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This paper considers the camera-space position and orientation regulation problem for
the camera-in-hand problem via visual serving in the presence of parametric uncertainty
associated with the robot dynamics and the camera system. Specifically, an adaptive robot
controller is developed that forces the end-effector of a robot manipulator to move such
that the position and orientation of an object are regulated to a desired position and ori-
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entation in the camera-space, despite parametric uncertainty throughout the entire robot-
camera system. An extension is also provided that illustrates how slight modifications can
be made to the camera-in-hand control law to achieve adaptive position and orientation
tracking of the end-effector in the camera-space for a fixed-camera configuration. Simu-
lation results are provided to illustrate the performance of the adaptive, camera-in-hand
controller. © 2005 Wiley Periodicals, Inc.

1. INTRODUCTION

To achieve high-performance control of a robotic sys-
tem, it is generally accepted that sensor-based control
is required. If the robot is operating in an unstruc-
tured environment, an interesting approach is to uti-
lize a vision system for obtaining the position infor-
mation required by the controller. Hence, the vision
system can be used for both on-line trajectory plan-
ning and feedforward/feedback control �i.e., visual
servoing�. In addition, there seems to be a consensus
that to extract high-level performance from vision-
based robotic systems, the control system must incor-
porate information about the dynamics/kinematics
of the robot and the calibration parameters of the
camera system. �The camera calibration parameters
are composed of the so-called intrinsic parameters
�i.e., image center, camera scale factors, and camera
magnification factor� and extrinsic parameters �i.e.,
camera position and orientation�.� As stated in ref. 1,
few vision-based controllers have been proposed that
take into account the nonlinear robot dynamics. That
is, many of the previously developed controllers are
designed under that assumption that the robot is a
perfect positioning device with negligible dynamics,
and hence, reduce the problem to that of kinematic
control based on camera observations �e.g., ref. 2�.
One of the first vision-based control designs which
incorporated the robot dynamics can be found in ref.
3; however, the vision system was modeled as a
simple rotation transformation. More recently in ref.
4, Bishop et al. emphasized the importance of ad-
equate calibration of the vision system with respect to
the robot and the environment. As noted in ref. 4,
while a variety of techniques have been proposed for
off-line camera calibration, only a few approaches
were aimed at the more interesting problem of on-line
calibration under closed-loop control. An overview of
the state-of-the-art in robot visual servoing can be
found in refs. 5 and 6.

Recently, some attention has been given to the de-
sign of vision-based controllers that guarantee the
convergence of the position error. Specifically, Kelly
and Marquez7 considered a more representative
model of the camera-robot system �in comparison to
the approach of ref. 3� to design a setpoint controller

for the fixed-camera problem that compensated for
unknown intrinsic camera parameters but required
perfect knowledge of the camera orientation. In ref. 1,
Kelly redesigned the setpoint controller of ref. 7 to
also take into account uncertainties associated with
the camera orientation and produce a local
asymptotic stability result; however, the result given
in ref. 1 required exact knowledge of the robot gravi-
tational term and that the difference between the es-
timated and actual camera orientation was restricted
to the interval �−90° ,90° �. In ref. 8, Kelly et al. uti-
lized a composite velocity inner loop, image-based
outer loop fixed-camera position tracking controller
to obtain a local asymptotic stability result; however,
exact model knowledge of the robot dynamics and a
calibrated camera are required, and the difference be-
tween the estimated and actual camera orientation is
restricted to the interval �−90° ,90° �. In ref. 9, Kelly et
al. extended the transpose Jacobian control philoso-
phy given in ref. 10 to develop a position regulation
controller for the camera-in-hand problem, provided
exact knowledge of the gravity of the robot gravita-
tional term is available. In ref. 11, Maruyama and
Fujita proposed position setpoint controllers for the
camera-in-hand configuration; however, the pro-
posed controllers required exact knowledge of the
camera orientation and assumed the camera scaling
factors to be the same value for both directions. In ref.
4, Bishop and Spong developed an inverse dynamics-
type, position tracking control scheme �i.e., exact
model knowledge of the mechanical dynamics� with
an on-line adaptive camera calibration control loop
that guaranteed asymptotic position tracking; how-
ever, convergence of the position tracking error re-
quired that the desired position trajectory be persis-
tently exciting. Recently, in ref. 12, Zergeroglu et al.
designed an adaptive position tracking controller for
a fixed-camera configuration that accounted for para-
metric uncertainty throughout the entire robot-
camera system provided the camera orientation is re-
stricted to the interval �−90° ,90° �. Moreover, in ref.
13, Zergeroglu et al. proposed �i� a uniformly ulti-
mately bounded �UUB� position tracking controller
that rejects uncertainty throughout the entire robot-
camera system for a fixed-camera configuration, and
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�ii� a UUB regulating controller for a camera-in-hand
configuration provided the camera orientation is
within a certain range.

In this paper, we extend the work given in refs.
12–14 to develop an adaptive position and orienta-
tion regulation controller for the camera-in-hand con-
figuration. Specifically, despite parametric uncer-
tainty in the robot manipulator and the camera
system, we force the end-effector to move such that
the position and orientation of an object in the
camera-space are regulated to a desired position and
orientation. An extension is also provided that illus-
trates how the proposed control strategy can also be
utilized to obtain asymptotic position and orientation
tracking of the end-effector in the camera-space for
the fixed-camera problem. With respect to much of
the research presented in the literature, the proposed
adaptive robot controller has the following advan-
tages: �i� parametric uncertainty throughout the en-
tire robot/camera system is confronted, and �ii� the
position and the orientation of an object are regu-
lated. An additional advantage of the controller pro-
posed in the fixed-camera extension is that the more
general position and orientation tracking problem is
solved.

The paper is organized in the following manner.
Section 2 describes the robot manipulator-camera
system model while the control objective, open-loop
error system, control design, and closed-loop error
system are given in Section 3. A Lyapunov-based sta-
bility analysis is provided in Section 4. A position and
orientation tracking extension is presented in Section
5 for the fixed-camera problem. Simulation results il-
lustrating the performance of the control law are
given in Section 6 and concluding remarks are pre-
sented in Section 7.

