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Short Papers

Extremum-Seeking Nonlinear Controllers for a
Human Exercise Machine

X. T. Zhang, D. M. Dawson, W. E. Dixon, and B. Xian

Abstract—In this paper, a next generation exercise machine controller
is developed for a single degree of freedom (DOF) system to maximize
the user’s power output and ensure passivity with the user. In an effort
to optimize the user’s power expenditure, a desired velocity trajectory
is developed that seeks the unknown user-dependent optimal velocity
setpoint. Two extremum-seeking algorithms are presented (e.g., Kristic
and Deng, and Tuekosky et al.) that seek the optimal velocity setpoint while
ensuring the trajectory is sufficiently differentiable. To track the reference
trajectory and to ensure passivity, two controllers are developed. The first
controller is developed based on the assumption that the user’s torque
input can be measured. A second controller is designed that estimates the
user’s torque input. Both controllers are proven to ensure that the exercise
machine remains passive with respect to the user’s power output. The
controllers are proven to yield semiglobal tracking through Lyapunov-
based analyses. Proof-of-concept experimental results are provided that
illustrate the performance of the torque estimation controller.

Index Terms—Exercisemachine, nonlinear controller, passive controller.

I. INTRODUCTION

Generally, exercise machines are classified according to characteris-
tics such as the source of the exercise resistance, the exercise motions,
and the exercise objectives [1], [10]. Traditional exercise machines
(see, e.g., [3]) do not incorporate user-specific information in the ma-
chine functionality. Typically, traditional exercise machines either rely
on manual adjustment of the machine parameters (e.g., altering resis-
tance levels) or automatic adjustment based on an open-loop approach.
Exercise based on manual adjustments by the user are affected by the
psychological state of the user, which may result in decreased per-
formance. To maximize the user’s power output, recent research has
focused on closed-loop actuated exercise equipment that incorporates
feedback from the user. That is, next generation exercise machines will
incorporate user performance information to actively change the resis-
tance. In addition to maximizing the user’s power output, an additional
challenge for actuated exercise machines is to maintain passivity with
respect to the user.
Some research has been directed at developing these next generation

exercise machines. In [2], a state-feedback controller is developed for
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a human arm exercise machine. The machine described in [2] uses an
actuated mechanism to give the user a sensation of moving “virtual”
dynamic systems such as a mass, spring, or damper. Unfortunately,
the control design in this preliminary research does not address the
passivity problem or the self-optimizing problem. In [10] and [11], a
passive exercise machine controller is developed. With the assumption
that muscle force decreases linearly with the velocity of motion, the
controller ensures tracking of an arbitrary desired velocity field and
system passivity. The strategy in [10] and [11] employs a combination
of an adaptive tracking controller and a reference trajectory generator.
To compensate for the uncertainty in the user’s biomechanics, the ref-
erence generator requires a training phase where the algorithm learns
user-specific parameters. Once the user’s parameters are acquired for a
specific exercise session, an optimal reference trajectory is generated.
In [5], an adaptive resistance controller is designed with the restric-
tion that the resistance mechanism has only a braking capability. The
static damping control design in [5] ensures the passivity of the closed-
loop system to an external input force and bounded tracking errors.
An optimal exercise protocol is proposed in [5] based on an assumed
linear velocity dependence of human force. Identification of the non-
linear system dynamics of the exercise motions and torque output of
the resistance mechanisms are used in [5] to deal with unknown human
biomechanical behavior.
In this paper, a nonlinear exercise machine controller is developed

for a single degree of freedom system. One goal of the exercise ma-
chine controller is to maximize the user’s power expenditure. Hence,
a desired trajectory signal is designed to seek the optimal velocity set-
point that will maximize the user’s power output, while the controller
is designed to ensure that the exercise machine tracks the resulting
desired trajectory. To generate the desired trajectory, two different al-
gorithms are presented (see, e.g., [8] and [12]) to seek the optimal
velocity while ensuring the trajectory is sufficiently differentiable. In
contrast to the linear approximation of the user force input required
in previous research (e.g., [10] and [5]), the subsequent development
does not require any model of the user torque input. Another goal of
the controller is to ensure that the exercise machine remains passive
with respect to the user’s power input. To ensure passivity while also
achieving trajectory tracking, two different controllers are developed.
The first controller is developed based on the assumption that the user’s
torque input can be measured. Based on the desire to eliminate the need
for force/torque sensors, a second controller is designed that estimates
the user’s torque input. Both controllers are proven to remain passive
with respect to the user’s power output and yield semiglobal tracking
through Lyapunov-based analyses provided mild assumptions remain
valid for the machine dynamics and the user input. Proof-of-concept
experimental results are provided that illustrate the performance of the
torque estimation controller.
The development described in this paper has several advantages over

previous experiments. In comparison to the result in [5], the current re-
sult (as well as the results in [10] and [11]) does not require a one-sided
mechanical braking mechanism to ensure passivity. In comparison to
the results in [5], [10], and [11], the current development does not
require a linear approximation of the Hill-based force-velocity curves.
The proposed method does not require any model of the force-velocity
curve. Eliminating the linear approximation is a significant challenge
that requires a new method to determine the optimal trajectory of the
exercise machine.

