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I. Introduction

A. Motivation and Literature Review

C UBESATS are small spacecraft typically used in lowEarth orbit

(LEO). At LEO, spacecraft interact with low-density atmos-

phere and experience atmospheric drag. Atmospheric drag is com-

monly considered as a perturbation in the equations of motion for an

orbiting spacecraft, but it can also be exploited to maneuver the

spacecraft using a drag maneuvering device (DMD) (e.g., [1,2]).

Previous work in [3,4] investigated orbital maneuvering, collision

avoidance, and attitude stabilization by a DMD-equipped CubeSat.

However, these algorithms assume that all drag surfaces (DSs) are

evenly deployed at all times. In real operation, lengths ofDSs are hard

to deploy equally due tomanufacturing tolerances, potentially result-

ing in unbalanced torques with respect to the center of mass of the

spacecraft because the DSs are controlled independently.

CubeSat missions usually require maintaining attitude for commu-

nication or sensing purposes. Atmospheric torque andmagnetic torque

are used to maintain the attitude of a CubeSat for sensing tasks in [5],

where a DMD-like distribution of fixed DSs is used to improve the

performance of magnetic-based attitude control. Roto-translational

control using atmospheric drag has also been investigated in [6,7],

where a switching strategy for on-off virtual thrusters and a sliding

mode controller are developed via a Lyapunov-based method.

The atmospheric and gravity gradient torques imposed on a space-

craft heavily depend on its geometry. The distribution and degrees of

freedom of the DSs directly influence the capability of the spacecraft

to control or stabilize its attitude. Common designs have two degrees

of freedom for each DS, e.g., extend/retract and rotation about an

axis, which results in an undesirable increase in complexity and

uncertainty. The hardware specifications of the DMD considered in

this paper are stated in [2].

Atmospheric torque in CubeSat attitude controllers often assumes
that the drag coefficient of the spacecraft and atmospheric density are
known or can be determined. For example, the drag coefficient for the
spacecraft is estimated based on its shape in [8]. For atmospheric
density estimation, Ref. [9] can be used to calculate the density at
various altitudes to characterize the behavior of the satellite under
average orbital conditions. For a specific orbit, more accurate density
models such as the NRLMSISE-00 model [10] can be used for
estimation. Although there are severalmodels for atmospheric density,
solar and geomagnetic activities produce changes that are difficult to
model and predict.
The gravity gradient torque experienced by a spacecraft due to the

gradient of gravitational forces along its body is exploited for attitude
stabilization in [11]. Oscillations about the three body axes propa-
gated from the initial conditions were observed, and improved per-
formance was obtained by deploying DSs along the pitch axis.
Gravity gradient and aerodynamic torques were also used in [12]
for attitude control of CubeSat using reaction wheels and applying
constraints on the actuator torque. Recently, techniques for attitude
stabilization using the DMD have been proposed by combining
gravity gradient torque with magnetic and aerodynamic torques in
[13,14], respectively.
Adaptive control methods can be used to compensate for uncertain-

ties in the system model. However, the parameter estimates may not
converge to the true values without persistent excitation (PE) [15–17].
In general, the PEcondition cannot beguaranteed a priori for nonlinear
systems and cannot be verified online. Specifically, the PE condition
requires the system to be persistently excited over the infinite time
integral. Motivated by the desire to learn the true parameters while
relaxing the PE requirement, an adaptive update scheme known as
concurrent learning (CL) was developed in [18,19] assuming that
higher order states could bemeasured and filtered. The finite excitation
(FE) condition used inCL requires the system to be sufficiently excited
over a finite time period, and CL updates estimates of the constant
unknown parameters based on input and output data of the dynamic
system. The FE condition is a verifiable condition that can be checked
online by examining the eigenvalue of a matrix constructed of input–
output data collected concurrent to the control execution. More recent
developments eliminate the need for higher-order state measurements
through integral concurrent learning (ICL) [20–22].

B. Design Challenges

In this paper, an adaptive controller is designed to track the desired
attitude trajectory of the spacecraft in [2] with a DMD that provides
one degree of freedom for each of its four DSs. Each DS is offset by
90 degwith a fixed inclination angle of 20 degwith respect to the anti-
ram surface of the spacecraft as depicted in Fig. 1. In Fig. 1, the
spacecraft’s body-fixed frame is attached to the center of mass of the
spacecraft, with the b̂1 axis alignedwith the ram direction, the b̂2 axis

on the nadir facing side of the spacecraft, and the b̂3 axis selected to
complete the dextral orthogonal coordinate system. The DSs are

aligned such that surfaces DS1 and DS3 are deployed in the b̂1b̂3
plane, and surfaces DS2 and DS4 deployed in the b̂1b̂2 plane. The
centroidal inertia tensor of the spacecraft is dependent on the
deployed length of each surface. Also shown in Fig. 1 is an orbiting
coordinate frame attached to the center of mass of the spacecraft. The
ô2 axis is aligned with the orbit’s angular momentum vector, the ô3
axis points in the zenith direction, and the ô1 axis completes the
dextral orthogonal triad.
The control objective is to track a given desired attitude trajectory

