Mechatronics 19 (2009) 1043-1056

journal homepage: www.elsevier.com/locate/mechatronics

Contents lists available at ScienceDirect

Mechatronics

Mechatronics

A hardware in the loop simulation platform for vision-based control of

unmanned air vehicles
N.R. Gans ®*, W.E. Dixon®, R. Lind®, A. Kurdila©

2 University of Texas at Dallas, Richardson, TX, USA
> University of Florida, Gainesville, FL, USA
€ Virginia Polytechnic Institute, Blacksburg, VA, USA

ARTICLE INFO ABSTRACT

Keywords:

Hardware in the loop simulation
Vision-based control

Unmanned air vehicles

Design and testing of control algorithms for unmanned air vehicles (UAV’s) is difficult due to the delicate
and expensive nature of UAV systems, the risk of damage to property during testing, and government reg-
ulations. This necessitates extensive simulation of controllers to ensure stability and performance. How-
ever, simulations cannot capture all aspects of a flight control, such as sensor noise and actuator lag. For

these reasons, hardware in the loop simulation (HILS) platforms are used. In this paper, a novel HILS plat-
form is presented for vision-based control of UAV’s. This HILS platform consists of virtual reality software
to produce realistic scenes projected onto a screen and viewed by a camera. Flight hardware includes an
UAV with onboard autopilot interfaced to the virtual reality software. This UAV can be mounted in a wind
tunnel, allowing attitude regulation through servoing the airfoils.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The development of a control system typically involves a period
of simulation. Simulation provides a precise environment, access to
physically unmeasurable variables and rapid redesign and testing,
not to mention sparing wear and damage on equipment. Addition-
ally, some systems may present a danger in the event of system
failure. However, simulations often fail to capture critical issues.
Issues not captured in simulation are often a matter of robust-
ness, but also include problems such as unknown dynamics or
errors in simulation code that cause inaccurate performance.
Some problems may be known but difficult to model accurately.

For several decades, simulation and implementation has been
bridged through the use of Hardware In the Loop Simulation
(HILS). HILS combines a simulated system with physical hardware.
For example, a software simulation of the system plant is aug-
mented with actuators and sensors from the designed system. HILS
systems have facilitated development in numerous fields, includ-
ing automotive engineering [1,2], aerospace [3-5], power systems
[6], manufacturing [7] and robotics [8,9].

For the past three years, a joint effort has been underway to de-
velop a sophisticated simulation testbed for the vision-based con-
trol of Unmanned Air Vehicles (UAV’s). This testbed provides
multiple stages of increasing hardware interaction. The first stage
is a virtual reality system capable of displaying environments

* Corresponding author. Tel.: +1 850 833 9350; fax: +1 850 833 9366.
E-mail address: nrgans@gmail.com (N.R. Gans).

0957-4158/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechatronics.2009.06.014

and simulating the dynamics of various plant models, including
UAV’s. The second stage is a system of modular displays, digital
cameras and computers for image and control processing. The
third stage incorporates a fixed-wing UAV in a wind tunnel. The
UAV is equipped with IMU motions sensors and an autopilot to
actuate the airfoils.

Vision-based control systems can be designed and tested in the
virtual reality stage. Once the system is satisfactory, the same 3D
environment can be projected onto large monitors and viewed by
a physical camera. Problems associated with cameras, such as sig-
nal noise, lens distortion, etc. are now incorporated. Additionally,
multiple cameras can be rapidly developed and tested for use in
the field. Communication between the camera and control process-
ing computers and the environment rendering computers allows
closed loop control of the virtual scene. In the final stage, the control
signals generated by the vision controller are sent to the UAV in the
wind tunnel. Data measured by avionics, such as attitude and wind
speed, are fed back to the computer system and rendered in the vir-
tual environment. An illustration of the complete HILS environment
is shown in Fig. 1. There are currently two such HILS facilities. The
first facility is at the University of Florida Research and Education
Engineering Facility (REEF), in Shalimar, Florida. The second facility,
which does not currently incorporate a wind tunnel, is at the Uni-
versity of Florida main campus in Gainesville, Florida.

To the authors’ knowledge, this work presents the first develop-
ment of a HILS system for UAV vision-based control design that
incorporates camera hardware, flight avionics, and an airframe in
a wind tunnel. HILS is often performed using the avionics and

http://dx.doi.org/10.1016/j.mechatronics.2009.06.014
mailto:nrgans@gmail.com
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics

1044 N.R. Gans et al./ Mechatronics 19 (2009) 1043-1056

\

Control algorithms

MAV flight control
(control surface
commanids)

UF low-speed wind tunnel

Photo-realistic, hi-res display Virtual environment generation/imaging
——— lngm'al pasr‘ria_u & !
— S orientation estimation
rm—
Low-res,
CCD camera « Environment database/editor
* Visualization graphics engine
* Real-time, photo-realistic Dynamic model
e S, rendering of MAV s virtual
= Sreld of view
Balance and angle
(‘ﬂt’ﬂdﬂr measurements
Vision-processing computer cluster Wind tunnel test section

Low-friction
universal joint

Fig. 1. The vision-based hardware-in-the-loop simulation environment.

autopilot to receive simulated flight data [10]. The authors of
[11,12] measured the aerodynamic forces on an airfoil in a wind
tunnel while simulating inertia of the wing, creating a closed loop
“wing-in-the-loop” simulation. They recently extended this strat-
egy to study behavior in unsteady regimes, such as a pitching air-
foil at a high angle of attack and compared the results with
established LPV models [13]. In [14] and [15], HILS systems are
developed for vision-based UAV navigation, which incorporate
flight avionics, ground station, and video processing hardware,
however the images are generated by software without the use
of cameras, and in both cases the aircraft is simulated using a non-
linear model. The authors of [16] designed a HILS system for vi-
sion-based UAV control involving a camera mounted on a robot
manipulator that moved through a physical diorama.

