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1. Introduction

There are many methods of visual servo control that are classi-
cally grouped into image based visual servoing (IBVS) and position
based visual servoing (PBVS) [1-3]. PBVS methods use image fea-
tures to estimate the position and orientation (i.e., pose) error in
the task space, and a camera velocity is generated from this error.
IBVS methods measure an error in the image features, mapping de-
sired feature point velocities to camera velocities.

IBVS and PBVS have well documented strengths and weaknesses
[4]. The key strength of IBVS methods is the proclivity to maintain
the feature points in the camera field of view. However, meeting the
desired feature trajectories can require large camera movements
that physical robots cannot meet. Furthermore, the control laws
can suffer from unpredictable singularities in the image Jacobian.
PBVS methods typically yield physically valid camera trajectories,
with known (and hence avoidable) singularities and no local min-
ima. However, there is no explicit control of the image features,
and features may leave the field of view, resulting in task failure.

Previous attempts have been made to address these issues by
combining IBVS and PBVS. There are several methods that partition
the control along degrees of freedom, using IBVS for some velocity
components and PBVS for the others [5-10]. A subset of these par-
titioned methods are referred to as 2.5D visual servoing [5,7], or as
homography-based visual servoing [9,10], due to their reliance on
the Euclidean homography [11] for pose estimation. These meth-
ods can generally provide asymptotic or exponential stability for
a subset of image and pose errors. For some partitioned methods,
it can be shown that if the subsets of image and pose error are zero,
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the entire error will be zero. However, not all Cartesian error or
feature point error terms are explicitly controlled. During regula-
tion the uncontrolled error terms may behave unpredictably.

There are also switched system controllers that actively switch
between IBVS and PBVS depending on the current pose and/or
state of the image features [12-14]. These methods typically can
prevent failure, but cannot always guarantee asymptotic stability
and may require a priori knowledge of the task to design the
switching surfaces.

A third option is the use of navigation functions to generate
desired feature trajectories which could account for constraints in
the image and pose space [15,16]. These methods are asymptotically
stable, but a priori knowledge of the scene/target and task space is
necessary to guarantee a global minimum to the potential fields.

Other approaches have shown promise as well. A second order
Hessian-like matrix is used in [17] rather than the typical first order
Jacobian-like matrix. This approach reduces the pose problems
associated with IBVS, but it requires ten feature points to create a
full rank matrix. A spherical projection model is used in [18,19] to
create IBVS controllers that do not experience severe coupling
between translation and rotation.

A problem that both IBVS and PBVS systems face is the need for
depth estimation and/or knowledge of the scene. IBVS methods
require some amount of 3D knowledge of the depth to the target
in every view. Some pose reconstruction methods [20] solve for
depth to the target, but require detailed knowledge of the target
to operate. Other pose reconstruction methods do not need a target
model, [21,11], but require knowledge of the depth to the target in
at least one view.

Visual servoing methods often assume depth is known when
proving stability, and in experiments and implementation, the
depth is estimated in a variety of ways. Recently, nonlinear adap-
tive control methods have been used to estimate or compensate
for depth information in homography based visual servoing
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[22,10] and IBVS [23-26]. See [27] and references therein for a par-
tial review of these methods.

In this paper, we present a controller to tackle the dual issues of
stabilizing both the entire pose error and entire image error simulta-
neously, not just a subset of the pose and image errors. Further-
more, this controller requires no knowledge or measurement of
depth to the targets. These control goals are accomplished through
nonlinear control techniques that incorporate pose error, image er-
ror and adaptive depth estimation into a single controller. Lastly,
no matrix inversion is necessary, so issues of matrix singularities
are avoided. The pose and image errors are those used in standard
IBVS and PBVS methods, and are calculated through well estab-
lished methods. Integrator backstepping and Lyapunov-based sta-
bility analysis are used to develop the visual servo controller.

Hafez and Jawahar present a similar concept [28], utilizing im-
age-based and position-based error vectors in a visual servo con-
troller. The controller in [28] is a kinematic controller based on
gradient descent and estimates feature depth through a particle fil-
ter-based approach. There is no stability analysis in [28], but sim-
ulations demonstrate its effectiveness. The controller presented in
this paper is second order and developed using integrator back-
stepping and Lyapunov adaptive control techniques to account
for unknown depth. A detailed stability analysis is presented for
the method in this paper, as are experimental and simulated re-
sults. In addition to the novel controller presented, several proper-
ties of the IBVS and PBVS interaction matrices are presented that
may be of value to researchers.

Section 2 presents background information and introduces
notation. Section 3 briefly covers IBVS and PBVS, and introduces
the adaptive depth estimation methods used in the controller.
The proposed control law is introduced in Section 4, along with sta-
bility analysis. Finally, simulation and experiment results are pro-
vided to demonstrate the efficacy of the proposed method.

2. Model development
2.1. Robot motion model

Consider a camera mounted on the end-effector of a robot. A
coordinate frame is rigidly attached to the camera at the focal point
and oriented such that the z-axis is aligned with the optical axis.
The pose of the camera frame with respect to the end-effector
frame (i.e., the eye-to-hand calibration) is assumed to be constant
and known. The Euclidean velocity of the camera is defined as

&) = [v(t)", " (1)]" € RS, (1)

where »(t) € R* and w(t) € R® are the camera linear and angular
velocity, respectively. The objective in eye-in-hand visual servoing
is to find a velocity &(t) such that the camera moves from its current
pose F(t) € SE(3) to a goal pose F; € SE(3). We assume that (t) is
measurable.