using the atmospheric and gravity gradient torques produced by
modulating the length and velocity of the DMD DSs while identi-
fying uncertain parameters associated with the drag coefficient and
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atmospheric density. The atmospheric and gravity gradient torques

are included in the nonlinear dynamic model without the typical

small angle assumption. Moreover, the control inputs are coupled

with the time-varying inertia tensor due to the changing lengths of

the DSs of the DMD. Specifically, because attitude tracking is

achieved through modulating the DMD, the torques resulting from

the time derivative of the inertia tensor term are included in the

subsequent analysis, generalizing typical results such as [6,7,14].

Given the time derivative of the inertia tensor, the control inputs

include both lengths and velocities of DSs instead of only the

lengths. To track the desired attitude trajectory, the control inputs

need to satisfy the subsequently designed auxiliary control using an

optimization algorithm to adjust the configuration of the surfaces.

The development is further complicated by the fact that a drag

coefficient and the atmospheric density are multiplicative uncer-

tainties with the control input. Lyapunov-based techniques are

used to guide the design of an ICL controller that simultaneously

identifies the uncertain parameters without requiring the traditional

PE condition. Instead, the verifiable FE condition (subsequently

described in Sec. VI.B) is used. Specifically, before the FE con-

dition is satisfied, a Lyapunov-based analysis is used to prove that

the tracking errors are bounded. Once the FE condition is satisfied,

further analysis is used to conclude uniformly ultimately bounded

parameter identification. Two simulation examples are provided to

demonstrate the performance of the proposed approach. The devel-

oped controller was able to track a desired trajectory with less than

�8.0 × 10−2 deg steady-state error in Euler angle representation,

while simultaneously identifying the uncertain drag coefficient and

atmospheric density with up to 0.93% error.

II. Preliminaries

Let R and Z denote the set of real numbers and integers, respec-

tively, where R≥0 ≜ �0;∞�, R>0 ≜ �0;∞�, Z≥0 ≜ R≥0 ∩ Z, and

Z>0 ≜ R>0 ∩ Z. Let p ∈ Z>0. The p × p identity matrix is denoted

by Ip. The skew symmetric matrix a× ∈ R3×3 for a vector

a ≜ � a1 a2 a3 �T ∈ R3 is defined as

a× ≜

24 0 −a3 a2
a3 0 −a1
−a2 a1 0

35
The cross-product operator is denoted as×. Note that the vector cross
product can be expressed as the product of a skew symmetric matrix

and a vector (i.e.,b ≜ � b1 b2 b3 �T ∈ R3), e.g.,a × b � a×b. The

Euclidean norm of a vector m ∈ Rp is denoted by kmk ≜
�����������
mTm

p
,

and the absolute value of a scalar n ∈ R is denoted by jnj. The
notations λminf⋅g and λmaxf⋅g denote the minimum and maximum

eigenvalues of f⋅g, respectively.

III. Attitude Dynamics

The symmetric centroidal moment of inertia tensor about the
center of mass of the spacecraft is denoted as J ∈ R3×3 in the body
coordinate system.** The angular velocity of the spacecraft with

respect to the inertial reference frame can be defined as ω ∈ R3 in

the body coordinate system. The atmospheric torque τAT ∈ R3 can be
obtained as [14]

τAT �
X4
j�1

r×j Fd;j; j � 1; 2; 3; 4 (1)

where rj ∈ R3 denotes the vector points from the center of mass of

the spacecraft to the geometric center of the jth DS expressed in the

body coordinate system, and Fd;j ∈ R3 denotes the drag force gen-

erated by the jth DS of the DMD. The drag force Fd;j ∈ R3 can be

expressed as [14]

Fd;j � −
1

2
CDρLjwbkv⊥;jk2vr (2)

where CD ∈ R>0 denotes the uncertain drag coefficient of the DS
(assumed equal for all DSs), ρ ∈ R>0 is a constant uncertain atmos-
pheric density,†† wb ∈ R>0 is the width of the DS, Lj ∈ R≥0 and

v⊥;j ∈ R denote the length and the component of the spacecraft’s

velocitywith respect to the atmosphere that is perpendicular to the jth
DS, respectively, and vr ∈ R3 denotes the unit vector in the direction
of the velocity vector of the spacecraft with respect to the atmosphere
expressed in the body coordinate system. The gravity gradient torque

τGG ∈ R3 can be obtained as

τGG � 3GM�
kRck5

R×
c JRc (3)

where G ∈ R>0 denotes the universal gravitational constant, M� ∈
R>0 denotes the mass of the Earth, and Rc ∈ R3 denotes the vector
that goes from the center of the Earth to the center of mass of the
spacecraft.‡‡Based on Eqs. (1–3), the spacecraft attitude dynamics are