2. MODEL DEVELOPMENT

2.1. Kinematic Model

To obtain the kinematic equations that relate the
task-space end-effector position of a rigid three-link,
revolute, planar robot manipulator to the joint dis-
placements, we define a set of task-space variables
x1�t�, x2�t��R1, an open set S1�R2, and a function
��C2�S1� where � :S1→R2, such that

�x1�t�x2�t��T = ��q1,q2� �1�

where q1�t�, q2�t��R1 represent the displacements of
the first two joints �see Figure 1�. After taking the

time derivative of �1�, we obtain the following ex-
pression:

�ẋ1�t�ẋ2�t��T = J�q̇1�t�q̇2�t��T �2�

where the Jacobian matrix J�q1 ,q2��R2�2 is defined
as

J�q1,q2� = � ���q1,q2�
�q1

���q1,q2�
�q2

� �3�

where we assume that J�C1�S1�. We can also relate
the end-effector orientation, denoted by ��t��R1, to
the joint displacements as shown in the following
expression:

� = q1 + q2 + q3 �4�

where q3�t��R1 represents the displacement of the
third joint. After taking the time derivative of �4� and
combining the resulting expression with �2�, we ob-
tain the following expression:

ẋ = JSq̇ �5�

where q̇�t� represents the time derivative of q�t�
= �q1�t� q2�t� q3�t��T�R3, ẋ�t� represents the time de-
rivative of x�t�= �x1�t� x2�t� ��t��T�R3, and JS�q�
�R3�3 is defined as follows:

Figure 1. Three-link robot manipulator.
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JS = � J 02�1

11�2 1 � , �6�

where J�q1 ,q2� was defined in �3�, and the notation
�n�m signifies that � is an n�m matrix.

Remark 1: In the previous development, we have
assumed that the third link of the manipulator has
no length �i.e., the third link does not affect the po-
sition of the end-effector, only the orientation of the
end-effector� to simplify the control development
and stability analysis. Based on the results of this
paper, one could easily extend the control design to
solve the camera-space position and orientation
regulation problem for a rigid three-link manipula-
tor, where each link has some length. In Section 5,
we propose an adaptive tracking controller for the
fixed-camera problem using a rigid, three-link ma-
nipulator where each link has some length.

Remark 2: During the subsequent control devel-
opment, we assume that J−1�q� always exists and all
kinematic singularities are always avoided.

2.2. Task-Space to Camera-Space Transformations

To develop a relationship between the task-space po-
sition and orientation of an object and the camera-
space position and orientation, we utilize the so-
called pin-hole lens model4 for the robot-camera
system that is modified to reflect the properties of
the camera-in-hand problem11 as shown below:

�y1

y2
� = BR�����x1

x2
� − �xd1

xd2
�� �7�

where y�t�= �y1�t� y2�t���R2 represents the position
of the object in the camera-space, x1�t�, x2�t��R1 rep-
resent the position of the end-effector in the task-
space, B�R2�2 is a constant matrix defined as fol-
lows:

B = AR��0� . �8�

A�R2�2 is a diagonal, positive-definite, constant
matrix defined as follows:

A = ��1 0

0 �2
� . �9�

R�·��R2�2 is a rotation matrix operator defined as

R�·� = � cos�·� sin�·�
− sin�·� cos�·� � . �10�

xd= �xd1 xd2�T�R2 represents the constant, desired
task-space position of the object, �1, �2�R1 are posi-
tive constants defined as

�1 = �1
�

z
�2 = �2

�

z
. �11�

z�R1 represents the constant distance of the cam-
era’s optical center to the task-space plane, ��R1 is
a constant representing the camera’s focal length, the
positive constants denoted by �1,�2�R1 represent
the camera’s constant scale factors �in pixels/m�
along their respective Cartesian directions, and �0
�R1 represents the unknown, constant counter-
clockwise rotation angle of the camera. To relate the
task-space orientation of the object to the camera-
space orientation, we utilize the following relation-
ship �see Appendix A for details regarding the devel-
opment of the following expression�:

tan �y =
�2

�1
tan��d − ��0 + ��� � �T, �12�

where �T�R1 is a measurable auxiliary camera-
space signal, �d�R1 represents the constant desired
orientation of the object in the task-space, �y�t��R1

represents the orientation of the object in the
camera-space, and ��t� was defined in �4�.

Remark 3: In a similar manner as in ref. 13, we
assume that the camera is mounted such that �i� its
image plane is parallel to the plane of the object, �ii�
the camera system can determine the position of an
object by locating a feature �e.g., a light emitting di-
ode�, �iii� the camera can determine the orientation
of the object by recognizing at least one additional
feature �e.g., a second light emitting diode, etc.�, �iv�
the camera can capture images of the object through-
out the entire robot workspace, and �v� the effects of
image capturing and processing delays are negli-
gible �this assumption is reasonable since advance-
ments in computer and high-speed camera technol-
ogy provide vision systems with the capability to
capture frames, process the data, and compute the
controller within a millisecond�. Moreover, we must
assume that the initial orientation error is restricted
as follows:
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	�T�0�	 � 90 �deg� �13�

where �T�t� was defined in �12�.

2.3. Joint-Space to Camera-Space Transformations

To relate the joint-space signals to the camera-space
signals, we first take the time derivative of the ex-
pressions given in �7� and �12� and then perform
some algebraic manipulation to obtain the following
expressions:

�ẏ1

ẏ2
� = BJ2R�����x1

x2
� − �xd1

xd2
���̇ + BR���J�q̇1

q̇2
� ,

�̇T = − 	�̇ �14�

where J2�R2�2 is a skew-symmetric matrix defined
as follows:

J2 = � 0 1

− 1 0 � �15�

and 	�q��R1 is a positive scalar function defined as

	 =
�1 + �T

2�
�1

�2
cos2��d − ��0 + ��� +

�2

�1
sin2��d − ��0 + ���

.