Sections 2-4 discuss the three stages of the HILS platform in de-
tail. Section 5 presents examples of the work being done at each
stage.

2. Stage one - the virtual reality simulator

The first component is the virtual reality simulator which gen-
erates and displays the virtual environment. The virtual reality sys-

VPIC++

tem is composed of multiple 3.6 GHz Xeon workstations running
virtual environment (VE) rendering software by MultiGen-Para-
digm. The VE software networks the workstations, allowing multi-
ple instances of the VE to run on multiple workstations. The
Gainesville facility has a cluster of five computers and a database
server, currently capable of displaying on three simultaneous dis-
plays, while the REEF facility can has a cluster of eleven computers
and five displays. Control routines can be written in C++ or Matlab/
Simulink, and make use of the GNU Scientific Library (GSL) [17].
Running Matlab/Simulink simultaneously with image processing
routines essentially creates a multithreaded application. There is
no native way to pass information between Simulink and C++. It
was necessary to create functions called by Simulink to read and
write shared memory locations (in RAM) known to both C++ and
Simulink. Sharing memory between C++ and Simulink requires
the use of memory synchronization tools such as mutexes. Such
tools are not complicated [18], but discussion is beyond the scope
of this paper. The communication scheme is illustrated in Fig. 2.
The virtual reality simulator utilizes MultiGen-Paradigm’s Vega
Prime, a commercial software package for Windows. There are cur-
rently two virtual environments available. The first is a scale accu-
rate model of the University of Florida (UF) campus, which

f:> Shared memory]]
Image Features

Matlab/Simulink

P

Shared memory
Control command

Fig. 2. Communication between VE software, image processing, and control for no camera in the loop simulations.

N.R. Gans et al./ Mechatronics 19 (2009) 1043-1056

1045

(a) Gainesville HILS facility

(b)REEF HILS facility

Fig. 3. Modular displays at the two HILS facilities.

CENTER
LEFT RIGHT
= -8 -
o) J}\ 7 wh feery
POSITION &
ORIENTATION

CCD CAMERA

VIRTUAL REALITY

SIMULATOR

.CONTROL Camera
C data st
7 owic,, ata stream TCPIP
H . socket to
— VR server

%VISION PROCESSING &

“WORKSTATION

Shared memory
Image Features

Control

Matlap/Simulink

Image Processing o
and TCP/IP
C++

— ———

"o,

Shared memory
Control command

— -l

e trna
S reapne

Fig. 4. Communication between VE software, camera, image processing, and control for camera in the loop simulations.

provides a large, urban environment. The second environment is a
recreation of the US Army’s urban warfare training ground at Fort
Benning. While smaller in size, the second environment has a
much denser polygon count, more detailed textures, and the effects
of soft shadows, resulting in realistic images.

2.1. Camera projection model

At the heart of image based estimation and control is the camera
projection model. The camera projection model describes how 3D
points, lines, etc. in the environment are projected to 2D image fea-
tures in digital image. A popular projection model is the pinhole
camera model. The pinhole camera model is mathematically simple
and accurate when using well focused lenses of reasonable quality.

In the pinhole camera model, an orthogonal coordinate system
7 is attached to a camera. Conventional orientation of # places
the z-axis pointing ahead from the camera, and is often called
the optical axis. Consider a collection of 3D feature points in front

of the camera, denoted by 0;,i € {1...n},n € R". The Euclidean
coordinates of the feature points O;, expressed in the frame #, is
denoted by m;(t) € R* and given by
mi2[x; y; zi]'. (M
The Euclidean-space is projected onto the image-space, giving the
normalized coordinates of the targets points m;(t), defined as

- T
mi [x y;
mi:—’: —1&1 .
Zi Zi Zi

In a digital camera, each target point has quantized pixel coordi-
nates and homogeneous' pixel coordinate p;(t) € R® expressed in
the image coordinate frame

)

! Homogeneous pixel coordinates refers to the fact that the coordinates are
intrinsically elements of R?, but extended to R*> by concatenating a 1 as a third
element.

1046 N.R. Gans et al./Mechatronics 19 (2009) 1043-1056

Virtual world

Screen view real
camera view

Constant
relationship

CURLT R,

Fig. 5. Camera, projector plane and virtual scene geometry.