1083-4435/$20.00 © 2006 IEEE
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II. EXERCISE MACHINE DYNAMICS

While a variety of machine configurations are available to facilitate
different exercises, many configurations can be reduced to a user torque
input to an actuated motor. The model for a 1-degree of freedom (DOF)
exercise machine is assumed to be as follows1:

Jq̈(t) = τ (q̇) + u(t) (1)

where J ∈ R denotes the constant inertia of the machine,
q(t), q̇(t), q̈(t) ∈ R denote the angular position, velocity, and accel-
eration of the machine, respectively, τ (q̇) ∈ R denotes a velocity-
dependent user torque input, and u(t) ∈ R denotes the motor control
input. The user input is assumed to exhibit the following characteristics
that are exploited in the subsequent development.
a) Assumption 1:The user input is a function of themachine velocity

[i.e., τ (q̇)].
b) Assumption 2: The user input is a second-order differentiable

function [i.e., τ (q̇) ∈ C2].
c) Assumption 3: The user input is unidirectional [i.e., assumed to

be positive w.l.o.g. (without loss of generality)] and satisfies the
following inequalities

0 ≤ τ (q̇) ≤ τmax (2)

where τmax ∈ R is a positive constant denoting the maximum
possible torque applied by the user.

d) Assumption 4: The desired trajectory is assumed to be designed
such that q̇d (t), q̈d (t),

. . .
q d (t) ∈ L∞, where the desired velocity,

denoted by q̇d (t) ∈ R, is assumed to be in the same direction as
the user input (i.e., assumed positive w.l.o.g.).2

Remark 1: In biomechanics literature, a user’s joint torque is
typically expressed as a function of position, velocity, and time
[i.e., τ (q, q̇, t)]. The position dependence is related to the configu-
ration of the limbs attached to the joint. As in [10], the user is assumed
to be able to exert the same amount of torque throughout the required
range-of-motion for the exercise, and hence, the position dependence
can be neglected. The time dependence of the user’s joint torque is due
to the effects of fatigue (i.e., the amount of maximum torque diminishes
as the user fatigues). As also described in [10], the user is assumed to
maintain a constant level of fatigue during the exercise session, and
hence, the time dependence can be neglected.

III. CONTROL DESIGN WITH MEASURABLE USER INPUT

A. Control Objectives

One objective of the exercise machine controller is to ensure that the
exercise machine tracks a desired velocity. To quantify this objective,
a velocity-tracking error, denoted by e(t) ∈ R, is defined as

e(t)
�
= q̇(t) − q̇d (t) (3)

where q̇d (t) ∈ R denotes a desired velocity that is assumed to be de-
signed such that q̇d (t), q̈d (t),

. . .
q d (t) ∈ L∞. Another objective is to

maximize the modified user power output, denoted by p(q̇), that is
defined as follows [10]:

p(q̇) = τ (q̇)q̇ρ (t) (4)

1Additional dynamic effects (e.g., friction) can be incorporated in the exercise
machine model and subsequent control design. These terms have been neglected
in the control development for simplicity.

2The assumption that q̇d (t) is assumed to be positive is a similar assumption
that is exploited in [10] and [11]. The assumption is considered to be mild since
the trajectory generation algorithm can easily be restricted (e.g., a projection
algorithm) to produce a positive value.

where ρ ∈ R is a positive constant3. To achieve this objective, the
desired trajectory must also be designed to ensure that q̇d (t) → q̇∗d
as t → ∞, where q̇∗d ∈ R is a positive constant that denotes an un-
known user-dependent optimal velocity setpoint. A final objective for
the exercise machine controller is to ensure the safety of the user by
guaranteeing that themachine remains passivewith respect to the user’s
power input. The exercise machine is passive with respect to the user’s
power input provided the following integral inequality is satisfied [10]:∫ t

t0

τ (σ)q̇(σ)dσ ≥ −c2 (5)

where c ∈ R is a bounded positive constant.
Remark 2: In contrast to the linear approximation of the user force

input required in [5] and [10], the subsequent development is based on
a general form of the user torque input. Specifically, Assumptions 1–3
should be satisfied and p(q̇) of (4) should have a global maximum for
some value of q̇(t) (i.e., q̇∗d ).

B. Control Development

The open-loop error system is determined by taking the time deriva-
tive of (3) and multiplying the result by J

Jė(t) = τ (q̇) + u(t) − Jq̈d (t) (6)

where (1) has been utilized. In this section, the user torque input is
assumed to be measurable. Based on this assumption, the structure of
(6), and the subsequent stability analysis, the following controller is
developed:

u(t) = −ke(t) + Jq̈d (t) − τ (q̇) (7)

where k ∈ R is a positive constant control gain. After substituting (7)
into (6), the following closed-loop error system can be determined:

Jė(t) = −ke(t). (8)

C. Controller Analysis

Theorem 1: The exercise machine controller in (7) ensures that
all system signals are bounded under closed-loop operation, and the
velocity tracking error is exponentially stable in the sense that

e(t) = e(0) exp

(
− k

J
t

)
. (9)

Proof: See [14]. �

Theorem 2: The controller in (7) ensures that the exercise machine
is passive with respect to the user’s power input.