_Jω	 J _ω	 ω×Jω � τAT 	 τGG (4)

Remark 1: Considering that the material of the DMD surfaces is
Austenitic 316 stainless steel [2], it is assumed that these surfaces do
not contribute on the magnetic disturbance torques of the CubeSat.
Moreover, the design of the spacecraft does not include permanent
magnets or high magnetic hysteresis materials. The magnitude of the
residual magnetic moment of the spacecraft, and the associated
maximum magnetic disturbance torque have been computed follow-
ing the guidelines in [23] for a class II spacecraft and the procedure
described in [24]. The resulting maximum magnetic disturbance
torque is 3.95 × 10−7 N ⋅m, which is considered negligible for the
purpose of this work given the control authority in the order of

10−4 N ⋅m that results from the ability of significantly extending/
retracting the surfaces and their influence on the inertia matrix of the
spacecraft.

IV. Control Design

A. Control Objective

The control objective is to track a given desired spacecraft attitude
trajectory using the atmospheric and gravity gradient torques pro-
duced by controlling the length and velocity of the DSs of a DMD

Fig. 1 Inertial, orbit, and body coordinate systems.

**Unless otherwise specified, time dependence is suppressed in equations
and definitions.

††For illustration purpose, the atmospheric density is assumed to be a
constant instead of a time-varying function [1,5].

‡‡The norm of the vector Rc can be upper bounded by a positive constant,
which means that the distance that goes from the center of the Earth to the
center of mass of the spacecraft is finite.
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device. The atmospheric torque in Eq. (1) and the gravity gradient

torque in Eq. (3) depend on the spacecraft’s configuration and lengths

of DSs.
An impediment to develop a controller for Eq. (4) is that the

subsequently designed auxiliary control inputs are multiplied by an

uncertain drag coefficientCD and an uncertain atmospheric density ρ.
Moreover, the inertia of the spacecraft is changing with the length of

DSs, and DSs affect the amount of atmospheric torque that can be

generated. Yet, the atmospheric torque is a function of parametric

uncertainties (i.e.,CD and ρ). The system dynamics can be expressed

as a product of a nonlinear regressionmatrix and a vector of uncertain

constants. Based on this parameterization, an ICL adaptive update

law is designed to yield a uniformly ultimately bounded result of a

given attitude trajectory and parameter estimation provided that a

finite-time sufficient excitation condition is satisfied.
To facilitate the subsequent control development, the unit quatern-

ion q�q0; qv� ∈ R4 with q0 ∈ R and qv ∈ R3 [25] is used to describe

the orientation of the spacecraft with respect to the inertial reference

frame expressed in the body coordinate system, with the property

qTv qv 	 q20 � 1 (5)

The rotational kinematics of the rigid-body spacecraft can be deter-

mined as

_qv �
1

2
�q×v 	 q0I3�ω (6)

_q0 � −
1

2
qTvω (7)

The rotationmatrices that bring the inertial reference frame onto body

frame R ∈ R3×3 and the inertial reference frame onto the desired

body frame Rd ∈ R3×3 are defined as

R ≜
�
q20 − qTv qv

�
I3 	 2qvq

T
v − 2q0q

×
v (8)

Rd ≜
�
q20d − qTvdqvd

�
I3 	 2qvdq

T
vd − 2q0dq

×
vd (9)

respectively, where qd�q0d; qvd� ∈ R4, with q0d ∈ R and qvd ∈ R3

describing the desired orientation of the spacecraft with respect to the

inertial reference frame expressed in the desired body coordinate

system. Using Eqs. (6) and (7), ω can be expressed in terms of the

quaternion as

ω � 2
�
q0 _qv − qv _q0

�
− 2q×v _qv (10)

Similarly, the desired angular velocity of the spacecraft with respect

to the inertial reference frame is expressed in the desired body

coordinate system as

ωd � 2�q0d _qvd − qvd _q0d� − 2q×vd _qvd (11)

The components ev ∈ R3 and e0 ∈ R of the quaternion tracking error

e�e0; ev� ∈ R4 are defined as

ev ≜ q0dqv − q0qvd 	 q×v qvd (12)

e0 ≜ q0q0d 	 qTv qvd (13)

respectively. From the definitions of the quaternion tracking errors in

Eqs. (12) and (13), the following constraint holds [26]:

eTv ev 	 e20 � 1 (14)

where

0 ≤ kevk ≤ 1

0 ≤ je0j ≤ 1

To quantify the objective, the rotation matrix that brings the desired

body frame onto body frame denote by ~R�e0; ev� ∈ R3×3 is defined as

~R ≜ RRT
d (15)

Substituting Eqs. (8), (9), (12), and (13) into Eq. (15) yields

~R �
�
e20 − eTv ev

�
I3 	 2eve

T
v − 2e0e

×
v (16)

The attitude tracking control objective is

~R → I3 as t → ∞ (17)