P v 1) 3)

The pixel coordinates p;(t) are related by a global, invertible trans-
formation to the normalized task-space coordinates m;(t)

p; =Am;
where A € R¥? is the intrinsic camera calibration matrix given by
fsy Sp Uy
A=10 fs, uy|. (4)
0 0 1

In (4), f is the camera focal length, s, and s, are related to the size
and dimensions of the pixels elements, s, is a skew parameter for
nonrectangular pixels, and u, and u, define the center of projection,
in pixels. Collectively, these are referred to as the camera intrinsic
parameters. In the case of a physical camera, the intrinsic parame-
ters are often reported by the manufacturer, though a formal cam-
era calibration should be performed to account for manufacturer
defects. In the case of an image from a VE, the intrinsic parameters
can be deduced from software settings. Given the coordinates p; of a
set of feature points at different times, there are numerous methods

(a) Screen image of 1280x1024
resolution

to solve for the relative displacement of the camera to the points,
the motion of the points over time, the motion of the camera over
time, etc. These methods include multi-view (epipolar) geometry
[19-21], Kalman filtering [22-24] and nonlinear estimation
[25,26]. Using this data in the feedback loop of a control system
constitutes vision-based controls.

3. Stage two - camera in the loop

The second component of the HILS platform is the modular dis-
play and physical cameras. Since the VE can be instanced by several
workstations simultaneously, multiple views can be rigidly con-
nected in a mosaic for a large field of view. Alternately, multiple,
independent camera views can pursue their own tasks, such as coor-
dinated control of multiple vehicles. The display at Gainesville con-
sists of a set of three rear projection displays as depicted in Fig. 3a,
which shows a mosaiced view. The REEF has four plasma screens
capable of mosaiced images and one projection display, as seen in
Fig. 3b. Each camera feeds a video stream to a dedicated computer,
which process the images and create control signals. Control signals
are relayed to the VE rendering cluster over a network connection
using TCP/IP sockets. Several cameras have been successfully fielded,
including digital video cameras using Firewire and USB 2.0 inter-
faces, and analog video cameras in conjunction with D/A converters.
Camera interface, image processing, VE rendering and socket com-
munication among computers are implemented in C++. Control rou-
tines can be implemented in C++ or Matlab/Simulink, requiring the
use of shared memory. This is illustrated in Fig. 4.

There is a notable complication when incorporating cameras
into the HILS platform. Vision-based control algorithms assume
that the camera is capturing an image of a 3D scene. This assump-
tion holds for images captured from the frame buffer in a pure sim-
ulation, as described in Section 2. However, this assumption does
not hold when a physical camera captures images of the VE ren-
dered on a display. Clearly, the camera does not look at the 3D
scene directly. The camera looks at a 3D scene that is projected
onto a 2D display. Thus, the camera projection model is not valid
in this case.

There exists an additional transform between the points on the
screen and the points in the camera image. This transform must be
incorporated in any vision-based control simulations with a cam-
era in the loop. Geometry between the display, camera and virtual
scene is illustrated in Fig. 5. The camera is fixed with respect to the
projection plane, and any change of scene on the projector plane
can be modeled as the display screen plane moving through the
virtual environment, with the camera rigidly attached to it. The
means to account for the camera-to-screen geometry, which

(b) Camera image of 640x480
resolution

Fig. 6. Images used in camera-to-screen calibration.

N.R. Gans et al. / Mechatronics 19 (2009) 1043-1056 1047

Pose Error

1.6 T T T T T

1.4 || I screen capture
[Jcameranocal
1.2 | I camera w/ cal

translation error (meters)

1 2 3 4 5 6 7 8 9 10 mean
0.6 T T T T T T T T T T T
I screen capture
05 camera no cal L
I camera w/ cal

Rotation Error (no unit)

6 7 8 9 10 mean
test number

Fig. 7. Results of the camera-to-screen calibration test.

describes how features on the screen map to features in the camera
image, are presented in this section.

3.1. Camera-to-screen geometry
The virtual environment is projected onto a virtual image which

is reproduced on a physical display screen. This projection of the
virtual world onto the screen is modeled by the pinhole projection

virtual environment

Flight
Simuiator

Futaba Interface
(Emulates MAV)

color
camera

model as described in Section 2.1. As seen in Fig. 5, consider the
virtual camera frame #; within the VE. The virtual camera under-
goes a rotation Rs; and translation x; to a new pose in the VE de-
noted by frame Z;. In the case of camera in the loop, a physical
camera is looking at a screen onto which a 2D image is projected
from 3D virtual scene. Consider a camera, with attached reference
frame .7, viewing the display screen. .7 is separated from .7 by a
constant rotation R, and constant translation T..

pusher 24" small UAV
propeller |
o Y 4

color | _w
camera
1

I sensorsicomputing

s e v _ _ _video link _ _

115 kbs
transceiver

A
|
I
R——— " "
|
I

ground station

Fuiaba RC
controller

Futaba
signal
generator

Fig. 8. Flight hardware configurations.

1048 N.R. Gans et al./ Mechatronics 19 (2009) 1043-1056

Fig. 9. E-flite aircraft in the wind tunnel.

A set of points O;,i € {1...n},n € R* on the display screen have
homogeneous pixel coordinates in 7 given by

Dsi = Asisi. (5)

A, is the intrinsic calibration matrix of the virtual camera, and can
be determined from the settings of the VE rendering software.
The same points have Euclidean coordinates i € R® in #.. The
normalized coordinates of p,; in the camera frame are given by

m .
Pei =Acme = Ac 7“ (6)

Cl

where A. is the camera calibration matrix.

When the camera views the screen, every point on the screen
corresponds to one and only one point in the camara image plane.
Thus, there is a homography relationship between p and p,; given
by

Dei = GenDgii € {1...n}. (7)

where Gy € R¥3 is the camera-to-screen homography matrix.