Proof: By substituting (3) into (5), the following expression can
be obtained:∫ t

t0

τ (σ)q̇(σ)dσ =

∫ t

t0

τ (σ)e(σ)dσ +

∫ t

t0

τ (σ)q̇d (σ)dσ. (10)

Based on Assumptions 3 and 4, it is clear that the right-most term
in (10) is always positive; hence, since e(t) ∈ L1, (10) can be lower
bounded ∫ t

t0

τ (σ)e(σ)dσ ≥ −τmax

∫ t

t0

|e(σ)|dσ = −c2. (11)

Based on (11), it is clear that the passivity condition given in (5) is
satisfied. �

3A discussion of the physical interpretation of ρ is provided in [10]
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IV. DESIRED TRAJECTORY GENERATOR

In the previous development, it is assumed that a desired trajectory
can be generated such that q̇d (t), q̈d (t),

. . .
q d (t) ∈ L∞, and that q̇d (t) →

q̇∗d , where q̇∗d is an unknown constant that maximizes the user power
output. From (3) and (4), the user power output can be expressed as
(where ρ = 1 w.l.o.g.)

p(e, t) = τ (q̇d (t) + e(t))(q̇d (t) + e(t)). (12)

Since Theorem 1 can be used to prove that e(t) → 0 exponentially fast,
(12) can be approximated as

p(t) ∼= τ (q̇d )q̇d (t). (13)

From (13), it is clear that if q̇d (t) → q̇∗d , then p(t) → τ (q̇∗d )q̇∗d , and
hence, the user power output will be maximized. To generate a desired
trajectory that ensures q̇d (t), q̈d (t),

. . .
q d (t) ∈ L∞, and that q̇d (t) → q̇∗d ,

several extremum-seeking algorithms can be used. Two algorithms that
can be used to generate the trajectory are described in the following
sections.

A. Perturbation-Based Extremum Generation

For brevity, the extremum-seeking algorithm is simply presented
along with a heuristic commentary on the internal workings of the
algorithm as opposed to extensive mathematical efforts to prove con-
vergence of the scheme. Specifically, following the work presented
in [8], a saturated extremum algorithm for generating q̇d (t) can be
designed as

q̇d (t) = ae sin(ωt) + θ̂(t)

˙̂
θ(t) = −αf θ̂(t) + κ(t)

κ̇(t) = −α0κ(t) + α0(kf 1(sat(p) − η(t))ae sin(ωt))

η̇(t) = −kf 2η(t) + kf 2sat(p) (14)

where ae , ω, α0, αf , kf 1, and kf 2 ∈ R are constant design parame-
ters, θ̂(t), κ(t), and η(t) are filtered signals, and sat(·) denotes a
continuous saturation function. The algorithm given in (14) reduces
to the algorithm presented in [8] when the saturation functions are re-
moved and αf = 0. These modifications to the algorithm are incorpo-
rated to ensure that q̇d (t), q̈d (t),

. . .
q d (t) ∈ L∞. The design parameters

ae , ω, α0, αf , kf 1, and kf 2 must be selected sufficiently small because
the convergence analysis associated with (14) utilizes averaging tech-
niques. Specifically, the convergence analysis requires that the cutoff
frequency of the η(t) filter used in (14) be lower than the frequency
of the perturbation signal (i.e., ω). In fact, the convergence analysis
requires that the closed-loop system exhibit three distinct time scales:
i) high speed, the convergence of e(t); ii) medium speed, the periodic
perturbation parameter ω; iii) slow speed, the filter parameter kf 2 in
the η(t) dynamics. As presented in [8], the convergence analysis illus-
trates that an extremum algorithm similar to (14) finds a near-optimum
solution (i.e., q̇d (t) goes to some value very close to q̇∗d ). With regard
to the periodic terms in (14) [i.e., sin(ωt) and cos(ωt)], an extremum-
seeking scheme must “investigate” the neighborhood on both sides of
the maximum. This investigation motivates the use of slow periodic
terms in the algorithm.

B. Numerically Based Extremum Generation

As previously described, the algorithm in (13) can be used to show
that if q̇d (t) → q̇∗d , then the user power output will be maximized. An

extremum algorithm for generating q̇d (t) was presented in (14); how-
ever, this algorithm can be slow to find q̇∗d . As an alternative to the
approach given by (14), several numerically based extremum search
algorithms (e.g., Brent’s method [12], Simplex method [12], etc.) can
be used for the online computation of q̇d (t). For example, Brent’s
method requires measurement of only the output function [i.e., p(t)
in (4)] and two initial guesses that enclose the unknown value for q̇∗d
(the two initial guesses are not required to be close to the value of q̇∗d ).
Brent’s method then uses an inverse parabolic interpolation algorithm
and measurements of p(t) to generate estimates for q̇∗d until the esti-
mates converge. Specifically, the filter-based algorithm for computing
q̇d (t) is described in Appendix A.