Based on Eqs. (12–14) and Eq. (16), the attitude tracking objective in
Eq. (17) is achieved if [26]

kevk → 0 ⇒ je0j → 1 (18)

B. Control Development

To facilitate the control development, the angular velocity of the
spacecraft with respect to the desired body coordinate system
expressed in body coordinate system, denoted by ~ω ∈ R3, is defined as

~ω ≜ ω − ~Rωd (19)

An auxiliary signal r ∈ R3 is defined as

r ≜ _ev 	 αev (20)

where α ∈ R3×3
>0 is a constant, positive-definite, diagonal, control gain

matrix. The timederivative of the quaternion tracking error inEqs. (12)
and (13) can be written as [27]

_ev �
1

2
�e×v 	 e0I3� ~ω (21)

and

_e0 � −
1

2
eTv ~ω (22)

respectively. Taking the time derivative of Eq. (20) yields

_r � YΘ	 α _ev (23)

where

YΘ � 1

2
� _e×v 	 _e0I3� ~ω	 1

2
�e×v 	 e0I3�

�
J−1τAT 	 J−1τGG

− J−1 _Jω − J−1ω×Jω	 ~ω×eRωd − eR _ωd

�
(24)

with the fact that

_eR � − ~ω×eR
In Eq. (24), the measurable nonlinear regression matrix Y ∈ R3×2 can
be expressed in terms of the inertia tensor, inertia tensor’s time deriva-
tive, DS lengths and DS velocities, unit quaternion components, and

time derivative of the unit quaternion components, and Θ ∈ R2 is a

vector of uncertain constant parameters, defined as Θ ≜ �CDρ 1 �T .
The open-loop error system in Eq. (23) can be expressed as

_r � YeΘ	 YbΘ	 α _ev (25)
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where the parameter estimation error eΘ ∈ R2 is defined as

eΘ ≜ Θ −bΘ (26)

In Eq. (26), the parameter estimate bΘ ∈ R2 is defined as bΘ ≜
� cCD ρ̂ 1 �T , where cCD, ρ̂ ∈ R are the estimates of CD and ρ,
respectively. To form a closed-loop error system, we define an

auxiliary controller �u ∈ R3 as

�u ≜ YbΘ (27)

Substituting the auxiliary controller Eq. (27) into the open-loop error

system Eq. (25) yields

_r � YeΘ	 �u	 α _ev (28)

and Eq. (28) can be rewritten as

_r � YeΘ	 �ud 	 χ 	 α _ev (29)

where the auxiliary signal χ ∈ R3 is defined as

χ ≜ �u − �ud (30)

To facilitate the closed-loop error system, the desired auxiliary con-

troller �ud ∈ R3 is defined as

�ud ≜ −kr − α _ev − βev (31)

where β ∈ R>0 is a constant positive control gain, and k ∈ R3×3
>0 is a

constant, positive-definite, diagonal, control gain matrix.
Assumption 1: The auxiliary term χ can be upper bounded by a

positive constant, i.e., kχk ≤ ϵ for ϵ ∈ R>0.
Remark 2: To minimize the error between Eqs. (27) and (31), five

parameters can be varied, i.e., Y, bΘ, k, α, β. By altering the deploy-
ment levels of the DSs, values of the atmospheric torque, the gravity

gradient torque, and inertia tensor are changed, and the value ofY can

be altered. The parameter bΘ is updated according to Eq. (36); there-
fore, the value of Eq. (27) can be modified. The control gains k, α, β
can be selected directly by the user to influence the designed values in
Eq. (31). Each of these values can bemodified by the user tomake the

minimization realizable. The minimization can be achieved using
numerical methods, e.g., MATLAB’s fmincon function. By satisfy-

ing the desired control law in Eq. (31), the value ofY can be computed
to satisfy the bounding condition described in Assumption 1.
Substituting Eq. (31) into Eq. (29) yields the closed-loop error

system

_r � YeΘ − kr − βev 	 χ (32)

To facilitate the development of the adaptation law, Eq. (23) can be
rewritten as

_r − α _ev � YΘ (33)

and the integral of the left-hand side of Eq. (33) can be expressed over

an integration window of Δt ∈ R>0 as

U�Δt; t� ≜
Z

t

t−Δt
�_r�σ� − α _ev�σ�� dσ (34)

The integral of the regression matrix Y in Eq. (24) is defined as

Y�Δt; t� ≜
Z

t

t−Δt
Y�σ� dσ (35)

The implementable form of the ICL-based adaptation law for the

parameter estimates is designed as [20,21]

_bΘ ≜ proj

�
ΓICLY

Tr	 ΓICLkICL
XN
i�1

YT
i

�
U i − Yi

bΘ�� (36)

where proj�⋅� denotes the continuous projection algorithm defined in

Appendix E of [28], which is used to guarantee thatbΘ�t� stays within
the known region of Θ. In Eq. (36), kICL, ΓICL ∈ R2×2