The matrix G,y can be solved for with a calibration method. A
known calibration grid pattern is projected on the screen and a
picture is taken with the camera. This is shown in Fig. 6. Extracting
the corners of the grids gives a set of points p; in the image, and by
matching them to the known pg; a set of linear equations can be
solved for Gy.

Measuring the coordinates of the points p is subject to sensor
noise and is thus random process. To eliminate the effects of noise,
Gy is estimated as the solution to linear equations using RANSAC
[27]. RANSAC is an algorithm for robust fitting of models in the
presence of uncertainty and data outliers. It returns a best fit of
Gen to p, and pg;, but eliminates any points that appear to be cor-
rupted or inconsistent with the obtained solution (i.e., outliers).
RANSAC is governed by a random process, so results are obtained
for several runs and averaged.

A typical result for the mean and standard deviation for Gy is
seen below

[0.6500 -0.0296 -83.2262
0.0072 0.6366 —61.7221 |,

| 0.0000 -0.0001 1.0000

[0.0016 0.0007 0.6298
0.0004 0.0013 0.3714

 0.0000 0.0000 0.0000

,“(GcsN) =

O-(GCSN) =

An experiment was carried out to demonstrate the need to solve
the camera-to-screen homography. The virtual camera was placed

at a known reference position in the VE, looking at a recognizable
target (a dark window on a lighter building) and ten, known, ref-
erence positions with the same window visible. Images were cap-
tured at each pose, directly from the virtual environment display

130 : : : : : :
125 1
120 b
]
3 115} 1
=
1o} 1
105} 1
100 i i i i i i
120 122 124 126 128 130 132 134
u, [pixel]
(a)Feature point trajectories
0.4 : : : : : : : : :
=
a
E o02f 1
>5
O i i i i i i i
o 1 2 8 4 5 6 7 8 9 10
0 : : : : : : :
=
@
E 05}]
S
K
_1 i i i i i i i i i
o 1 2 8 4 5 6 7 8 9 10
21 : . . . : . : .
Tz/) 1F 1
£ /_//-
o 0
3
_1 i i i i i i i i i
o 1 2 38 4 5 6 7 8 9 10
Time [sec]
(b)Linear velocity
=
@
T o
8'5
_1 i i i i i i i i i
o 1 2 8 4 5 6 7 8 9 10
1
=
@
8 o
K
3
» ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
o 1 2 3 4 5 6 7 8 9 10
A i i

Time [sec]

(c)Angular velocity

Fig. 10. Results of Simulink simulation of quaternion-based controller.

N.R. Gans et al./Mechatronics 19 (2009) 1043-1056

600

*: desired final positions

500 | o: initial starting positions

400 |
p2(0)

2 [pixel]

300

200 |

100 i i i i i i i i
300 350 400 450 500 550

u, [pixel]

(a)Feature point trajectories

750

1049

25 30 35

~0.1 i i i i
0 5 10 15 20
Time [sec]

40

(b)Linear velocity

0.2 T T T

20 25 30 35

_4 i i i

15

20
Time [sec]

25 30 35

(¢)Angular velocity

Fig. 11. Results of VE simulation of quaternion-based controller.

and the camera. A standard, vision-based motion estimation tech-
nique (see [21]) was used to estimate the displacement of the
camera from the reference position to the test positions. Thus
the estimation error for the vision-based estimation can be tested
for pure simulations and camera-in-the-loop when Gy is known
and unknown. Given a known translation T; € R*> and an esti-
mated translation T, € R?, the translation estimation error is gi-
ven by |T; — T,||. Given a known rotation R, € SO(3) c R**3 and
an estimated rotation R, € SO(3) c R**3, the rotation estimation
error is given by |I— RS’]RsH, where [is a 3 x 3 identity matrix
and the matrix norm is given by the largest singular value of
the matrix. Note that while the translation error has the appro-
priate unit of distance, the rotation error does not have an appro-
priate unit (in many cases, || — R;'R,|| is approximately the norm
of the vector given by the roll, pitch, yaw angle parameterization
of R'Ry).

Results are given in Fig. 7. The first four poses were pure trans-
lation, while the next six were general motions involving transla-
tion and rotation. The mean of the errors is given as well. As
expected, the estimations from pure simulation were better than
camera-in-the-loop, reflecting the presence of noise and distor-
tion unique to the camera. Knowledge of the camera-to-screen

callibration improved the performance. In all but one case, the
translation error was greater, often more than twice as large,
when the camera-to-screen homography was not accounted for.
Rotation error was always much larger when the calibration
was not performed. Indeed, the rotation estimation error when
Gesn is known is not generally much larger than the pure simula-
tion case.

4. Stage three — UAV and avionics in the loop

Active efforts focus on extending the amount of hardware in
the control loop. Additional hardware includes flight hardware
such as an actuated UAV, flight camera, transceivers, radio con-
trol, ground station PC, etc. This is illustrated in Fig. 8. The addi-
tional hardware allows for accurate testing of signal noise, signal
dropout, lag, actuator saturation, etc. The UAV is mounted on a
sting balance in a low-turbulence wind tunnel. Actuation of air-
foils in the airflow of a wind tunnel will change the attitude of
the UAV. The attitude change is relayed to the VE software, which
alters the viewpoint accordingly. In turn, the vision-based control
routines send velocity commands to the UAV autopilot. This is
illustrated in Fig. 1.