V. CONTROL DESIGN WITHOUT MEASURABLE USER INPUT

The control development discussed in the previous section requires
that the user torque input be measurable. To measure the user input, an
additional sensor (i.e., a force/torque sensor) has to be included in the
exercise machine design. Inclusion of the additional sensor results in
additional cost and complexity of the system.Motivated by the desire to
eliminate the additional sensor, the controller in this section is crafted
by developing a nonlinear integral feedback term that produces a user
torque input estimate.

A. Open-Loop Error System

To facilitate the subsequent development, a filtered tracking error,
denoted by r(t) ∈ R, is defined as

r(t)
�
= ė(t) + αr e(t) (15)

where αr ∈ R denotes a positive constant parameter. After differenti-
ating (15) and multiplying both sides of the resulting equation by J ,
the following expression can be obtained:

Jṙ(t) = −e(t) + N (q̇, q̈) + u̇(t) − J
...
q d (t) (16)

where the time derivative of (1) and (3) have been used, and the auxiliary
function N (q̇, q̈) ∈ R is defined as

N (q̇, q̈)
�
=

d

dt
[τ (q̇)] + e(t) + Jαr ė(t). (17)

To further facilitate the subsequent analysis, an auxiliary signal
Nd (t) ∈ R is defined as

Nd (t)
�
= N (q̇, q̈)|q̇ (t)=q̇ d (t), q̈ (t)=q̈ d (t) (18)

where (17) can be used to prove that Nd (t), Ṅd (t) ∈ L∞ based on
the assumptions that q̇d (t), q̈d (t),

. . .
q d (t) ∈ L∞, and τ (q̇) ∈ C2. After

adding and subtracting Nd (t) to the right side of (16), the following
expression can be obtained:

Jṙ(t) = −e(t) + u̇(t) − J
...
q d (t) + Ñ (q̇, q̈) + Nd (t) (19)

where Ñ (q̇, q̈) ∈ R is defined as

Ñ (q̇, q̈)
�
= N (q̇, q̈) − Nd (t). (20)

Remark 3: Since N (q̇, q̈) defined in (17) is continuously differen-
tiable, Ñ (q̇, q̈) introduced in (20) can be upper bounded as indicated
by the following inequality [13]:

|Ñ (q̇, q̈, t)| ≤ ρ(|z(t)|)‖z(t)‖ (21)

where z(t) ∈ R
2 is defined as

z(t)
�
= [e(t) r(t)]T (22)

and ρ(‖z(t)‖) ∈ R is a positive bounding function that is nondecreas-
ing in ‖z(t)‖.
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B. Closed-Loop Error System

Based on the structure of (19) and the subsequent stability analysis,
the following controller4 is developed:

u(t) = J
...
q d (t) − [J

...
q d (t0) − (ks + 1)e(t0)]

− (ks + 1)e(t) −
∫ t

t0

(ks + 1)αr e(σ) dσ

−
∫ t

t0

(β1 + β2) sgn(e(σ)) dσ (23)

where sgn(·) represents the standard signum function and ks , β1, β2 ∈
R are positive control gains. The time derivative of (23) is given by

u̇(t) = J
...
q d (t) − (ks + 1)r(t) − (β1 + β2) sgn(e(t)). (24)

After substituting (24) into (19), the closed-loop dynamics for r(t) can
be determined

Jṙ(t) = −e(t) − (ks + 1)r(t)

− (β1 + β2) sgn(e(t)) + Ñ (q̇,
. . .
q ) + Nd (t). (25)

C. Stability Analysis

Theorem 3: The exercise machine controller introduced in (23) en-
sures all signals are bounded under closed-loop operation and that

e(t), ė(t) → 0 as t → ∞ (26)

provided the control gains β1 and β2 are selected according to the
following sufficient conditions:

β1 > |Nd (t)| +
1

αr

|Ṅd (t)|, β2 > 0 (27)

and the control gain ks is selected sufficiently large with respect to the
initial conditions of the system.

Proof: SeeAppendix B. �

Remark 4: Since e(t) ∈ L1, similar arguments as provided in the
proof for Theorem 2 can be utilized to conclude that the exercise
machine controller in (23) is passive with respect the user power input.

D. Desired Trajectory Generator

The perturbation and numeric trajectory generators described pre-
viously could be used to generate a reference trajectory that ensures
that q̇d (t),

. . .
q d (t),

. . .
q d (t) ∈ L∞ with the exception that both methods

depend on measurement of the user’s power input p(t). As indicated
by (4), p(t) is computed based on the assumption that the user torque
input is measurable. Since the development in this section is based on
the assumption that the user torque input is not measurable, a torque
estimator, denoted by τ̂ (t) ∈ R, is constructed

τ̂ (t) = −u(t) + J
...
q d (t) (28)

where u(t) is introduced in (23). Based on (28), the following lemma
can be stated.

Lemma 1: The torque observer in (28) ensures that τ̂ (t) ∈ L∞ and
τ (t) − τ̂ (t) → 0 as t → ∞ provided the control gains ks , β1, and β2

are selected according to Theorem 3.

4The bracketed terms in (23) are used to ensure that u(0) = 0.

Fig. 1. Exercise machine testbed (side view).

