magnitudes of the various coupling terms,

Eq. 12 can be reduced to a form that expresses the desired

characteristics,

€hþ 2fxn
_hþ ðx2

n þ _c2Þh ¼ 2 _cX3 cosðcÞ þ 2_cX1 sinðcÞ:
ð13Þ

If _c2 is further assumed to be small compared to xn
2 then

a second form that satisfies the desired characteristics can

be found,

€hþ 2fxn
_hþ x2

nh ¼ 2 _cX3 cosðcÞ þ 2_cX1 sinðcÞ: ð14Þ

The second form, shown in Eq. 14, is intuitive since it is

a simple spring-mass-damper driven by Coriolis forces.

An open question is whether either Eq. 13 or Eq. 14 are

a valid approximation of the full non-linear equation.

Comparative simulations were performed between Eqs. 12

and 14. The closeness of the two darker curves in Fig. 8

demonstrate that the first form of the linear approximations

in Eq. 13 is an accurate representation of the haltere

response, unlike the results from Eq. 14 which are plotted

in the lighter color. Since Eq. 13 is a good approximation,

the natural decoupling of the trajectories is assumed to be a

generally valid assumption.

Analysis of errors due to non-linearity

An error analysis was performed to demonstrate the limi-

tations the non-linear and out-of-plane cross-coupling terms

imposed on the linear approximation of Eq. 13. Simulations

were executed over a full range of pitch and yaw body

rates (i.e., -20 B W1 B 20 and -20 B W2 B 20 rad/s).

Although Schilstra and van Hateren (1999) described a

maximum angular rate of 2,000 deg/s (34 rad/s) for Calli-

phora vicina, measurements included intentional saccadic

maneuvers. The lower rate used in these simulations

(20 rad/s) is considered a sufficient maximum for rate errors

incurred during typical stabilized flight. These rates were

transformed into the reference frames for each of the hal-

teres and then the dynamics for the haltere were simulated

using the full nonlinear model in Eq. 12. Using best esti-

mates of the strain rate and strain magnitude proportionality

constants (i.e., constants found to give near zero error for an

idealized linear model) the body rates in the haltere frames

were estimated. The estimates from the two halteres were

then combined using Eqs. 9–11 to reconstruct an estimate

for the roll, pitch and yaw rates in the body frame. Each plot

represents errors associated with 1681 combinations of yaw

and pitch rate for a fixed roll rate. The error is the difference

between the exact input body rates and the estimated body

rates as demonstrated in Fig. 9.

Figure 10 depicts the absolute errors for the pitch, yaw,

and roll components of the body rates for the case of

critical damping (f = 1) and 400 Hz out-of-plane natural

frequency. Figure 11 shows the errors for the case where

the body roll rate is 5 rad/s.

The change in characteristics shown in Fig. 11 can be

explained by examining the governing equation of motion

(Eq. 12). The terms involving X2, which is the out-of-plane
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rate component and the component most closely aligned

with the body roll axis, are summarized below after

assuming a small out-of-plane displacement angle, h

�2_cX2hþ X2
2hþ X2X3 cosðcÞ þ X1X2 sinðcÞ: ð15Þ

Since h is small, the last two terms in Eq. 15 will

dominate. Note that cos(c) will always be positive for all

stroke angles, c, and will be symmetric around c = 0.

Therefore, the term involving cos(c) will influence the

magnitude of the out-of-plane displacement at c = 0 (i.e.,

the term will influence the yaw error). The term is also

proportional to X3, which is closely aligned with the body

pitch axis. Therefore, roll coupling will introduce error in

the yaw rate estimate that is proportional to the pitch rate.

This linear relationship between yaw rate estimation error

and pitch rate is exactly what is depicted in the left hand

plot in Fig. 11. Similar arguments, accounting for the

influence of the sin(c) function on the slope of the haltere

out-of-plane motion at c = 0 and the proportionality of

pitch rate estimation error to the body yaw rate X2, can be

made to explain the second plot in Fig. 11. The similarity

of the third plots in Figs. 10 and 11 indicate that the errors

from the two halteres cancel, leaving the roll estimate error

unaffected by roll rate.
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Discussion

The intent of this research was to complement previous

studies of halteres by performing a more rigorous analysis

of mechanical response, establishing the potential mecha-

nisms and inherent limitations for reconstruction of a

complete body inertial rate vector (e.g., pitch, yaw and roll

rate). In summary, a derivation of the kinematic and

dynamic relationships is provided, allowing for simulation

of out-of-plane displacement trajectories of the haltere. In

reviewing these trajectories, a natural decoupling of the

two in-plane inertial rate components is apparent. This is

the most significant result of the current research. The

vertical and lateral components of rate were, respectively,

found to be proportional to the time averaged amplitude

and time averaged slope of the trajectory at the center of

the haltere stroke. When the dynamics were simplified, an

approximate linear form was found, thereby allowing the

observation of decoupling of the rate components to be

held as a general conclusion. Through coordinate trans-

formation, the mathematical relations allowing for bilateral

combination of the haltere-measured rates to construct

signals proportional to the conventional body pitch, yaw,

and roll rate components were summarized.