�16�

After utilizing �7� and �14�, we obtain the following
transformation between the joint-space and the
camera-space

Ẏ = TCq̇, q̇ = C−1T−1Ẏ �17�

where Y�t��R3 is defined as

Y�t� = �yT�t��T�t��T �18�

and T�q ,y�, C�q��R3�3 are global invertible transfor-
mations defined as

T = � B BJ2B−1y

01�2 − 	
� �19�

and

C = �R���J 02�1

11�2 1 � , �20�

respectively, where B�R2�2 was defined in �8�, 	�q�
was defined in �16�, J�q� was defined in �2�, and R�·�
was defined in �10�. Note that the inverse of C is guar-
anteed to exist based on the assumption that the in-
verse of the Jacobian matrix J�q� exists �see Remark 2�.
Furthermore, the inverse of T�q ,y� can be written in
the following form:

T−1 = 
D 02�1

H −
1
	
�

T

�21�

where D�R2�2 and H�R1�2 are defined as follows:

D � �d1 d2

d3 d4
� = 


cos �0

�1

sin �0

�1

−
sin �0

�2

cos �0

�2

� , �22�

H =
�1

2 cos2��d − ��0 + ��� + �2
2 sin2��d − ��0 + ���

�1 + �T
2��2

2�1
2

�� �2y1 sin �0 + �1y2 cos �0

− �2y1 cos �0 + �1y2 sin �0
�T

. �23�

2.4. Dynamic Model

The joint-space dynamic model for a rigid three-link,
revolute, planar robot manipulator is assumed to
have the following form:15

M�q�q̈ + Vm�q, q̇�q̇ + G�q� + F�q̇� = 
 �24�

where q�t�, q̇�t�, q̈�t��R3 denote the link position,
velocity, and acceleration vectors, respectively, M�q�
�R3�3 represents the inertia matrix, Vm�q , q̇��R3�3

represents the centripetal-Coriolis matrix, G�q��R3

represents the gravity effects, F�q̇��R3 represents
the friction effects, and 
�t��R3 is the torque input
vector. To facilitate the subsequent control design
and stability analysis, we transform the dynamic
model into a form that is consistent with the camera-
space transformations given by �14� and �17�. Specifi-
cally, we premultiply �24� by the product

Behal et al.: Adaptive Position and Orientation Regulation • 461



T−T�q ,y�C−T�q� and then substitute �17� into �24� for
q̇�t� to obtain the following expression:

M*�q,Y�Ÿ + Vm
* �q, q̇,Y,Ẏ�Ẏ + G*�q,Y� + F*�q, q̇,Y�

= T−T
* �25�

where

M*�q,Y� = T−TC−TM�q�C−1T−1,

Vm
* �q, q̇,Y,Ẏ� = T−TC−T�M�q��C−1Ṫ−1 + Ċ−1T−1�

+ Vm�q, q̇�C−1T−1� ,

G*�q,Y� = T−TC−TG�q� ,

F*�q, q̇,Y� = T−TC−TF�q̇� ,


*�q,t� = C−T
 , �26�

and the notation �·�−1 signifies the time derivative of
�·�−1. In the subsequent control development and sta-
bility analysis, we will exploit the following
properties16 of the expressions given in �16� and �21�,
and the dynamic model given in �25� and �26�.

Property 1: The transformed inertia matrix M*�·�
is symmetric, positive definite, and satisfies the fol-
lowing inequalities:

m1���2 � �TM*� � m2���2, ∀ � � R3 �27�

where m1 and m2 are known positive constants, and
�·� denotes the standard Euclidean norm.

Property 2: A skew-symmetric relationship exists
between the transformed inertia matrix and the aux-
iliary matrix Vm

* �·� as follows:

�T�1
2

Ṁ* − Vm
* �� = 0, ∀ � � R3 �28�

where Ṁ*�·� represents the time derivative of the
transformed inertia matrix.

Property 3: The robot dynamics given in �25� can
be linearly parametrized as follows:

Y0�0 = M*Ÿ + Vm
* Ẏ + G* + F* �29�

where �0�Rp contains the unknown constant me-
chanical parameters �i.e., inertia, mass, and friction
effects� and the constant camera calibration con-
stants �i.e., �0, �1, and �2� and Y0�Y , Ẏ , Ÿ��R3�p de-
notes a known regression matrix. The inverse of the
auxiliary signal 	�q� defined in �16� can also be lin-
early parametrized as shown below:

1
	

= Y		 � � �30�

where ��R1 is a positive bounding constant, 	

�Rp2 contains the constant camera calibration con-
stants �i.e., �0, �1, and �2�, and Y	�q��R1�p2 denotes
a known regression matrix.

Property 4: To avoid singularities in the subse-
quent control law, we now define convex a region, in
the same manner as refs. 14 and 17, for the param-
eter vector 	 defined in �30�. Specifically, based on
�30�, we define the space spanned by the vector func-
tion Y	�q� as follows:

Y1 = Y	:Y	 = Y	���, ∀ � � R1� . �31�

In addition, we define the region �1 as

�1 = s1:Y	s1 � �, ∀ Y	 � Y1� �32�

where � was defined in �30�. Moreover, we introduce
the following definitions concerning the region �1
and the subsequently designed parameter estimate
vector ̂	�t��Rp2: int��1� is the interior of the region
�1, ���1� is the boundary for the region �1, ̂	

�

�Rp2 is a unit vector normal to ���1� at the point of
intersection of the boundary surface ���1� and ̂	

where the positive direction for ̂	
� is defined as

pointing away from int��1� �note, ̂	
� is only defined

for ̂	����1��, Pr
t��1� is the component of the vector

�1�Rp2 that is tangential to ���1� at the point of
intersection of the boundary surface ���1� and the
vector ̂	, and Pr

���1�=�1−Pr
t��1��Rp2 is the com-

ponent of the vector �1�Rp2 that is perpendicular to
���1� at the point of intersection of the boundary
surface ���1� and the vector ̂	.