1050 N.R. Gans et al./Mechatronics 19 (2009) 1043-1056

900 r - . ; 1 - - T T :
800
700 120
o 600
X i
=3
*" 500
120
400
300 i
i i i i i i i i i 05 i i i i i
350 400 450 500 550 600 650 700 750 800 850 0 20 40 60 80 100 120
u [pixel] Time [sec]
(a)Feature point trajectories (b)Linear velocity
0.5 T : : . .
T
(2]
B 0 VM 7
i
05 ; ; ; ; ;
20 40 60 80 100 120
0.5 - - T T T
)
)
g 0 1
K
3
05 ; ; ; ; ;
0 20 40 60 80 100 120
1 : : . . .
T
@
g o 1
3
e
-1 ; ; ; ; ;
0 20 40 60 80 100 120
Time [sec]
(¢)Angular velocity
Fig. 12. Results of camera-in-the-loop simulation of quaternion-based controller.
— Aircraft x 10"
- - -Refernce 25 ' ' ' '
Target
2 - -
0 15 E
g
— b4
£ 500
a 1F]
1000 — Aircraft
05 |===Refernce E
‘Target
x 10)))
-20000 -15000 -10000 -5000 0 5000

E (ft

Fig. 13. Vehicle trajectories.

||T|| Error

& Com (deg)

N.R. Gans et al. / Mechatronics 19 (2009) 1043-1056 1051

x 10 x 10
3.5 3
3 | 25 |
2 b]
5 .| ,
ULJ .
| x
4k]
| 0.5 T
! . , l 0) ! . .
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Index (counts) Index (counts)
(a)Translation Error (b)Rotation Error
Fig. 14. Relative pose estimation error.
80 T T T T T 80 T T T T T
1 60 [1
40 [-
=)
b [}
z
€ 20 7
o
J o
==
ok J
i =20 i
60 40
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Index (counts) Index (counts)
(a)¢ (roll angle) (b)8 (pitch angle)

140 T T T T T

y Com (deg)

0 100 200 300 400 500 600

Index (counts)
(c)y (yaw angle)

Fig. 15. Body axis angle commands.

1052 N.R. Gans et al./ Mechatronics 19 (2009) 1043-1056

Fig. 16. Snapshots from vehicle pursuit experiment.

An E-flite Tensor 4D was chosen as the UAV for this stage of
development and can be seen in a wind tunnel flight in Fig. 9.
The Tensor 4D is a pull-prop biplane with a wingspan of 27 inches
(68.5 cm) and length of 30 inches (76 cm). A Kestrel Autopilot by
Procerus Technologies measures motion of the plane through an
onboard Inertial Measurement Unit (IMU), rate-gyro, pressure sen-
sor and electric compass. The autopilot can control the airfoil ser-
vos to regulate the attitude and velocity of the plane. A ground
station runs Procerus Virtual Cockpit software to interface with
the autopilot. The communication between the ground station
and VE rendering cluster is accommodated via TCP/IP sockets.
The wind tunnel facility is a low-speed low-turbulence facility
with a test section of 107 by 300 cm. The free stream velocity
can be finely adjusted in a range between 2 and 22 m/s. Typical
testing Reynolds numbers, based on wind chord geometry, range
between 50,000 to 150,000.

5. Example research

This section details the results of recently completed experi-
ments in the HILS.

5.1. Visual servo control camera-in-the-loop experiment

Hu et al. [28] recently designed a novel visual servo pose con-
troller that incorporates quaternions in the measurement of rota-
tion error. Typical controllers map the rotation matrix to a vector
in R? (e.g. Euler angles, angle/axis, etc.). Any such mapping will
have singularities which limit the region of convergence. The qua-
ternion mapping has no such singularity. The quaternion controller
was initially designed and simulated in Simulink. Results are
shown in Fig. 10 for a task of rotating a camera by 180°. These fig-
ures show good system performance but do not give an accurate
view of how a real system can be expected to perform. There is

no signal noise and all points are perfectly tracked with subpixel
accuracy. Furthermore, the simulation runs at 1kHz, which is
much faster than most cameras.

The control method in [28] was then implemented with the vir-
tual reality environment without cameras, and the results are
shown in Fig. 11. While there is no injected sensor noise, there is
tracking error, quantization noise, no a priori knowledge of the fea-
ture point locations, and the camera rate is 30 Hz (the typical
frame rate for a video camera). Finally, the experiment was re-
peated using a camera-in-the-loop, with results given in Fig. 12.
As expected, the camera results show the effects of sensor noise,
but the controller was still successful.

5.2. Pursuit of moving objects

A simulation to demonstrate navigation relative to moving ob-
jects is performed in the HILS. The setup consisted of three vehi-
cles: an UAV with a mounted camera, a reference ground vehicle
and a target vehicle. The camera setup considered in this problem
consists of a single camera attached to the UAV with fixed position
and orientation. While in flight, the camera measures and tracks
feature points on both the target vehicle and the reference vehicle.
This simulation assumes perfect camera calibration, feature point
extraction, and tracking so that the state estimation algorithm
can be verified.