Simulations were constructed based on the assumed

ability to measure averaged trajectory amplitude and slope,

or equivalently strain and strain rate, at the center of the

haltere stroke. These simulations quantify the error asso-

ciated with the assumed linearity and associated rate

decoupling. Simulations were executed over a wide range

of pitch and yaw rate (-20 to 20 rad/s) and were presented

for two roll rate cases (0 and 5 rad/s).

Mechanoreceptive encoding

The question remains as to whether the haltere mechano-

receptors provide rate component information to the insect

motor control functions in a way that is compatible with the

mathematical constructs described. Ideally, the insect could

discretely sample strain and strain rate signals at the center

of the haltere stroke, average these values over time, and

thereby perfectly decouple the two inertial rate components

in the plane of the haltere motion. The subsequent dis-

cussion will suggest ways in which the proposed

decoupling mechanism may be consistent with the insect

sensory and neuronal anatomy.

The haltere sensor structure is composed of a finite

number of campaniform sensilla distributed in fields at the

base of the haltere and an internal chordotonal organ

(Pringle 1938, 1948; Gnatzy et al. 1987). The homologs to

the haltere sensilla on the forewings are thought to indi-

vidually be poor magnitude detectors due to their rapid

saturation and high frequency functionality (Dickinson

1990). Unlike campaniform sensilla on locust wings that

operate at lower beat frequencies and provide a burst of

action potentials whose strength may correlate well with

strain magnitude (Elson 1987), the campaniform sensilla

on Calliphora wings are thought to fire phasically, perhaps

once per stroke cycle (Dickinson 1990) at saturation.

Fayyazuddin and Dickinson (1996, 1999) documented

research that characterized the afferents of the basal plate

sensilla (dF2) and attempted to rule out the other cam-

paniform fields in ipsilateral control of the basalar wing

muscles. Their conclusion was that dF2 was primarily

responsible for steering motor control associated with

mnb1 and that the connection consisted of both a fast

monosynaptic electrical component and a slow chemical

component. These studies did not report any attempt to

distinguish between strain and strain rate as parameters for

which there may be distinct proportional sensitivity.

Additional studies are required to measure bilateral signal

combination and the potential role of the sensilla of the

chordotonal organ in the haltere which Pringle (1948)

estimated were oriented preferentially to measure bending

shear.

The basal field (dF2) is composed of one hundred spa-

tially distributed campaniform sensilla in Calliphora vicina

(Gnatzy et al. 1987). Assuming dF2 is primarily
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responsible for Coriolis sensing, the proposed hypothesis

requires, either through direct sensing or through appro-

priate processing, measurement of distinct signals

proportional to both averaged strain rate and averaged

strain magnitude using only the sensilla in dF2. For

example, as has been proposed for the insect wing (Dick-

inson 1990), if the magnitude of strain is encoded through

enlistment of increased numbers of sensilla within dF2, the

compound extracellular potential and the related synaptic

drive would increase with strain magnitude. Similarly, the

asymmetry of the haltere trajectory represented by strain

rate at the center of the stroke might be encoded through

differencing of upstroke and downstroke response of dF2.

The phasing of the dF2 response might be related to the

sign of the rate being measured. Pringle (1948) reported a

correlation of the temporal phasing of the spikes, believed

to be coming from the basal field and large chordotonal

organs, to the magnitude of yaw rate. Fayyazuddin and

Dickinson (1999) also demonstrated the impact of phasing

of the signal from the haltere on wing muscle response,

causing both adduction/abduction and amplitude variation

in wing kinematics. The monosynaptic connection between

the halteres and mnb1 is sufficiently fast to synchronously

transmit phasing information (Fayyazuddin and Dickinson

1999).