Proof: Theorem 3 indicates that u(t), e(t), ė(t) ∈ L∞, and
ė(t) → 0 as t → ∞. The assumption that

. . .
q d (t) ∈ L∞ and the

facts that u(t), ė(t) ∈ L∞ can be used along with (28) to show that
τ̂ (t) ∈ L∞. After taking the time derivative of (3) and multiplying the
result by J , the following expression is obtained:

Jė(t) = J
...
q (t) − J

...
q d (t)

= τ (t) − τ̂ (t) (29)

where (1) and (28) have been used. By integrating both sides of (29)∫ t

0

(τ (σ) − τ̂ (σ)) dσ = J(e(t) − e(0)) (30)

the facts that e(t0), e(t) ∈ L∞ can be used to show that τ (t) − τ̂ (t) ∈
L1. Based on the fact that ė(t) → 0 as t → ∞, (29) can also be used to
conclude that τ (t) − τ̂ (t) → 0 as t → ∞. �

Based on Lemma 1, the perturbation and numerically based ex-
tremum seeking algorithms can be rewritten where p(t) is replaced by
τ̂ (t)q̇d (t).

VI. EXPERIMENTAL RESULTS

The exercise machine testbed illustrated in Fig. 1 was constructed
and used to complete experiments that illustrate the feasibility of using
the proposed control strategy for maximizing the power expenditure
of the user. As illustrated in Fig. 1, the exercise machine consisted
of a handle that a user grasps; this handle is connected to a rotating
assembly that is mounted on the rotor of a switched reluctance mo-
tor. The exercise machine testbed can be modeled by the single-input
single-output nonlinear system introduced in (1). The inertia of the
motor assembly was experimentally determined to be J = 0.1 kg·m2.
A resolver mounted on the motor is used to measure the rotor posi-
tion while rotor velocity was calculated using a standard backward
difference algorithm. The motor was interfaced with a Pentium IV PC
operating underMicrosoftWindows 2000. The control algorithm given
in (23) was implemented in Simulink and converted to an executable
file via the Real-TimeWorkshop and the dSpace Target. The executable
file was loaded in the dSpace ControlDesk user interface for control
parameter tuning and data logging and plotting.
To demonstrate the performance of the control algorithm given in

(23), two experiments were conducted. For each experiment, a user
held the handle of the exercise machine shown in Fig. 1 and rotated the
motor shaft. Based on the desired angular velocity generated by the
numerical-based extremum generation (Brent’s method) algorithm,
the controller given in (23) modifies the resistive torque output of
the motor to maximize the user’s power expenditure. Quantifying the
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Fig. 2. Online computed velocity (dashed line) and achieved velocity (solid
line).

ability of the exercise machine to find the maximum power expenditure
of a user requires that the maximum be known. Since the maximum
power output for some user is unknown, the first experiment exploits
an artificial power function with a known maximum. Specifically, the
following surrogate parabolic power function was utilized in the first
experiment to generate q̇d (t):

p(t) = 3 − 1

3
(q̇d (t) − 3)2 (31)

where it is clear that (31) is maximized at q̇∗d = 3 rad/s. That is, by
using the surrogate input described in (31) to generate q̇d (t), the ability
of the extremum-seeking trajectory generator to accurately determine
the maximum can be quantitatively tested.
To generate q̇d (t) via Brent’s method (see Appendix A), an initial es-

timate of the maximum q̇d (t) is required (i.e., γ2) along with lower and
upper bounds (i.e., γ1 and γ3, respectively). For the first experiment,
γ1, γ2, and γ3 were selected as follows:

γ1 = 1 γ2 = 2.5 γ3 = 4.

To generate continuous bounded signals for q̇d (t),
. . .
q d (t),

. . .
q d (t), the

following stable and proper fourth-order filters were used:

diqd

dti
=

81si−1

s4 + 12s3 + 54s2 + 108s + 81
(32)

∀i = 1, 2, 3. A 1.5-s time delay was used to allow for the torque esti-
mate τ̂ (t) to converge to τ (t) before Brent’s method is invoked. Fig. 2
illustrates that the desired exercise machine velocity converges to the
optimal velocity setpoint (i.e., q̇∗d = 3 rad/s) and the actual velocity is
achieved based on the following control gains:

ks = 1 β1 + β2 = 0.05 αr = 0.05.

Fig. 3 depicts the control torque input u(t).
In the first experiment, the desired exercise machine trajectory was

generated via Brent’s method, where τ (q̇d )was provided by a surrogate
signal with a known maximum as a means to illustrate the ability of the
extremum-seeking trajectory generator to converge to the desired max-
imum. In the second experiment, the surrogate signal was eliminated
from the trajectory generator, allowing the desired trajectory to seek the

Fig. 3. Computed motor torque.

Fig. 4. Online computed velocity (dashed line) and achieved velocity (solid
line).

maximum power expenditure of the user. For the second experiment,
γ1, γ2, and γ3 were selected as

γ1 = 1 γ2 = 3.5 γ3 = 6.

The desired trajectory was constructed using the same filters given in
(32), and a 1.5-s time delay was used to allow for the torque estimate
τ̂ (t) to converge to τ (t). Fig. 4 depicts the online computed desired
velocity and the actual velocity achieved based on the following control
gains:

ks = 2 β1 + β2 = 0.1 αr = 0.1.