>0 are constant,

positive-definite, diagonal, control gain matrices, N ∈ Z>0 denotes

the number of stored input–output data pairs, and Yi ≜ Y�ti�,
U i ≜ U�ti�, and ti ∈ �0; t� are time points between the initial time
and the current time. To facilitate the subsequent stability analysis,
substituting U�Δt; t� � YΘ and Eq. (26) into Eq. (36) yields
the following equivalent analytical form of the adaptation law in
Eq. (36) as

_bΘ ≜ proj

�
ΓICLY

Tr	 ΓICLkICL
XN
i�1

YT
i Yi

eΘ� (37)

Assumption 2: Assuming that the system is sufficiently excited
over a finite duration of time (FE condition), then there exists a finite
time �T ∈ R>0 such that

λmin

�XN
i�1

YT
i Yi

�
≥ λ (38)

where λ ∈ R>0 is an arbitrarily small constant, and the threshold
value is related to the exponential convergence rate of the system, as
shown in the subsequent stability analysis.

V. Stability Analysis

Two theorems are provided in this section. Theorem 1 shows that
the tracking errors r�t� and ev�t� remain bounded for all t < T, and
Theorem 2 concludes that the tracking errors r�t� and ev�t� converge
exponentially to a bounded region and the product of the drag
coefficient and atmospheric density are identified when the FE con-
dition is satisfied.
Theorem 1: For the attitude dynamics in Eq. (4), the auxiliary

controller in Eq. (31) and adaptive update law in Eq. (36) ensure that
the attitude tracking errors r�t� and ev�t� remain bounded, provided
that Assumption 1 and the gain condition λminfkg > �1∕2� are sat-
isfied in the sense that

ky�t�k2 ≤ b1 exp�−b2t� 	 b3 (39)

for all t ∈ �0; T�, where b1 ≜ �BV∕BV�ky�0�k2 ∈ R>0, b2 ≜
�λ1∕BV� ∈ R>0, b3 ≜ �BV∕�2λ1BV��ϵ2	��b−b�∕BV�∈R>0, λ1 ≜
minfλminfkg − �1∕2�; β ⋅ λminfαgg ∈ R>0, BV ≜ �1∕2�minf1; βg ∈
R>0, BV ≜ �1∕2�maxf1; βg ∈ R>0, and b, b ∈ R>0.

Proof: Let V ∈ R≥0 be a candidate Lyapunov function defined as

V ≜
1

2
rTr	 β

2
eTv ev 	

1

2
eΘTΓ−1

ICL
eΘ (40)

and a composite error vector y ∈ R6 is

y ≜
h
rT eTv

i
T

(41)

The candidate Lyapunov function can be bounded as

BVkyk2 	 b ≤ V�y� ≤ BVkyk2 	 b (42)

where BV , B �V , b, b are known positive bounding constants. Sub-

stituting Eq. (20) and the closed-loop error system in Eq. (32) into the
time derivative of Eq. (40) yields

_V � rTYeΘ − rTkr	 rTχ − βeTvαev −eΘTΓ−1
ICL

_bΘ (43)
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Substituting the analytical form of the adaptation law in Eq. (37) into

Eq. (43) yields

_V � −rTkr	 rTχ − βeTvαev −eΘTkICL
XN
i�1

YT
i Yi

eΘ (44)

When t ∈ �0; T�, usingAssumption 1, Eq. (44) can be upper bounded

as

_V ≤ −λminfkgkrk2 − β ⋅ λminfαgkevk2 	 krkϵ (45)

since
P

N
i�1 Y

T
i Yi is positive semidefinite. Using Young’s inequality,

Eq. (45) can be further upper bounded as

_V ≤ −
�
λminfkg −

1

2

�
krk2 − β ⋅ λminfαgkevk2 	

1

2
ϵ2 (46)

By satisfying the condition λminfkg > �1∕2�, Eq. (46) can bewritten as

_V ≤ −λ1kyk2 	
1

2
ϵ2 (47)

where λ1 is defined in Eq. (39). By invoking the Comparison Lemma

from [29] and using Eq. (42),

V�t� ≤ V�0� exp
�
−

λ1
BV

t

�
	

�
BV

2λ1
ϵ2 	 b

��
1 − exp

�
−

λ1
BV

t

��
(48)

then substituting Eq. (42) into Eq. (48) yields Eq. (39).
From Eqs. (39) and (41), the tracking errors r�t� and ev�t� remain

bounded for all t ∈ �0; T�. Using Eq. (14), since ev�t� ∈ L∞, then

e0�t� ∈ L∞. Using Eq. (20), since r�t�, ev�t� ∈ L∞, then _ev�t� ∈
L∞. Since _ev�t�, ev�t�, e0�t� ∈ L∞, using Eq. (21) yields ~ω�t� ∈ L∞.