As described in Fig. 1, there are a number of fields of

strain sensors that are not indicated in the encoding of

Coriolis forces. These fields, along with the chordotonal

organ, may facilitate other aspects of haltere motion, e.g.,

the motion reversal at the ends of the stroke or articulation

of the haltere during abdominal cleaning or tactile retrac-

tion (Sandeman and Markl 1980). The work of Heide

(1983) also suggests the possibility that these other fields

may provide synchronous timing signals that influence the

firing phase of the many steering muscles involved in wing

control. In this way, they may play a role similar to the

proximal campaniform sensilla of the wing which Fayy-

azuddin and Dickinson (1996) indicated could control

firing phase of the first basalar muscle during non-rotating

flight.

Mechanoreceptive averaging modality

The mechanism proposed for rate decoupling requires

averaging of strain parameters on the upstroke and down-

stroke of the haltere. Averaging, as well as the bilateral

combinations described by Eqs. 9–11, can be accomplished

through a number of mechanisms. In addition to direct

signal summation, low pass filtering resulting from tonic

response may also provide a signal proportional to the

average. A third possibility is to obtain the end effect of a

difference or summation of drive signals through applica-

tion of opposing force generation. For example,

commanding increased wing stroke amplitude on one side

and independently commanding a decrease on the other

side effectively provides the bilateral summation of the two

commands in the form of a roll moment.

For pitch rate as defined in this paper, the downstroke

and the upstroke response is simultaneously expressed by

the opposing halteres due to the bilateral symmetry of the

sensor fields and the anti-symmetry of the Coriolis forces

(see Figs. 12, 13). Therefore, the strain magnitude from the

upstroke of the two halteres could be simultaneously

encoded and combined to generate a stabilizing torque

proportional to pitch rate. Alternatively, if averaged strain

rate were encoded by each haltere, the signals could be

ipsilaterally expressed by the wings so that the net result is

proportional to the pitch rate. Bilateral processing is not

required in the case of the yaw rate component due to the

bilateral symmetry of the halteres (Fig. 13). Either haltere
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Fig. 12 The Coriolis force induced by pitch rate has bilateral symmetry, but yaw and roll have asymmetric forces. As a result, summing left and
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can provide a signal proportional to yaw rate by averaging

the upstroke and downstroke strain magnitude of that hal-

tere. Fayyazuddin and Dickinson (1996) showed both a

phasic and a tonic component between the halteres and

mnb1. The tonic response was sufficiently slow to effec-

tively average the upstroke and downstroke signals at the

wing beat frequency. Unambiguously responding to roll

rate errors would require bilateral summation of the aver-

aged strain rate response from both halteres. Assuming

some means of encoding strain rate, roll correction could

be accomplished by ipsilaterally transmitting the upstroke

and downstroke signals through a signal path or muscle

associated with wing stroke amplitude that is sufficiently

tonic to average the signal. The combined effect of the two

wings would then bilaterally combine to create the cor-

recting roll torque.

Preliminary simulation results (data not shown) indicate

that the rate decoupling mechanism described is fairly

insensitive to the details of the encoding scheme. For

example, when continuous, modeled strain and strain rate

signals are passed through a weak low pass filter and then

bilaterally combined according to Eqs. 9–11, the mean

signals track the true rate components well. This indicates

that encoding precisely at the center of the haltere stroke is

not critical. Other preliminary results have demonstrated

the feasibility of encoding and reconstructing the full body

rate vector using only discreet compressive strain magni-

tude measurements to describe the symmetric and

asymmetric aspects of the haltere trajectory. These results

indicate that while direct encoding of strain rate would

represent a useful submodality of the dF2 field, it is not

necessary. Future research will develop and document a

more detailed model of the mechanoreceptor physiology

and the torque motor steering control mechanisms in order

to further establish the proposed model as a biologically

plausible mechanosensory mechanism.

The reported simulation results assume a constant

angular rate and therefore isolate the impact of Coriolis

forces from body angular acceleration. For the case of low

angular acceleration, the results imply the potential to

distinguish the components of the body rate vector. Some

authors have entertained the possibility that halteres are

primarily angular acceleration sensors (Sandeman and

Markl 1980; Sandeman 1980) used for stabilization after

extreme saccadic maneuvers. In contradiction, Hengsten-

berg et al. (1986) later demonstrated a direct correlation

between angular rate magnitude and compensatory

response. The mechanics dictate that both yaw rate and

yaw acceleration will cause the halteres to respond with a

strain magnitude at the center of the stroke. These two

effects will be indistinguishable and a stabilizing response

to one will also be a stabilizing response to the other.

Similarly, roll and pitch accelerations will increase the

average strain rate in a way that provides negative feedback

consistent with the Coriolis forces. The role of the halteres

during saccades needs to be further investigated given the

ability of flies to generate large angular maneuvers in the

span of a few wingbeats (Schilstra and van Hateren 1999).