Fig. 5 depicts the control torque input u(t).
Remark 5: In [14], the control algorithm given in (23) was sim-

ulated for cases where the desired trajectory was generated by
the perturbation-based extremum-seeking algorithm and the Brent’s
method. These results indicate the controller’s performance in an ideal
case. As shown in Figs. 2 and 4, the tracking error signals contain high-
frequency components in practice and exhibit steady-state tracking
errors of ±0.5 (rad/s) and 1.0 to −0.5 (rad/s), respectively. The mag-
nitude of the tracking errors may not be acceptable for typical tracking
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Fig. 5. Computed motor torque.

applications; however, this application is atypical since a human is di-
rectly interacting with the system in real-time. That is, the human input,
denote by τ (q̇) in (1), can be viewed as an additive bounded disturbance
that corrupts the tracking performance. While the high-frequency es-
timator given in (28) should theoretically compensate for this additive
bounded disturbance, the actuator used in the experimental hardware
has a limited bandwidth, and hence, some degradation in tracking per-
formance can be expected. The simulation results in [14] also indicate
that the time required by the perturbation-based extremum-seeking al-
gorithm can be an order of magnitude greater than the time required to
determine the extremum using Brent’s method. Based on this fact, the
perturbation-based extremum-seeking algorithm was not experimen-
tally tested. The tracking performance presented in Figs. 2 and 4 are
similar to the results obtained in [11].

VII. CONCLUSION

An exercisemachine controller was developed that ensured passivity
with the user. In an effort to optimize the user’s power expenditure, two
different desired velocity trajectory generators were provided that seek
the unknown optimal velocity setpoint while ensuring the trajectory
remains bounded and sufficiently differentiable. To track the desired
trajectory and to ensure passivity, two controllers were developed. The
first controller required the user’s torque input to be measured, whereas
the second controller estimated the user’s torque input. Both controllers
are proven to ensure that the exercise machine remained passive with
respect to the user’s power output. Each controller was proven to yield
semiglobal tracking through Lyapunov-based analyses. The modified
Brent’s method extremum-seeking trajectory generator was used in
conjunction with a nonlinear controller, which eliminated the need for
force/torque measurement in the experiment. Proof-of-concept exper-
imental results were provided and illustrated the performance of the
desired trajectory generator and the torque estimation controller. The
tracking performance was similar to the results obtained in [11].

APPENDIX A

NUMERICALLY BASED EXTREMUM GENERATION

The numerically based extremum generation formula for computing
the optimal velocity setpoint that maximizes the user output power can
be described as follows:

Step 1: Three initial best-guess estimates, denoted by γ1, γ2, γ3 ∈
R, are selected, where γ1 is the best-guess estimate for a
lower bound on the optimal velocity, γ3 is the best-guess
estimate for an upper bound on the optimal velocity, and
γ2 is the best-guess estimate for the optimal velocity, where
γ2 ∈ (γ1, γ3).

Step 2: The lower bound estimate γ1 is then passed through a set
of third order stable and proper low-pass filters to generate
continuous bounded signals for q̇d (t),

. . .
q d (t),

. . .
q d (t). For

example, the following filters could be used:

q̇d =
ς1

s3 + ς2s2 + ς3s + ς4
γ1

. . .
q d =

ς1s

s3 + ς2s2 + ς3s + ς4
γ1

. . .
q d =

ς1s
2

s3 + ς2s2 + ς3s + ς4
γ1 (33)

where ς1, ς2, ς3, and ς4 denote positive filter constants.
Step 3: Based on the result in (9), and the expressions for the user

power output given in (12) and the structure in (33), the algo-
rithmwaits until |e(t)| ≤ ē1 and |q̇d − γ1| ≤ ē2 before eval-
uating p(γ1), where ē1 and ē2 are some predefined threshold
values.

Step 4: Steps 2 and 3 are repeated to obtain p(γ2) and p(γ3).
Step 5: The next desired trajectory point is determined from the

following expression:

γ4 = γ2 − 1

2

g1

g2

(34)

where g1, g2 ∈ R are constants defined as

g1 = (γ2 − γ1)2[p(γ2) − p(γ3)]

− (γ2 − γ3)2[p(γ2) − p(γ1)] (35)

g2 = (γ2 − γ1)[p(γ2) − p(γ3)]

− (γ2 − γ3)[p(γ2) − p(γ1)] (36)

where γi and p(γi ), ∀i = 1, 2, 3, are determined from steps
1–4. Specifically, γi and p(γi ) are substituted into (34)–(36)
and the resulting expression yields the next best-guess for
q̇∗d denoted by γ4 ∈ R.

Step 6: Steps 2 and 3 are repeated to obtain q̇d (t), q̈d (t),
. . .
q d (t) and

p(γ4). Note that each successive estimate for q̇∗d produced
by (34)–(36) will always be bounded by (γ1, γ3), and hence,
q̇d (t),

. . .
q d (t),

. . .
q d (t) ∈ L∞.