Property 5: We assume that the constant system
parameters di defined in �22� can be lower and upper
bounded as follows:
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d� i � di � d̄i �33�

where d� i , d̄i�R1 denote known, constant bounds for
the unknown parameter di for i=1,2 ,3 ,4.

Remark 4: Since the robot manipulator is solely
constructed of revolute joints, the kinematic and dy-
namic terms denoted by M�q�, Vm�q , q̇�, G�q�, F�q̇�,
and J�q� are bounded for all possible q�t� �i.e., these
kinematic and dynamic terms only depend on q�t� as
arguments of trigonometric functions�.

Remark 5: The control laws developed in the sub-
sequent sections will be designed in the camera-
space, where the actual control inputs to the robot
actuators are computed according to �26�; hence,
implementation of the proposed control laws will re-
quire q�t�. Since the camera is assumed to be uncali-
brated �i.e., the camera parameters are not known
exactly�, q�t� cannot be directly calculated from mea-
surements of y�t� and must be measured directly via
standard link encoder sensors. The need to measure
the joint position from the joint encoders may lead
some readers to question why one could not simply
utilize link sensors �e.g., optical encoders� to close
the loop and only utilize the camera system for tra-
jectory planning. This question seems well moti-
vated, since link sensors are also required to imple-
ment vision-based controllers and in comparison
with a vision system, link sensors are generally less
complex, less costly, and can be used at faster sam-
pling times. However, if the desired camera-space
position and orientation are formulated in the
camera-space, then it is not obvious how to calculate
the desired task-space position and orientation be-
cause the camera parameters in �7� and �12� are not
exactly known. Hence, a reasonable technique for
addressing the uncalibrated camera problem is to
develop a control strategy that servos off the differ-
ence between the desired position and orientation in
the camera space and the actual position and orien-
tation in the camera space.

3. CONTROL DEVELOPMENT

Our control objective is to design a controller that en-
sures position and orientation regulation of an object
in the camera-space for the camera-in-hand configu-
ration. That is, with an uncalibrated camera mounted
directly on the end-effector of a robot manipulator
with parametric uncertainty, our goal is to design a
controller that regulates the robot end-effector such
that the camera-space position and orientation of an

object are regulated to a constant, desired position
and orientation. Based on the control objective and
the subsequent control development and stability
analysis, we define a filtered error signal,16 denoted
by r�t�= �r1 r2 r3�T�R3, as follows:

r = Ẏ + �rY �34�

where �r denotes a positive, constant control gain
and Y�t� was defined in �18�. Since we will utilize the
filtered error signal defined in �34� in the subsequent
control design, it is clear that in addition to the re-
quired measurement of the link positions in the task-
space �as described in Remark 5�, we also require
measurement of the object orientation, the angular
velocity of the object, the position of the object, and
the time-derivative of the object position in the
camera-space.

Remark 6: Note that for simplicity and without
loss of generality, we have selected the desired
camera-space position as the origin of the camera-
space and the desired orientation as zero degrees.

3.1. Open-Loop Error System

To obtain the open-loop error system for r�t�, we
take the time derivative of �34�, premultiply the re-
sulting expression by M*�·�, and then substitute �25�
into the resulting expression for M*�·�Ÿ to obtain the
following expression:

M*ṙ = − Vm
* Ẏ − G* − F* + T−T
* + �rM

*Ẏ . �35�

After adding and subtracting the products Yr�·�̂r�t�
and ksr�t� to the right-side of �35� and then utilizing
�34�, we can rewrite the open-loop dynamics as fol-
lows:

M*ṙ = − ksr − Vm
* r + Yr̃r + Yr̂r + ksr + T−T
* �36�

where ks�R1 is a positive constant control gain, the
regression matrix parametrization Yrr is defined as

Yrr = �rVm
* Y − G* − F* + �rM

*Ẏ . �37�

Yr�·��R3�r1 denotes a known regression matrix, r
�Rr1 contains the unknown constant mechanical pa-
rameters �i.e., inertia, mass, and friction effects� and
camera calibration constants �i.e., �0, �1, and �2�, and
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̃r�t��Rr1 denotes a parameter estimation error and
is defined as follows:

̃r�t� = r − ̂r�t� �38�

where ̂r�t��Rr1 denotes a subsequently designed
parameter estimate vector for r.

3.2. Closed-Loop Error System

To facilitate the subsequent control design, we define
the following linear parametrization:

YHH = − H�D̂−1��Yr̂r + ksr�1

�Yr̂r + ksr�2
�� �39�

where ���i represents the ith element of a vector �,
YH�t��R1�p1 represents a known regression matrix,
H�Rp1 represents a vector of constant unknown
camera calibration parameters, H was defined in
�23�, D̂−1�t� represents the inverse of D̂�t��R2�2, a
matrix of dynamic estimates for the elements of D,
denoted by

D̂ = �d̂1 d̂2

d̂3 d̂4
� �40�

where d̂i�t� for i=1,2 ,3 ,4 are subsequently designed
adaptation laws, and ̂r�t� was given in �38�. Based
on the previous development, we can now develop
an adaptive control law to regulate the camera-space
position and orientation of an object. Specifically,
based on the open-loop error system given in �36�
and the subsequent stability proof, we now design
the auxiliary control signal 
*�t� as follows:


* = 

1
*


2
*


3
* � = 
− D̂−1��Yr̂r + ksr�1

�Yr̂r + ksr�2
�

1

Y	̂	

��Yr̂r + ksr�3 + YĤH� � �41�

where the elements of the adaptive estimate matrix
D̂�t� given in �40� �i.e., d̂i�t� for i=1,2 ,3 ,4� are gener-
ated by the following dynamic expressions:

d̂
˙

i

=�Proj�− �ir1�D̂−1��Yr̂r + ksr�1

�Yr̂r + ksr�2
��

i
� ∀i = 1,2

Proj�− �ir2�D̂−1��Yr̂r + ksr�1

�Yr̂r + ksr�2
��

i−2
� ∀i = 3,4�

�42�

and the parameter estimate ̂	�t��Rp2 is defined by
the following expression:

̇̂	 = ��1 if ̂	 � int��1�

�1 if ̂	 � ���1� and �1
T̂	

� � 0

Pr
t��1� if ̂	 � ���1� and �1

T̂	
� � 0

�
�43�

where ̂	�0�� int��1�, the auxiliary signal �1�t�
�Rp2 is defined as follows:

�1 = − r3�5
Y	

T

Y	̂	

��Yr̂r + ksr�3 + YĤH� �44�

the dynamic estimates ̂H�t��Rp1 and ̂r�t��Rr1 are
updated according to the following expressions:

̇̂H = r3�6YH
T , �45�

̇̂r = �7Yr
Tr , �46�

where �i�R1 for i=1,2 ,3 ,4 are positive, constant
adaptation gain parameters, �5�Rp2�p2, �6�Rp1�p1,
and �7�Rr1�r1 are positive, constant diagonal adap-
tation gain matrices, and the projection operator de-
noted by Proj·� is utilized to ensure that the param-
eter estimates d̂i�t� for i=1,2 ,3 ,4 stay within the
known region prescribed by �33�, and that

d̂1 � 	d̄2	, d̂4 � 	d̄3	 . �47�

If ̂	�0�� int��1�, the above update law for ̂	�t� de-
fined in �43� ensures that Y	̂	�� �the reader is re-
ferred to the definitions given in Property 4, and the
explanations given in refs. 14 and 17�. After substi-
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tuting �41� into �36� for 
*�t� and then simplifying the
resulting expression, we obtain the final expression
for the closed-loop error dynamics for r�t� as fol-
lows:

M*ṙ = − ksr − Vm
* r + Yr̃r + 
 0

0

YH̃H
� − 
D̃D̂−1 02�1

01�2
Y	̃	

Y	̂	

�
�
 �Yr̂r + ksr�1

�Yr̂r + ksr�2

��Yr̂r + ksr�3 + YĤH�
� �48�

where the parameter estimation error signals, de-
noted by D̃�t��R2�2, ̃	�t��Rp2, ̃H�t��Rp1, are de-
fined as follows:

D̃ = D − D̂ = �d̃1 d̃2

d̃3 d̃4
�, ̃	 = 	 − ̂	,

̃H = H − ̂H. �49�

Remark 7: To ensure that the inequalities given in
�47� are valid, we must ensure that

d�1 � 	d̄2	 d�4 � 	d̄3	 . �50�

One method to ensure that �50� is valid is to restrict
the initial orientation of the camera to the following
region:

	�0	 � 45 �deg� . �51�

Note that �51� is a sufficient condition, and hence,
other conditions may be employed which lead to
less conservative bounds on �0.

4. STABILITY ANALYSIS

Based on the closed-loop error system given in �48�,
we can now examine the stability of the adaptive con-
troller developed in the previous section through the
following theorem.

Theorem 1: Provided the assumptions given in Re-
mark 2, Remark 3, and Remark 7 are valid, the control
torque input given in �41�–�43�, �45�, and �46� ensures that

the camera-space position and orientation errors are as-
ymptotically regulated in the sense that

lim
t→�

y�t�,�y�t� = 0 �52�

where y�t� and �y�t� are defined in �7� and �12�.
Proof: To prove Theorem 1, we define a non-

negative function denoted by V�t��R1 as follows:

V =
1
2

rTM*r +
1
2�

i=1

4

d̃i�i
−1d̃i +

1
2

̃	
T�5

−1̃	 +
1
2

̃H
T �6

−1̃H

+
1
2

̃r
T�7

−1̃r. �53�

After taking the time derivative of �53� and then sub-
stituting �48� into the resulting expression for the
product M*ṙ�t�, we obtain the following expression:

V̇ = − ksr
Tr + rTYr̃r + r3YH̃H + rT
− D̃D̂−1 02�1

01�2 −
Y	̃	

Y	̂	

�
�
 �Yr̂r + ksr�1

�Yr̂r + ksr�2

��Yr̂r + ksr�3 + YĤH�
� − �

i=1

4

d̃i�i
−1d̂

˙
i

− ̃	
T�5

−1̇̂	 − ̃H
T �6

−1̇̂H − ̃r
T�7

−1̇̂r �54�

where we utilized �28� and the facts that

̇̃r�t� = − ̇̂r�t�, ̇̃	�t� = − ̇̂	�t� ,

̇̃H�t� = − ̇̂H�t�, d̃
˙

i�t� = − d̂
˙

i�t�, ∀ i = 1,2,3,4.

�55�

After utilizing �42�–�46�, and the development given
in Appendix B, we obtain the following expression:

V̇ � − ksr
Tr �56�

hence, utilizing �53� and �56�, we can prove that r�t�,
̃r�t�, ̃	�t�, ̃H, d̃i�L� for i=1,2 ,3 ,4 and that r�t�
�L2. Since ̃r�t�, ̃	�t�, ̃H, d̃i�L� for i=1,2 ,3 ,4, it is
clear from �38� and �49� that ̂r�t�, ̂	�t�, ̂H, d̂i�L� for
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i=1,2 ,3 ,4. Based on the fact that r�t��L�, we can uti-
lize �18� and �34� to prove that Y�t�, Ẏ�t�, y�t�, ẏ�t�,
�T�t�, �̇T�t��L�. Using the facts that y�t�, �T�t�,
�̇T�t��L�, we can utilize �7�–�9�, �12�, �14�, �16�, and
�10� to prove that x1�t�, x2�t�, ��t�, �̇�t�, 	�q��L�.
Based on the previous boundedness arguments and
the definitions given in �8�–�10� and �19�–�23�, it is
clear that T�q ,y�, T−1�q ,y�, C�q�, C−1�q��L�, and
hence, from �26� and Remark 4, it is clear that
M*�q ,Y�, Vm