Since ev�t�, ~ω�t� ∈ L∞, using Eq. (22) yields _e0�t� ∈ L∞. Since r�t�,
_ev�t�, ev�t� ∈ L∞, using Eq. (31) yields �ud�t� ∈ L∞. From

Assumption 1, χ�t� ∈ L∞, then �u�t� ∈ L∞ using Eq. (30). Using

the projection algorithm in Eq. (36), bΘ�t� ∈ L∞. Since �u�t�, bΘ�t� ∈
L∞, Y�t� ∈ L∞ using Eq. (27). Additional bounding arguments can

be used to show that all other signals remain bounded. □

Theorem 2: For the attitude dynamics in Eq. (4), the auxiliary

controller in Eq. (31) and adaptive update law in Eq. (36) ensure that

the attitude tracking error and the parameter estimation errors are

uniformly ultimately bounded, provided that Assumptions 1 and 2

and the gain condition λminfkg > �1∕2� are satisfied in the sense that

kz�t�k2 ≤ c1 exp�−c2t� 	 c3 (49)

for all t ∈ �0;∞�, where c1 ≜ �CV∕CV�kz�0�k2 exp��λ2∕CV�T� ∈
R>0, c2 ≜ �λ2∕CV� ∈ R>0, c3≜ ��BV∕�2λ1CV��ϵ2	�b∕CV�� ×
exp��λ2∕CV�T�	�CV∕�2λ2CV��ϵ2∈R>0, λ2≜minfλminfkg− �1∕2�;
β ⋅λminfαg;λ ⋅λminfkICLgg∈R>0, CV ≜ �1∕2�minf1; β; λminfΓ−1

ICLgg
∈ R>0, and CV ≜ �1∕2�maxf1; β; λmaxfΓ−1

ICLgg ∈ R>0.

Proof: Let V be the candidate Lyapunov function defined in

Eq. (40), and define another composite error vector z ∈ R8 as

z ≜
h
rT eTv eΘT

i
T

(50)

The candidate Lyapunov function in Eq. (40) can be bounded as

CVkzk2 ≤ V�z� ≤ CVkzk2 (51)

where CV , CV ∈ R>0 are the known bounding constants. From

Assumption 2,
P

N
i�1 Y

T
i Yi is positive definite for t ≥ T, and therefore

Eq. (44) can be upper bounded as

_V ≤ −
�
λminfkg −

1

2

�
krk2 − β ⋅ λminfαgkevk2

− λ ⋅ λminfkICLg
		eΘ		2 	 1

2
ϵ2 (52)

where the gain condition λminfkg > �1∕2� must be satisfied. Using

Eq. (51), Eq. (52) can be further upper bounded as

_V ≤ −λ2kzk2 	
1

2
ϵ2 (53)

where λ2 is defined in Eq. (49). By invoking the Comparison Lemma

from [29] and using Eq. (51),

V�t�≤ V�T�exp
�
−
λ2
CV

�t−T�
�
	 CV

2λ2
ϵ2
�
1− exp

�
−
λ2
CV

�t−T�
��
(54)

Using the result in Theorem 1, i.e., Eq. (48), yields

V�T� ≤ V�0� 	 BV

2λ1
ϵ2 	 b (55)

Substituting Eqs. (50), (51), and (55) into Eq. (54) yields Eq. (49).

Using the similar bounding arguments, e0�t�, _e0�t�, ev�t�, _ev�t�, r�t�,
~ω�t�, �ud�t�, �u�t�, eΘ�t�, bΘ�t�, Y�t� ∈ L∞. □

VI. Simulation

Two numerical simulations (i.e., the regulation simulation in

Sec. VI.A and the tracking simulation in Sec. VI.B) were performed

to demonstrate the validity of the designed auxiliary controller and

the adaptation law.§§ Integration of the nonlinear attitude dynamics

was performed using the fourth-order Runge–Kutta method inMAT-

LAB. The auxiliary signal χ�t�wasminimized using theMATLAB’s

fmincon function.
The simulation started on January 5th, 2018, at 00:00 UT, and the

deployment level of each DS was calculated every 30 s. The space-

craft was simulated in an International Space Station (ISS)–like orbit

with 51 deg inclination and 400 km altitude. The initial conditions

were selected as shown in Table 1. The variable atmospheric density

obtained from the NRLMSISE-00 empirical model [10] is used for

propagating the dynamics and used for comparison with the learned

uncertain parameter.
Remark 3: The deployment level of each DS was calculated every

30 s. A smaller time step could be used; however, 30 s sampling

provided a practical balance between the attitude error transient

response and the computational demands. The regulation simulation

required an average of 340 s for a 10 h of simulation to complete using

amacOSCatalina operating system, 2.9GHzDual-Core Intel Core i5

processor, and 8 GB 2133 MHz LPDDR3 memory computer. The

tracking simulation takes an average of 379 s for a 10 h of simulation

with the same machine specifications to complete.
To achieve the regulation and tracking objectives, the controller

gains were selected as

§§The regulation objective in Sec. VI.A indicates that the configuration of
the spacecraft is regulated to the desired constant attitude angles with respect
to the orbit frame, and the tracking objective in Sec. VI.B indicates that the
configuration of the spacecraft is tracking the desired time-varying roll angle
with respect to the orbit frame.
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α � 10−2 ×