Step 7: The value for p(γ4) is compared to p(γ2). If p(γ4) ≥ p(γ2)
and γ2 > γ4 or if p(γ2) ≥ p(γ4) and γ4 > γ2, then the three
new estimates used to construct a new parabola are γ2, γ3,
and γ4. If p(γ4) ≥ p(γ2) and γ4 > γ2 or if p(γ2) ≥ p(γ4)
and γ2 > γ4, then the three new estimates used to construct
a new parabola are γ1, γ2, and γ4.

Step 8: Repeat steps 5–7 for successive γi , ∀i = 5, 6, . . ., where the
three estimates determined from step 7 are used to construct
a new parabola. Steps 5–7 are repeated until the difference
between the new upper and lower estimates is below some
predefined arbitrarily small threshold.

APPENDIX B

PROOF OF THEOREM 3

To prove the result in Theorem 3, the following lemmas are
introduced.



IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 11, NO. 2, APRIL 2006 239

Lemma 2: Let L1(t), L2(t) ∈ R be defined as

L1(t)
�
= r(t)(Nd (t) − β1sgn(e(t)))

L2(t)
�
= −β2ė(t)sgn(e(t)). (37)

If β1 and β2 introduced in (23) are selected to satisfy the sufficient
conditions given in (27), then

∫ t

t0

L1(σ)dσ ≤ ζb1

∫ t

t0

L2(σ)dσ ≤ ζb2 (38)

where the positive constants ζb1, ζb2 ∈ R are defined as

ζb1
�
= β1|e(t0)| − e(t0)Nd (t0) ζb2

�
= β2|e(t0)|. (39)

Proof: After substituting (15) into (37) and then integrating, the
following expression is obtained:

∫ t

t0

L1(σ)dσ=

∫ t

t0

αr e(σ)[Nd (σ)−β1sgn(e(σ))] dσ

+

∫ t

t0

de(σ)

dτ
Nd (σ)dσ−β1

∫ t

t0

de(σ)

dτ
sgn(e(σ)) dσ.

(40)

Integrating the second integral on the right side of (40) by parts yields

∫ t

t0

L1(σ)dτ

=

∫ t

t0

αr e(σ)(Nd (σ) − β1sgn(e(σ)))dσ

+ e(σ)Nd (σ)|tt0 −
∫ t

t0

e(σ)
dNd (σ)

dτ
dσ − β1|e(σ)‖t

t0

=

∫ t

t0

e(σ)

(
αr Nd (σ) − dNd (σ)

dτ
− αr β1sgn(e(σ))

)
dσ

+ e(t)Nd (t) − e(t0)Nd (t0) − β1|e(t)| + β1|e(t0)|. (41)

The expression in (41) can be upper bounded as follows:

∫ t

t0

L1(σ)dσ ≤
∫ t

t0

|e(σ)|
(

αr |Nd (σ)| +

∣∣∣∣dNd (σ)

dτ

∣∣∣∣ − αr β1

)
dσ

+ |e(t)|(|Nd (t)| − β1)

+ β1|e(t0)| − e(t0)Nd (t0). (42)

If β1 is chosen according to (27), then the first inequality in (38) can
be proven from (42). The second inequality in (38) can be obtained by
integrating the expression for L2(t) introduced in (37) as follows:

∫ t

t0

L2(σ)dσ =

∫ t

t0

(−β2ėsgn(e(t))) dσ

= β2|e(t0)| − β2|e(t)| ≤ β2|e(t0)|. (43)

�

Lemma 3: Consider the system ξ̇ = f(ξ, t), where f : R
m ×

R→R
m for which a solution exists. Let the region D be defined as

D := {ξ ∈ R
m |‖ξ‖ < ε}, where ε is some positive constant, and let

V : D × R→R be a continuously differentiable function such that

W1(ξ) ≤ V (ξ, t) ≤ W2(ξ) and V̇ (ξ, t) ≤ −W (ξ) (44)

∀t ≥ 0 and ∀ξ ∈ D, whereW1(ξ), W2(ξ) are continuous positive defi-
nite functions andW (ξ) is a uniformly continuous positive semidefinite
function. Provided (44) is satisfied and ξ(0) ∈ S, we have

W (ξ(t)) → 0 as t → ∞ (45)

where the region denoted by S is defined as follows:

S := {ξ ∈ D | W2(ξ) ≤ δ} where δ < min
‖ξ ‖=ε

W1(ξ) (46)

and where δ denotes some positive constant.
Proof: Direct application of Theorem 8.4 in [9].

The proof for Theorem 3 can now be developed as follows.
Proof: Let P1(t), P2(t) ∈ R denote the following auxiliary

functions

P1(t) = ζb1 −
∫ t

t0

L1(σ)dσ

P2(t) = ζb2 −
∫ t

t0

L2(σ)dσ (47)

where ζb1, ζb2, L1(t), and L2(t) are defined in Lemma 2. The results
from Lemma 2 can be used to show that P1(t) and P2(t) are nonnega-
tive. Let V (y, t) : R

2 × R × R × R denote the following nonnegative
function:

V (y, t)
�
=

1

2
e2(t) +

1

2
Jr2(t) + P1(t) + P2(t) (48)

where y(t) ∈ R
2 × R × R is defined as

y(t)
�
=

[
zT (t)

√
P1(t)

√
P2(t)

]T

(49)

and z(t) was defined in (21). Since J is a positive constant, (48) can
be lower and upper bounded by the following inequalities:

W1(y) ≤ V (y, t) ≤ W2(y) (50)

where
W1(y) = λ1‖y(t)‖2 W2(y) = λ2‖y(t)‖2 (51)

and where λ1
�
= (1/2) min{1, J} and λ2

�
= max{1, (1/2)J}.