* �q , q̇ ,Y , Ẏ�, G*�q ,Y�, F*�q , q̇ ,Y��L�. Based
on the previous boundedness arguments, we can uti-
lize �30�, �37�, and �39� to prove that Y	�·�, YH�·�,
Yr�·��L�. Using the fact that r�t�, Y	�·�, YH�·�, Yr�·�
�L�, we can conclude from �41�–�43�, �45�, and �46�
that 
*�t��L�, where we have utilized the fact that
the adaptive update laws given in �42� and �43� are
designed to ensure that potential singularities in �41�
are always avoided. Based on the facts that 
*�t�
�L� and C�q� are invertible „based on the assump-
tion that the kinematic singularities are always
avoided ��i.e., J−1�q� exists��…, we can utilize �26� to
prove that 
�t��L�. Since r�t�, Yr�q�, ̃r�t�, YH�t�,
̃H�t�, d̃i�t�, d̂i

−1�t��L� for i=1,2 ,3 ,4, we can utilize
�36� to prove that ṙ�t��L�. Based on the fact that r�t�,
ṙ�t�, Y�t�, Ẏ�t��L�, it is clear that r�t� and Y�t� are uni-
formly continuous. After taking the time derivative of
�34� and utilizing the facts that ṙ�t�, Ẏ�t��L�, we can
also prove that Ÿ�t��L�, and hence Ẏ�t� is uniformly
continuous.

From the fact that r�t��L2, we can prove that
Y�t�, Ẏ�t��L2 �see the proof of Lemma 1.6 of ref. 18�.
Based on the facts that r�t�, Y�t�, and Ẏ�t��L2 are all
uniformly continuous, we can now employ a corol-
lary to Barbalat’s Lemma19 to conclude that

lim
t→�

r�t�,Y�t�,Ẏ�t� = 0 �57�

and hence, from �18�, it is straightforward that

lim
t→�

y�t�,�T�t� = 0. �58�

Based on the fact that �T�t��L�, we can utilize �12�,
�13�, and �58� to prove the result given in �52�. �

5. FIXED CAMERA EXTENSION

In this section, we illustrate how the development
given in the previous sections can be slightly modi-

fied to achieve position and orientation tracking of
the end-effector of a rigid three-link manipulator in
the camera-space, for an uncalibrated fixed-camera.
Specifically, with an uncalibrated camera that is fixed
in a constant position that allows the camera to view
the entire workspace, we illustrate that for the posi-
tion and orientation of the end-effector, a rigid three-
link manipulator �each link having some length� with
uncertain mechanical parameters can track a time-
varying trajectory designed in the camera space.

5.1. Model Development

Based on the fact that the camera is fixed at a con-
stant position parallel with the workspace plane,
rather than in the camera-in-hand configuration, we
must reexamine the camera model. To this end, we
utilize the pinhole lens model20 for the fixed camera
to modify �7� as shown below:

�y1

y2
� = AR��0��x1

x2
� + p �59�

where p�R2 is a constant vector containing un-
known camera parameters as shown below:

p = �Oi1

Oi2
� − AR��0��Oo1

Oo2
� �60�

where A was defined in �9�, R�·� was defined in �10�,
�Oo1 ,Oo2�T�R2 denote the projection of the camera’s
optical center on the �X1 ,X2� plane, and �Oi1 ,Oi2�T

�R2 denote the image center that is defined as the
frame buffer coordinates of the intersection of the
optical axis with the image plane �see ref. 20 for
details�.

5.2. Open-Loop Error System

The control objective in this extension is to force the
end-effector of a rigid, three-link revolute robot ma-
nipulator to move such that the position and orien-
tation of the image of the end-effector in the camera-
space is forced to track a desired time-varying
camera-space trajectory. To quantify the control ob-
jective, we define a position and orientation filtered
tracking error signal r�t�= �r1r2r3�T�R3, as follows:

r = ė + �re �61�

where �r was defined in �34� and e�t��R3 is defined
as follows:
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e = Yd − Y . �62�

Y�t� was defined in �18�, y�t��R2 was defined in
�59�, and �T�t��R1 given in �12� is redefined as fol-
lows �see Appendix A for details regarding the de-
velopment of the following expression�:

tan �y =
�2

�1
tan�� − �0� � �T �63�

and Yd�t��R3 is a desired position and orientation
vector defined as follows:

Yd = �yd1 yd2 yd3�T

where yd1�t�, yd2�t��R1 represent the desired posi-
tion of the end-effector in the camera-space and
yd3�t��R1 denotes the desired orientation of the end-
effector in the camera-space.

After taking the time derivative of �59� and �63�,
we obtain the following expression:

Ẏ = TCq̇, q̇ = C−1T−1Ẏ

where q�t� was defined in �5�, the matrices T�q ,y�
and C�q� originally given in �17� are redefined as

T = �AR��0� 02�1

01�2 	
� �64�

and

C = � J2�3

11�3
� �65�

where 	�q� is redefined as

	 =
�1 + �T

2�
�1

�2
cos2�� − �0� +

�2

�1
sin2�� − �0�

.