The motion of the vehicles were generated to cover a vast range
of situations. The UAV’'s motion was generated from a nonlinear
simulation of flight dynamics using a high-fidelity model of an
F-16 fighter with full 6 degrees-of-freedom [29]. Meanwhile, the
reference vehicle and the target vehicle exhibited a standard car
dynamic model with similar velocities. Sinusoidal disturbances
were added to the target’s position and heading to create some
complexity in its motion. The three trajectories are plotted in
Fig. 13 for illustration.

N.R. Gans et al. / Mechatronics 19 (2009) 1043-1056

50 T T T T T
ot

[}
o]
[0} L]
@ '

$ 50T ' 1
Rl |
o \
L]
]
\

-100 | N 1
i
|
|
|

_150
0 5 10 15 20 25 30
Time, sec
40 v v

1053

15 T T T T T

Q, deg/sec

0 5 10 15 20 25 30
Time, sec

R, deg/sec

-20 !
0 5 10 15 20 25 30
Time, sec
Fig. 17. True (—) and Estimated (- - -) values of rotational rates for roll (left), pitch (middle), and yaw (right).
6

-10
0 5 10 15 20 25 30

Time, sec

B, deg

0 5 10 15 20 25 30
Time, sec

Fig. 18. True (—) and Estimated (- - -) values of angle of attack (left) and angle of sideslip (right).

Homography methods [21] were used in this simulation to find
the relative rotation and translation between the ground vehicles.
These results are then used to find the relative motion from the
UAV to the target of interest. The error of this motion for transla-
tion and rotation are depicted in Fig. 14a and b. These results indi-
cate that with synthetic images and perfect tracking of the target,
accurate motion estimates can be extracted. The control signals
used for tracking the target vehicle are shown in Fig. 15.

Fig. 16 is composed of snapshots from the camera view that de-
pict the surrounding scene and the two vehicles, red designating
the reference vehicle and gray for the target vehicle.

5.3. State estimation of an aircraft

State estimates are obtained using the HILS for a simulated
flight. Specifically, a high-fidelity nonlinear model of an aircraft is

1054 N.R. Gans et al./Mechatronics 19 (2009) 1043-1056

Fig. 19. Horizon extraction in the HILS. The camera view with horizon extracted can
be seen in the lower left display.

Fig. 20. Horizon extraction with no foreground objects.

Autopilot Pitch

z
= |
[0]
I
4 j
[
[a] . . 4
c Autopilot Pitch
<
5 |
£
_10 E 1 1 1 1 1 1
0 2 4 6 8 10 12
Time, (s)
Vision—-Based Pitch
B
= |
Q
e |
[
a
< Vision—-Based Pitch |]
<
5 |
2
~10
0 2 4 6 8 10 12

Time, (s)

simulated to fly through the VE of the University of Florida campus.
The vehicle received a set of predetermined waypoints that deter-
mine a flight path that is tracked by an autopilot. In this way, the
state estimates are not used for feedback but rather generated to
validate the method.

The state estimates are based on optic flow. The actual mea-
surements of optic flow, which can be simplified as the rate of
change in the image plane of the feature points with time, are
decomposed into rotational and translational components [30].
Such a decomposition is directly related to a focus of expansion
such that all rotations are about this focus while all translations
radiate from this focus. The movement of feature points relate to
the focus of expansion are direct indicators of the states.

The rotational velocities of the vehicle are shown in Fig. 17 for
both true values and estimated values. The translational velocities
are also estimated, however, the scale-factor ambiguity precludes
the absolute velocities from being computed. Instead, the relative
velocities are computed in ratio. The angle of attack is the ratio
of vertical velocity over forward velocity while the angle of sideslip
is the ratio of side velocity over forward velocity. These angles are
shown in Fig. 18.

The disparity in accuracy is a critical feature that was learned
using the HILS. Initial noise-free feature-rich simulations using
Matlab showed nearly perfect estimates throughout trajectories;
however, the realistic imagery of the HILS created more problems
for the feature point tracking and thus the state estimates. The
rotation causes a much larger affect on the image than the transla-
tion, so this sensitivity was clearly highlighted using the high-res-
olution imagery. Another feature of interest is the lack of quality
for any estimate during the middle portion of the flight. During this
portion of the flight, the vehicle passed close to a sculpture com-
posed of packed, yellow beams. The net effect was that the view
was dominated by uniformly colored surfaces, and feature points
could not be extracted. This caused difficulties in estimating any
states. The HILS was instrumental in showing this common-sense
occurrence that is difficult to demonstrate using simpler imagery,
demonstrating the need for such a simulation system.

5.4. State estimation in the wind tunnel

Early testing of vision-based estimation and control using flight
hardware in the loop focuses on vision-based attitude estimation.

Percent Error Between Autopilot and Vision-Based Pitch

0.06 1

Percent Error

0.04 h

0 2 4 6 8 10 12
Time, (s)

Fig. 21. Pitch angle measured by telemetry sensors and vision-based estimate, and percent error between the vision and telemetry.

N.R. Gans et al./Mechatronics 19 (2009) 1043-1056 1055

Autopilot Roll
s .
3 20f
o
(o))
a
e 9
i)
© _ot
.
0 2 4 6 8 10 12
Time, (s)
Vision—-Based Roll
z
3 20t
o
[e2]
a
s o
3
© _t
.
0 2 4 6 8 10 12

Time, (s)

Percent Error Between Autopilot and Vision-Based Roll

ol : : : : : -
—— Error

0.08 | 1

5 0.06[1
o
€
[0]
[S]

5 0.04f 1
o

0.02 |

ol / V\
1 1 1 1 1 1
0 2 4 6 8 10 12

Time, (s)

Fig. 22. Roll angle measured by telemetry sensors and vision-based estimate, and percent error between the vision and telemetry.