Assuming similar amplitudes, as the period of a maneuver

approaches the period of haltere motion, the impact of

angular acceleration and Coriolis force will approach the

same order of magnitude. While the model generated in

this report (Eq. 12) includes the body acceleration terms, it

was outside the scope of the current effort to fully evaluate

the impact of all possible kinematic scenarios on flight

stability.
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Appendix: Derivation of the haltere dynamics equation

The expression in Eq. 12 can be determined by defining

two reference frames in addition to the body fixed frame.

These frames are related by the stroke angle c and the out-

Left Haltere Right Haltere Sum/2 Dif/2

Upstroke (mr+mp-my)* +(-br-bp-by) (-mr+mp+my)* +(br-bp+by) mp* -bp (mr-my)* +(-br-by)

Downstroke (mr+mp+my)* +(br+bp-by) (-mr+mp-my)* +(-br+bp+by) mp* +bp (mr+my)* +(br-by)

Average (mr+mp)* -by (-mr+mp)* +by mp* mr* -by( r p) y ( r p) y p r y

Fig. 13 Linear approximations of the strain at the center of the

haltere stroke (mr, mp, my) represent the magnitudes of the roll, pitch

and yaw rate of change of strain with respect to stroke angle. (br, bp,

by) represent the magnitudes of the roll, pitch and yaw strain with

respect to stroke angle. The unilateral and bilateral processing

required to decouple the components is clearly seen by summing and

differencing the right and left haltere responses
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of-plane displacement angle h, as shown in Fig. 14. When

these angles are zero, the three frames are co-aligned. The

associated angular velocities are

ex
* b ¼ X1b̂1 þ X2b̂2 þ X3b̂3 ð16Þ

bx
* h ¼ _c b̂2 ð17Þ

hx
* f ¼ _h ĥ1 : ð18Þ

The position and velocities, as observed in the various

reference frames, of the mass at the end of the haltere

(Point 2) are

P
*

12 ¼ rf̂3 ð19Þ
hv
*2 ¼ hx

* f � P
*

12 ð20Þ
bv
*2 ¼ hv

*2 þ bx
* h � P

*

12 ð21Þ
ev
*2 ¼ bv

*2 þ ex
* h � P

*

12 ð22Þ

The expressions leading to the acceleration of the haltere

relative to the inertial frame are

ha
*2 ¼ ha

*f � P
*

12 þ hx
* f � hx

* f � P
*

12 ð23Þ
ba
*2 ¼ ha

*2 þ 2ðbx* h � hv
*2Þ þ ba

*h � P
*

12 þ bx
* h � bx

* h � P
*

12

ð24Þ
ea
*2 ¼ ba

*2 þ 2ðex* b � bv
*2Þ þ ea

*b � P
*

12 þ ex
* b � ex

* b � P
*

12 :

ð25Þ

The expression in Eq. 25 assumes that the acceleration of

the body (Point 1) is small relative to the relevant haltere

acceleration terms. This results in the acceleration of point

2 with respect to the earth (inertial) frame in the f̂2 direction

as

f̂2 � ea
*2 ¼ r½ _X3 sinðcÞ � _X1 cosðcÞ � _c2 cosðhÞ sinðhÞ

þ 2 _c½ðX3 cosðcÞ þ X1 sinðcÞÞ cos2ðhÞ
� X2 cosðhÞ sinðhÞ�
þ ðX2

3 cos2ðcÞ þ X2
1 sin2ðcÞ � X2

2Þ cosðhÞ sinðhÞ
þ ðX2X3 cosðcÞ þ X1X2 sinðcÞÞ cosð2hÞ
þ 2X1X3 cosðhÞ sinðhÞ cosðcÞ sinðcÞ � €h�:

ð26Þ

The final expression in Eq. 12 is obtained by taking the dot

product of the inertial force, ð�mea
*2Þ; in the direction of

the out-of-plane deflection ðf̂2Þ and then adding the forces

associated with stiffness and damping to create a zero sum

as

f̂2 � ðF
*

inrtial þ F
*

damping þ F
*

stiffnessÞ ¼ 0: ð27Þ

Since rh increases in the negative f̂2 direction, the stiffness

and damping forces were defined as

f̂2 � F
*

damping ¼ rm2fxn
_h ð28Þ

f̂2 � F
*

stiffness ¼ rmx2
nh: ð29Þ

The resulting expression was divided by the product of the

radius of gyration and mass to put it in the final non-

dimensional form as

�f̂2 � ea
*2

r
þ 2fxn

_hþ x2
nh ¼ 0 ð30Þ
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