Ẏd�t� represents the time derivative of the Yd�t� given
in �62�, the Jacobian defined in �6� is now defined as
a 2�3 matrix as shown in �65�, the inverse of C�q� is
assumed to exist, and the inverse of T�q ,y� is given
by the following expression:

T−1 = 
 D 02�1

01�2
1
	

�
T

�66�

where the submatrix D was defined in �22�.
We can now obtain a relationship between the

camera-space and the joint-space as follows:

q̇ = C−1T−1�Ẏd − ė� . �67�

Utilizing the same procedure given in Section
2.4 along with the relationship given in �67�, we can
rewrite the dynamic model of the robot manipulator
in the following form:

M*�q,Y�ë + Vm
* �q, q̇,Y,Ẏ�ė + N*�q, q̇,Y,Ẏ,Ẏd,Ÿd� = T−T
*

�68�

where

M*�q,Y� = T−TC−TM�q�C−1T−1,

Vm
* �q, q̇,Y,Ẏ� = T−TC−T�M�q��C−1Ṫ−1 + Ċ−1T−1�

+ Vm�q, q̇�C−1T−1� ,

N*�q, q̇,Y,Ẏ,Ẏd,Ÿd� = − T−TC−T�M�q�C−1T−1Ÿd + G�q�

+ F�q̇�� − T−TC−T�M�q��C−1Ṫ−1

+ Ċ−1T−1� + Vm�q, q̇�C−1T−1�Ẏd,


*�q,t� = − C−T
 . . �69�

Based on the expression given in �68� and �69�, we can
now utilize the procedure given in Section 3.1 to de-
velop the open-loop error system as follows:

M*ṙ = − ksr − Vm
* r + Yr̃r + Yr̂r + ksr + T−T
* �70�

where the regression matrix parametrization Yrr is
now defined as

Yrr = �rM
*ė + �rVm

* e − N*. �71�
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5.3. Closed-Loop Error System

Based on the open-loop error system given in �70�,
we can now design the auxiliary control signal 
*�t�
as follows:



1
*


2
*


3
* � = 
− D̂−1��Yr̂r + ksr�1

�Yr̂r + ksr�2
�

1

Y	̂	

�Yr̂r + ksr�3 � �72�

where the elements of the adaptive estimate matrix
D̂�t�, and the parameter estimate vectors ̂	�t�, ̂r�t�,
were defined in �42�, �43�, and �46�, respectively, and
the auxiliary signal �1�t��Rp2 originally defined in
�44� is redefined as follows:

�1 = − r3�5
Y	

T

Y	̂	

�Yr̂r + ksr�3. �73�

After substituting �72� and �70� for 
*�t�, we can ob-
tain the following closed-loop error system:

M*ṙ = − ksr − Vm
* r + Yr̃r

− 
D̃D̂−1 02�1

01�2
Y	̃	

Y	̂	

��Yr̂r + ksr� . �74�

Given the closed-loop error system in �74�, it is now
straightforward to utilize the same stability analysis
arguments given in Section 4 to prove the following
theorem.

Theorem 2: Provided the assumptions given in Re-
mark 2, Remark 3, and Remark 7 are valid with respect to
the fixed-camera configuration, the control torque input
given in �42�–�44�, �46�, and �72� ensures asymptotic
camera-space position and orientation tracking, in the
sense that

lim
t→�

e�t� = 0 �75�

where e�t� was defined in �62�.
Proof: See the proof of Theorem 1.

6. SIMULATION RESULTS

The proposed camera-in-hand regulation controller
was simulated for a planar, three-link robot manipu-
lator with the following dynamic model:21



1


2


3
� = 
p1 + 2p3 cos�q2� p2 + p3 cos�q2� p5

p2 + p3 cos�q2� p4 p5

p5 p5 p5
�
q̈1

q̈2

q̈3
�

+ 
− p3 sin�q2�q̇2 − p3 sin�q2��q̇1 + q̇2� 0

p3 sin�q2�q̇1 0 0

0 0 0
�
q̇1

q̇2

q̇3
�

�76�

where p1=3.473 kg m2, p2=0.242 kg m2, p3
=0.193 kg m2, p4=0.3 kg m2, and p5=0.2 kg m2. The
desired setpoint was selected in the robot task-space
as follows:

xd = �0.2826 m

0.5937 m �, �d = 45 deg. �77�

The camera parameters defined in �11� were selected
as follows:

�1 = 27.31 pixel m−1, �2 = 27.31 pixel m−1,

�0 = 30 deg. �78�

Note that the parameter values given above were
only required to simulate the proposed controller,
�i.e., the parameter values given in �78� are not re-
quired for the proposed adaptive controller�. The ini-
tial joint-space values for each link were selected as
follows:

q1�0� = 30 deg, q2�0� = 30 deg, q3�0� = 0.0 deg.

�79�

The control and adaptation gains were tuned until
the best response was obtained. The values for the
gains are given below:

k1 = 20.0, k3 = 20.0, k3 = 20.0, � = 0.15,

�1 = 1.0, �2 = 1.0, �3 = 1.0, �4 = 1.0,
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�6 = diag2.0,2.0� ,

�7 = diag0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,0.2,2.0,

2.0,0.2,2.0,2.0,2.0� , �80�

where each element of the estimate vectors ̂r�t� and
̂H�t� was initialized to 0.0, while the matrix D̂�t� was
initialized to be nonsingular as follows:

D̂�0� = �1.0 0

0 1.0� . �81�

The camera-space position and orientation tracking
errors are shown in Figure 2 and the associated con-
trol torque inputs are shown in Figure 3. The param-
eter estimates for elements of the matrix D defined in
�22� are shown in Figure 4. The plots for the param-
eter estimates of r and H are not shown for the sake
of brevity.

Remark 8: For simplicity, we selected the camera
parameters �1, �2 such that

�1 = �2. �82�

Based on �82�, the expression given in �30� is simpli-
fied to the following expression:

1
	

=
1

1 + �T
2 �83�

and hence we did not need to adapt for 	 of �43�
since the expression given in �83� is measurable.

7. CONCLUSION

In this paper, we have presented an asymptotic po-
sition and orientation controller for the camera-in-
hand regulation problem. Specifically, we utilize an
uncalibrated camera that is held by the end-effector
of a robot manipulator with uncertain mechanical pa-
rameters to obtain the position and orientation of an
object in the camera-space. We then regulate the
camera-space position and orientation utilizing an
adaptive controller that compensates for the uncer-

Figure 2. Camera-space position and orientation errors.