2664
0.3 0 0

0 1.0 0

0 0 2.2

3775; β � 5.0 × 10−7;

k � 10−2

2664
0.2 0 0

0 0.3 0

0 0 1.2

3775; kICL � 10−3

"
5.0 0

0 1.0

#
;

ΓICL � 10−17

"
1.0 0

0 1.0

#

The physical parameters of the spacecraft used in the simulation are
shown in Table 2.
Remark 4: For visualization purpose, a 3-2-1 Euler angles rotation

sequence, which brings the orbital frame to the body coordinate
system, is used to represent the spacecraft orientation. Specifically,
ϕ, θ, ψ ∈ R represent the roll, pitch, and yaw angle of the spacecraft,

respectively, _ϕ, _θ, _ψ ∈ R represent their time derivatives, and ϕd, θd,
ψd ∈ R represent the desired orientation. The unit quaternion
q�q0; qv� used by the controller is transformed into attitude angles
(i.e., ϕ, θ, ψ) using the MATLAB aerospace toolbox.

A. Regulation

The initial conditions and desired orientation of the spacecraft (in
Euler angles) were selected as indicated in Table 3. Figure 2 shows
the tracking of the desired spacecraft orientation in quaternion rep-
resentation for the regulation control objective, and Fig. 3 shows the
quaternion error signals, which satisfies the conditions given in
Eq. (18) for attitude tracking/regulation. As shown in Fig. 4, when
the system reaches steady state, the roll, pitch, and yaw angles are
regulated to the desired roll, pitch, and yaw angles, with steady-state
errors of�4.0 × 10−2 deg,�8.6 × 10−4 deg, and�9.1 × 10−3 deg,
respectively. Figure 5 shows the boom lengths throughout the sim-
ulation. For the given initial conditions, the DSs are required to
extend/retract at a rate of change that could induce disturbances to
the spacecraft and with a desired amplitude that is larger than the
available DS length (i.e., actuator saturation). However, the robust-
ness of the controller demonstrates that despite the unmodeled satu-
ration limits, the controller is able to achieve the control objective.
Figure 6 shows themismatch between the actual and desired auxiliary
control inputs expressed in Eqs. (27) and (31). When the system
reaches steady state, the norm of the torque difference is regulated

within 3.0 × 10−8 N ⋅m.
As described in Eq. (2), the theoretical development is based on

the typical assumption that the atmospheric density is an uncertain

constant [1,5]. However, the more realistic NRLMSISE-00 model is

used in the simulation to illustrate the robustness of the developed

controller/estimator. TheNRLMSISE-00model includes time-varying

perturbations about ameanvalue (i.e., the typically assumed constant

atmospheric density). Despite the unmodeled time-varying perturba-

Table 1 Initial conditions of the orbit for the spacecraft

Semimajor axis Eccentricity True anomaly RAAN Argument of perigee Orbit inclination

6778 × 103 km 0 108.08 deg 206.36 deg 101.07 deg 51 deg

RAAN = Right ascension of the ascending node.

Table 2 Physical characteristics of the spacecraft

Mass of
the body

Mass of the
boom

Maximum
boom length Boom width

Nominal
value of CD

3.0 kg 9.0 × 10−2 kg 3.7 m 3.8 × 10−2 m 2.2

Table 3 Initial conditions for the regulation objective

ϕ0 � 80 deg θ0 � −60 deg ψ0 � 50 deg

_ϕ0 � 0.02 deg ∕s _θ0 � −0.03 deg ∕s _ψ0 � 0.025 deg ∕s

ϕd � 45 deg θd � 0 deg ψd � 0 deg

Θ̂0 � � 1.4 × 10−11 1 �T kg∕m3

Fig. 2 Spacecraft configuration tracking (quaternion) for the regula-
tion objective.

Fig. 3 Spacecraft configuration error for the regulation objective.

Fig. 4 Configuration regulationwith real-time rollϕ, pitch θ, and yawψ
vs the desired roll ϕd, pitch θd, and yaw ψd attitude angles, respectively.
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tions, Fig. 7 indicates that the ICL adaptation method is able to
approximate the product of the drag coefficient with the mean
atmospheric density with approximately 4.8% steady-state error
(i.e., 1.509 × 10−12 kg∕m3 true vs 1.582 × 10−12 kg∕m3 estimated).
Figure 8 shows the root-mean-square (RMS) error between the
estimated parameter value and the true parameter value, and the
RMS error is significantly decreasing to a small level when compared
with the magnitude of the real density.