After differentiating (48) and using (15), (25), (37), and the time
derivative of (47), the following expression can be obtained:

V̇ (y, t) = −αr e
2(t) − r2(t) − ks r

2(t) + r(t)Ñ (·)
− β2(ė(t) + αr e(t))sgn(e(t)) + β2ė(t)sgn(e(t))

≤ −λ3‖z(t)‖2 − ks r
2(t) + r(t)Ñ (·) − αr β2|e(t)|

(52)

where λ3
�
= min{1, αr }. By using (21), the following inequality can

be developed:

V̇ (y, t) ≤ −λ3‖z(t)‖2 − αr β2|e(t)|
+

[
|r(t)|ρ(‖z(t)‖)‖z(t)‖ − ks r

2(t)
]
. (53)



240 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 11, NO. 2, APRIL 2006

Completing the squares on the bracketed term in (53) yields

V̇ (y, t) ≤ −
(

λ3 − ρ2(‖z(t)‖)

4ks

)
‖z(t)‖2 − αr β2|e(t)|. (54)

Based on (54), the following inequality can be developed

V̇ (y, t) ≤ W (y) − αr β2|e(t)| for ks >
ρ2(‖z(t)‖)

4λ3

or ‖z(t)‖ < ρ−1(2
√

λ3ks ) (55)

where

W (y) = −γ‖z‖2 (56)

and γ ∈ R is some positive constant. From (55) and (56), the regions
D and S can be defined as

D �
=

{
y ∈ R

2 × R × R

∣∣∣‖y‖ ≤ ρ−1(2
√

λ3ks )
}

(57)

S �
=

{
y ∈ D

∣∣∣∣W2(y) < λ1

(
ρ−1(2

√
λ3ks )

)2
}

. (58)

The region of attraction in (58) can be made arbitrarily large to
include any initial conditions by increasing the control gain ks (i.e., a
semiglobal stability result). Specifically, (51) and the region defined in
(58) can be used to calculate the region of attraction

W2(y(t0)) < λ1

(
ρ−1(2

√
λ3ks )

)2

=⇒ ‖y(t0)‖ <

√
λ1

λ2

ρ−1(2
√

λ3ks ) (59)

which can be rearranged as

ks >
1

4λ3

ρ2

(√
λ2

λ1

‖y(t0)‖
)

. (60)

By using (15) and (49), the following explicit expression for ‖y(t0)‖
can be obtained:

‖y(t0)‖ =
√

e2(t0) + (ė(t0) + αr e(t0))2 + P1(t0) + P2(t0) (61)

where (1), (3), and the fact that u(t0) = 0 can be used to determine
that

ė(0) = J−1τ (t0)− . . .
q d (t0).

From (48), (54), (55), and (58), it is clear thatV (y, t) ∈ L∞∀y(t0) ∈
S; hence, e(t), r(t), z(t), y(t) ∈ L∞∀y(t0) ∈ S. From (55), it is also
clear that e(t) ∈ L1∀y(t0) ∈ S. From (15), it can be shown that
ė(t) ∈ L∞∀y(t0) ∈ S. Since . . .

q d (t) is assumed to be bounded, (23)
can be used to prove that u(t) ∈ L∞∀y(t0) ∈ S. The previous bound-
edness statements can also be used along with (21), (25), and (56)
to prove that Ẇ (y(t)) ∈ L∞∀y(t0) ∈ S; hence, W (y(t)) is uni-
formly continuous. Lemma 3 can now be invoked to prove that
‖z(t)‖ → 0 as t → ∞∀y(t0) ∈ S. Hence, (15) can be used to show
that e(t), ė(t), r(t) → 0 as t → ∞∀y(t0) ∈ S.
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Application of a 3-DOF Parallel Manipulator for
Earthquake Simulations

Erika Ottaviano and Marco Ceccarelli

Abstract—In this paper a formulation and experimental results are pre-
sented for a novel application of a 3-degree of freedom (DOF) parallel
manipulator to simulate point seismograms and three-dimensional (3-D)
earthquake motion. The rigid body acceleration is analyzed to simulate
real 3-D earthquakes. Furthermore, first experimental results are reported
to analyze earthquake effects on scaled civil structures.

Index Terms—Earthquake simulators, experimental robotics, parallel
manipulators.

I. INTRODUCTION

Earthquake simulators are widely used in the field of Civil En-
gineering to investigate both earthquake characteristics and resistant
constructions. Therefore, it is of great interest to have earthquake sim-
ulators that can reproduce earthquakes to test nature-scaled or scaled
civil structures. Earthquake simulators are used in laboratories, like
those referred in [1]–[3]. Those simulators do not operate for a three-
dimensional (3-D) motion of the terrain due to earthquake waves. In
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