Behal et al.: Adaptive Position and Orientation Regulation • 469



tainty in the robot-camera system. An extension is
also provided that illustrates how slight modifica-
tions can be made to the camera-in-hand configura-
tion controller to achieve asymptotic position and ori-
entation tracking for the fixed-camera configuration.
Simulation results are provided to demonstrate the
effectiveness of the camera-in-hand controller, and
future work will concentrate on constructing an ex-
perimental testbed to further illustrate the effective-
ness of the proposed controller. The testbed will con-
sist of �i� an IMI direct drive robot manipulator, �ii� a
Pentium II-based PC operating under QNX which
will be utilized for implementing the control algo-
rithms, and �iii� a Dalsa CAD-6 camera that is able to
capture 955 frames per second with an eight-bit gray
scale at a 256�256 resolution �i.e., a data rate of
63 megabytes per second�.

8. APPENDIX A: EXPRESSION FOR CAMERA-
SPACE ORIENTATION

To develop the expression given in �12�, we first de-
velop a relationship between the orientation of an ob-

ject in the task-space and the position of two features
of the object in the task space. Specifically, using basic
geometrical observations �see Figure 5�, we obtain the
following expression:

tan �d = �xd22 − xd21

xd12 − xd11
� �A1�

where �d�t��R1 represents the desired orientation
of the object in the task-space and xd1j,xd2j�R1 denote
the desired position of the jth feature point in
the task-space �see Figure 5�. We then utilize the
camera model given in �7� to express the position
of the jth feature point in the camera-space as shown
below:

�yd1j�t�
yd2j�t�

� = BR�����x1�t�
x2�t� � − �xd1j

xd2j
��, ∀ j = 1,2,

�A2�

where ydj�t�,ydj�t��R1 represent the position of the
jth feature in the camera-space, B was defined in �8�,

Figure 3. Control torque inputs.
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R was defined in �10�, and x1�t�,x2�t��R1 represent
the position of the end-effector in the task-space �see
Figure 5�. To obtain the camera-space orientation of
the object, we now utilize the same geometrical

observation utilized in �A1� to obtain the following
expression:

tan �y = �yd22 − yd21

yd12 − yd11
� . �A3�

After substituting the expressions given in �A2� for
yd1j�t� and yd2j�t� ∀j=1,2 into �A3� and performing
some algebraic manipulation, we can obtain the re-
lationship between the task-space orientation and the
camera-space orientation that is given in �12�.

A similar procedure could be used for the fixed
camera extension case, where the orientation of the
end-effector can be obtained in camera space. This
leads to the expression given in �63�.

9. APPENDIX B: PROJECTION ALGORITHM

In order to show that the expression given in �54� re-
duces to the expression in given in �56�, we substitute
for the update laws given in �42�, �45�, and �46� and
then cancel common terms to obtain the following
expression:

Figure 4. Parameter estimates for D�t�.

Figure 5. Geometric relationship between the position of
object features and the object orientation in the task-space.
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V̇ � − ksr
Tr − r3

Y	̃	

Y	̂	

��Yr̂r + ksr�3 + YĤH�

− ̃	
T�5

−1̇̂	. �B1�

Now, if we substitute for the adaptation laws given in
�43� and �44�, then we must evaluate �B1� for each of
the three cases given in �43�. In addition to showing
that �54� reduces to the expression given in �56�, we
will describe how the parameter update laws given in

�43� and �44� ensure that if �̂	�0�� int��1�, then ̂	�t�
never leaves the region �1, ∀t�0.

Case 1: ̂	�t�� int��1�.
When the estimate ̂	�t� lies in the interior of the

convex region �1, described in Property 4, �B1� can be
expressed as

V̇ � − ksr
Tr − r3

Y	̃	

Y	̂	

��Yr̂r + ksr�3 + YĤH�

+ r3̃	
T Y	

T

Y	̂	

��Yr̂r + ksr�3 + YĤH� , �B2�

thus, for Case 1, we can conclude that �54� reduces to
the expression in given in �56�. In addition, the direc-
tion in which the estimate ̂	�t� is updated for Case
1 is irrelevant, since the worse case scenario is that
̂	�t� will move toward the boundary of the convex
region denoted by ���1�.

Case 2: ̂	�t�����1� and �1
T̂	

��0.
When the estimate ̂	�t� lies on the boundary of

the convex region �1 described in Property 4 and
�1

T̂	
��0 then �B1� can be expressed as �B2�; thus, for

Case 2, we can conclude that �54� reduces to the ex-
pression in given in �56�. In addition, the vector �1
has a zero or nonzero component perpendicular to
the boundary ���1� at ̂	 that points in the direction
toward the int��1�. Geometrically, this means that ̂	

is updated such that it either moves toward the
int��1� or remains on the boundary; hence, ̂	�t�
never leaves �1.

Case 3: ̂	�t�����1� and �1
T̂	

��0.
When the estimate ̂	�t� lies on the boundary of

the convex region �1 described in Property 4 and
�1

T̂	
��0, then �B1� can be expressed as

V̇ � − ksr
Tr − ̃	

T�5
−1�− �1 + Pr

t��1�� �B3�

where �44� was utilized. Based on �B3�, we can utilize
Property 4 to conclude that

V̇ � − ksr
Tr − ̃	

T�5
−1− �Pr

���1� + Pr
t��1�� + Pr

t��1��

� − ksr
Tr + ̃	

T�5
−1Pr

���1� . �B4�

Because ̂	����1�, and ̂	 must lie either on the
boundary or in the interior of �1, then the convexity
of �1 implies that ̃	�t� defined in �49� will either
point tangent to ���1� or toward int��1� at ̂	�t�. That
is, ̂	�t� will have a component in the direction of
̂	

��t� that is either zero or negative. In addition, since
Pr

���1� points away from int��1�, we have that
̃	

T�5
−1Pr

���1��0; thus, �B4� reduces to �56�. Further-

more, since ̇̂	�t�=Pr
t��1�, we are ensured that ̂	�t� is

updated such that it moves tangent to ���1�; hence,
̂	�t� never leaves �1.
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