To incorporate the ICL term in the adaptation law, the history stack

(i.e.,
P

N
i�1 Y

T
i Yi) is appended to the adaptation law at each time step

as shown in Eq. (38). To improve the parameter estimation perfor-

mance, the minimum eigenvalue of the history stack (i.e.,

λminf
P

N
i�1 Y

T
i Yig) is evaluated at each time step and compared with

theminimumeigenvalue of the history stack at the previous time step.

Thevalue of λ is updated onlywhen the current value is larger than the
previous value because larger λ indicates faster parameter conver-

gence according to Eq. (49) [30]. Figure 9 shows the minimum

eigenvalue of the history stack, i.e., λminf
P

N
i�1 Y

T
i Yig.

B. Tracking

To achieve the tracking objective, the desired orientation of the

spacecraft with respect to the orbital frame was changed to a time-

varying function. In addition to validate the robustness of the

designed controller, values of the initial conditions for the attitude

angle rates (i.e., _ϕ0, _θ0, and _ψ0) were increased. The initial conditions

Fig. 5 Boom lengths of the CubeSat drag maneuvering device in real-
time for the regulation objective.

Fig. 6 Auxiliary control difference for the regulation objective.

Fig. 7 Estimated parameter value and true parameter value for the
regulation objective.

Fig. 8 Root-mean-square error between the estimated parameter value

and true parameter value for the regulation objective.

Fig. 9 The minimum eigenvalue of the history stack, i.e.,

λminf
P

N
i�1 Y

T
i Yig, for the regulation objective.

Table 4 Initial conditions for the tracking objective

ϕ0 � 80 deg θ0 � −60 deg ψ0 � 50 deg

_ϕ0 � 0.5 deg ∕s _θ0 � −1 deg ∕s _ψ0 � 1 deg ∕s

ϕd � sin��π∕6000�t� deg θd � 0 deg ψd � 0 deg

Θ̂0 � � 1.4 × 10−11 1 �T kg∕m3
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and desired orientation of the spacecraft for the tracking objective

were selected as indicated in Table 4.¶¶

Similar to the regulation objective, Fig. 10 shows the tracking of

the desired spacecraft orientation in quaternion representation for

the tracking objective. Figure 11 shows the quaternion error signals,

and the control objective is also achieved as the result in Fig. 11 is

matching with Eq. (18). As shown in Fig. 12, the orientation of the

spacecraft is tracking the desired time-varying orientation for the roll

angle*** (i.e., ϕd � sin��π∕6000�t� deg). When the system reaches

steady state, the roll, pitch, and yaw angles are tracking the desired roll,

pitch, and yaw angles, with steady-state errors of �1.0 × 10−2 deg,

Fig. 10 Spacecraft configuration tracking (quaternion) for the tracking
objective.

Fig. 11 Spacecraft configuration error for the tracking objective.

Fig. 12 Configuration tracking with real-time rollϕ, pitch θ, and yawψ
vs the desired roll ϕd, pitch θd, and yaw ψd attitude angles, respectively.

Fig. 13 Boom lengths of the CubeSat drag maneuvering device in real-
time for the tracking objective.

Fig. 14 Auxiliary control difference for the tracking objective.

Fig. 15 Estimated parameter value and true parameter value for the
tracking objective.

¶¶The unit for time is second.

***A typical example for a given desired roll trajectory tracking is Earth
observation mission. Specifically, the spacecraft can observe Earth from the
orbit at different viewing angles.
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�6.0 × 10−2 deg, and �8.0 × 10−2 deg, respectively. Figure 13
shows the boom lengths throughout the simulation for the tracking
objective. Figure 14 shows the mismatch between the actual and
desired auxiliary control inputs expressed in Eqs. (27) and (31) for
the tracking objective. When the system reaches steady state, the

norm of the torque difference is regulated within 4.2 × 10−8 N ⋅m.
Figure 15 indicates the estimated parameter value and the true para-
meter value comparison for the tracking objective. The steady-state

error is approximately 0.93% (i.e., 1.509 × 10−12 kg∕m3 true vs

1.523 × 10−12 kg∕m3 estimated). Figure 16 shows the RMS error
between the estimated parameter value and the true parameter value
for the tracking objective. Figure 17 shows the minimum eigenvalue

of the history stack, i.e., λminf
P

N
i�1 Y

T
i Yig for the tracking objective.

VII. Conclusions

An adaptive control method is presented to track the desired
attitude trajectory of a CubeSat using a DMD regardless of the
uncertain drag coefficient and atmospheric density parameters. By
using retractable DSs, the atmospheric and gravity gradient torques
are exploited to track a given attitude trajectory. A time derivative of
the inertia tensor term is included in the dynamics, and the control
inputs are isolated on one side of the equation. An optimization is
used to minimize the difference between the value of actual auxiliary
control inputs and the value of designed auxiliary control inputs. An
ICL approach is implemented to compensate for the uncertain param-
eter. Two simulation examples are performed to illustrate the pro-
posed controller and adaptation law design.
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