It has been established that horizon extraction can provide an
accurate estimate of roll and pitch percentage (the ratio of im-
age-space above the horizon to space below) [31,32] This provides
an ideal test of the HILS. A vision program extracts the horizon line
from the current view using color information and other queues.
Many horizon extraction routines can ignore foreground clutter
[31,33]. Fig. 19, shows the camera viewing a display of an urban
scene. In the lower left, a monitor shows the camera view, along
with the extracted horizon represented as a red line, which is able
to ignore small foreground clutter. To ensure accurate testing, the
simulation involved a high altitude without foreground clutter, as
seen in Fig. 20, which shows a screen capture of the horizon extrac-
tion indicated in red?. The yellow line (orthogonal to the red line)
represents the distance of the current horizon line from the set point
of zero pitch, thus the length of the yellow line is proportional to the
pitch angle. For simplicity, the camera reference frame was assumed
to coincide with the aircraft reference frame, with the optical axis
aligned with the major body axis of the aircraft.

The plane was remote piloted by a human in the wind tunnel,
and performed a series of pitch, roll, and pitch/roll doublets.
Doublets are a common testing procedure used in aerospace
engineering, where the aircraft is made to quickly change the
values being measured. In the case of the roll doublet, the UAV
is made to roll right, left, right, left, and back to center with the
target values of roll being 20° in either direction. Pitch doublets
similarly alternated between pitch angles of approximately
+20° and pitch/roll doubles consisted of pitch and roll motions
simultaneously.

While performing the maneuvers, roll and pitch angles were
estimated by the autopilot telemetry as well as by the vision-
based horizon extraction. Results comparing the telemetry data
and vision estimation are shown in Figs. 21 and 22. The estimates
matched extremely well for both pitch and roll, with error
typically less that 0.1% of the total measurement. It is worth not-
ing that generally only the pitch percentage can be estimated by
horizon extraction, which is a function of the pitch, the altitude
and the terrain. These experiments involved constant altitude
maneuvers over flat terrain, so pitch percentage corresponds
directly to pitch.

2 For interpretation of color in Fig. 20, the reader is referred to the web version of
this article.

6. Conclusion and future work

A novel platform has been developed for hardware in the loop
simulation of vision-based control of UAV’s. The need for such HILS
platforms is strong, given the delicate and expensive nature of
many UAV systems, the risk of damage to property during testing,
and increasingly strict government regulations on flight testing.
The HILS platform consists of virtual reality software to produce
realistic images at a video rate of 30 Hz. Images can be processed
directly in software, or projected on to a screen and viewed by a
camera. The camera is the first level of hardware in the loop, and
necessitated a novel solution for the camera-to-screen relation-
ship, which can be modeled as a homography. Experiments dem-
onstrate the efficacy of the HILS and highlight issues that may be
encountered in flight but not seen in tradition simulations. Addi-
tional hardware is incorporated in the loop, including flight hard-
ware consisting of an UAV with onboard autopilot interfaced to a
ground station, which communicates with the virtual reality soft-
ware. The UAV can be mounted in a wind tunnel, allowing attitude
regulation through servoing the airfoils.

Acknowledgement

Many people contributed to the development of the HILS and
conducting the experiments included in this paper. The authors
would like to acknowledge the efforts of Dr. Chad Prazenica, Dr.
Mujahid Abdulrahim, Dr. Guoqgiang Hu, Dr. Roberto Albertani, Joe
Kehoe, Adam Watkins, Ryan Causey, Siddhartha Mehta, Sumit Gup-
ta, James Oliverios, Andy Quay, Yunjun Xu, Jayme Broadwater and
Tullan Bennett.

This research was funded by AFOSR Grants F49620-03-1-0381
and FA9550-04-1-0262.

References

[1] Hanselmann H. Hardware-in-the-loop simulation as a standard approach for
the development, customization, and production test of ECU’s, Society of
Automotive Engineers Paper Number 930207; 1993.

[2] Isermann R, Schaffnit], Sinsel S. Hardware-in-the-loop simulation for the
design and testing of engine-control systems. Control Eng Pract 1999;7:
643-53.

[3] Duke E. V&V of flight and mission-critical software. Software IEEE 1989;6(3):
39-45.

[4] Johnson E, Fontaine S. Use of flight simulation to complement flight testing of
low-cost UAV’s. In: Proc AIAA Conf Model Simul Technol; 2001.

1056 N.R. Gans et al./ Mechatronics 19 (2009) 1043-1056

[5] Williamson WR, Abdel-Hafez MF, Rhee I, Song E, Wolfe]JD, Chichka DF, et al. An
instrumentation system applied to formation flight. IEEE Trans Contr Syst
Technol 2007;15(1):5-85.

[6] LiuY, Steurer M, Ribeiro P. A novel approach to power quality assessment: real
time hardware-in-the-loop test bed. IEEE Trans Power Delivery 2005;20(2):
1200-1.

[7] Stoeppler G, Menzel T, Douglas S. Hardware-in-the-loop simulation of machine
tools and manufacturing systems. Comput Control Eng] 2005;16(1):10-5.

[8] de Carufel J, Martin E, Piedboeuf J-C. Control strategies for hardware-in-the-
loop simulation of flexible space robots. IEE Proc Control Theory Appl
2000;147(6):569-79.

[9] Martin A, Emami M. An architecture for robotic hardware-in-the-loop
simulation. In: Proc IEEE Int Conf Mechatronics Automat; 2006. p. 2162-7.

[10] Jodeh N, Blue P, Waldron A. Development of small unmanned aerial vehicle
research platform: modeling and simulating with flight test validation. In: Proc
AIAA Conf Modeling Simulat Technol; 2006.

[11] Bacic M, Daniel R. Towards a low-cost hardware-in-the-loop simulator for free
flight simulation of UAVs. In: Proc AIAA Conf Modeling Simul Technol; 2005.

[12] MacDiarmid M, Bacic M, Daniel R. Extension and application of a novel
hardware-in-the-loop simulator design methodology. In: Proc IEEE Conf
Decision Control; 2008. p. 5054-61.

[13] Bacic M. On prediction of aircraft trajectory at high angles of attack:
preliminary results for a pitching aerofoil. In: Proc AIAA Model Simul
Technol Conf; 2008.

[14] Frew E, McGee T, Kim Z, Xiao X, Jackson S, Morimoto M. et al. Vision-based
road-following using a small autonomous aircraft. In: Proc IEEE Int Conf
Robotics Automat, vol. 5, 2004. p. 3006-15.

[15] McGee T, Sengupta R, Hedrick K. Obstacle detection for small autonomous
aircraft using sky segmentation. In: Proc IEEE Int Conf Robot Automat; 2005. p.
4679-84.

[16] Narli V, Oh P. Hardware-in-the-loop test rig for designing near-earth aerial
robotics. In: Proc IEEE Int Conf Robot Automat; 2006. p. 2509-14.

[17] Galassi M, Davies], Theiler J, Gough B, Jungman G, Booth M, et al. GNU
scientific library: reference manual. Bristol, UK: Network Theory Ltd.; 2005.

[18] Courtois P], Heymans F, Parnas DL. Concurrent control with 'readers’ and
'writers’. Commun ACM 1971;14(10):667-8.

[19] Longuet-Higgins H. A computer algorithm for reconstructing a scene from two
projections. Nature 1981;293:133-5.

[20] Huang T, Faugeras O. Some properties of the E matrix in two-view motion
estimation. IEEE Trans Pattern Anal Machine Intell 1989;11(12):1310-2.

[21] Faugeras OD, Lustman F. Motion and structure from motion in a piecewise
planar environment. Int] Pattern Recog Artificial Intell 1988;2(3):485-508.

[22] Broida T, Chellappa R. Estimating the kinematics and structure a rigid object
from a sequence monocular images. IEEE Trans Pattern Anal Machine Intell
1991;13(6):497-513.

[23] Soatto S, Frezza R, Perona P. Motion estimation via dynamic vision. IEEE Trans
Automat Contr 1996;41(3):393-413.

[24] Chiuso A, Favaro P, Jin H, Soatto S. Structure from motion causally integrated
over time. IEEE Trans Pattern Anal Machine Intell 2002;24(4):523-35.

[25] Dixon WE, Fang Y, Dawson DM, Flynn T]. Range identification for perspective
vision systems. IEEE Trans Automat Contr 2003;48(12):2232-8.

[26] Ma L, Chen Y, Moore KL. Range identification for perspective dynamic system
with single homogeneous observation. In: Proc IEEE Int Conf Robot. Automat;
2004. p. 5207-12.

[27] Fischler M, Bolles R. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. In: Commun.
ACM, 1981. p. 381-95.

[28] Hu G, Dixon WE, Gupta S, Fitz-coy N. A quaternion formulation for
homography-based visual servo control. In: Proc IEEE Int Conf Robot
Automat; 2006. p. 2391-6.

[29] Stevens B, Lewis F. Aircraft control and simulation. Hoboken, NJ: John Wiley
and Sons; 2003.

[30] Kehoe], Watkins A, Causey R, Lind R. State estimation using optical flow from
parallax-weighted feature tracking. In: Proc AIAA Guidance Navigat Control
Conf; 2006.

[31] Kurdila A, Nechyba M, Prazenica R, Dahmen W, Binev P, DeVore R, et al. Vision-
based control of micro air vehicles: progress and problems in estimation. In:
Proc IEEE Conf Decision Control; 2004. p. 1635-42.

[32] Kehoe J, Causey R, Lind R, Kurdila A. Maneuvering and tracking for a micro air
vehicle using vision-based feedback. SAE Trans 2004;113(1):1694-703.

[33] Bao G, Xiong S, Zhou Z. Vision-based horizon extraction for micro air vehicle
flight control. IEEE Trans Instrum Measure 2005;54:1067-72.

	A hardware in the loop simulation platform for vision-based control of unmanned air vehicles
	Introduction
	Stage one – the virtual reality simulator
	Camera projection model

	Stage two – camera in the loop
	Camera-to-screen geometry

	Stage three – UAV and avionics in the loop
	Example research
	Visual servo control camera-in-the-loop experiment
	Pursuit of moving objects
	State estimation of an aircraft
	State estimation in the wind tunnel

	Conclusion and future work
	Acknowledgement
	References