The dynamics of the fully actuated robot system considered in
this paper are given in generalized coordinates by

M(q)g+C(q. 9)q + G(q) + F(q) =T, (2)

where q(t) € R" is the state in generalized coordinates (e.g., joint
angles), M(q) € R™" is the inertia matrix, C(q, q) € R™" represents
Coriolis and centripetal forces, G(q) € R" is the force of gravity,
F(q) € R" represents friction forces, and 7(t) € R" denotes the gener-
alized torques/forces. Using feedback linearization, the torque input!

T(t) = M+ C(q. )4 + G(q) + F(q)

! Feedback linearization of the robot dynamics is used for simplicity. A variety of
techniques [29] could be applied to eliminate the assumption of an exact known
model of the robot dynamics, or if the system is not feedback linearizable.

yields

i-u, 3)
where #i(t) € R" is a subsequently designed control input. The joint
angle velocity ¢(t) € R" can be mapped to the Euclidean velocity &(t)
of a camera mounted to the robot end-effector as

¢=Jq, (4)

where J(q) € R®" is the manipulator Jacobian. The Jacobian is as-
sumed to be continuously differentiable with a bounded derivative
and the general inverse of J(q) exists and is bounded, which is a
standard assumption in visual servoing literature (e.g., see [30,31]
and references therein).

2.2. Imaging model

The majority of visual servoing methods use points as image
features. Consider a camera at a constant frame F;. The camera
views a collection of k feature points in front of the camera. These
points have coordinates

T
= [x]ﬁy]?,z;] . Vje{l,...,k} (3)

in 7. An image of the points is captured, resulting in a projection to
a set of points in the image plane. These image points are given by
the normalized coordinates

T
X oy
WZP&J}7WHLM*} ©

Each normalized coordinate has a corresponding coordinate in im-
age-space defined as

T
o ol
[ujvvj} {évé} ) V]E{l,...,k}.

Image points in digital images are typically expressed in pixel

T
coordinates p; = [p;j, Py l] e R®. Using standard projective
geometry the relationship between p; and m; is given by

pj = Am;, )

where A is a constant, invertible, upper-triangular camera calibra-
tion matrix [32]. Similarly, the Euclidean, normalized, and pixel
coordinates of the feature points in a time-varying frame F(t)
are respectively defined as

T Xj yj T .
[y, vj] = {—4,—] py=Am;, Yje{l,... k}.
Zj Zj

Assume that k > 4 and all feature points reside in a plane 7, in front
of the camera. These points have coordinates m;, Vj € {1,..., k} in
the camera reference frame as in (5). The plane 7, has normal vector
—n*in F, and lies at a distance of d* > 0 along n* from the origin of
F:. The camera is at a current pose F(t), separated from F; by a
rotation R(t) € SO(3) and translation x(t) € R>.

A homography exists mapping m; to my(t), defined as the matrix
H(t) € R**3 such that

Zj* .
m; = z_,-Hmf (8)
X T\ e
my = o R+ Jmj. 9)
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The matrix H(t) can be decomposed to recover R(t) % n* and the

ratio o;(t) = %, Vje{1,...,k} [11,33]. To simplify the notation,
define the scaled translation x4(t) = ’%. Under the standard assump-
tion that the feature points remain in front of the camera, z(t) is
bounded from below by a positive constant, and o;(t) is bounded
from above.

By using (7), the Euclidean relationship in (9) can be expressed

in pixel coordinates as
p; = wAHA'p; = 0;Gpj. (10)

Given knowledge of A and k > 4, it is possible to solve a set of linear

equations for G(t), and recover H(t), R(t), %, n* and at). Note
that the translation error x(t) can only be recovered up to the scale

d*, which is unknown without additional information.

3. Visual servoing

To provide context and motivation, and to highlight the contri-
butions of the subsequent control development, a brief discussion
of PBVS and IBVS techniques is presented. The basis for the adap-
tive depth compensation is also established.

3.1. Position based visual servoing

In PBVS, the camera and pose estimation algorithms act as a
“Cartesian sensor”, returning a pose estimate based on the current
image and possibly geometric knowledge of the scene [2,3]. There
are many methods of estimating the relative pose between F.(t)
and F:. For example, the methods presented in [34,11] require
two images of the same scene taken at F.(t) and F7, respectively,
to recover the relative pose. The methods presented in [20,35] re-
quire an accurate target model to solve for relative pose between
the camera and the target. The relative pose between the camera
and the target can be used to recover the relative pose between
F(t) and F;. The end result of any of these methods is the rotation
R(t) and translation x(t) from F(t) to F;.

The pose error can be locally parameterized as a six element
vector as

e, = [x, pu']’, (11)

where ¢(t) € R, u(t) € R* comprise the angle/axis representation of
the rotation matrix R(t). To avoid uniqueness problems associated
with local rotation mappings, we adopt the convention that
@(t) € [-m,m) and u(t) projects non-negatively onto the optical axis.

The time derivative of ey(t) is given as a function of the camera
velocity &(t) by

e, = LpJg; (12)

where L, (t) € R®*® is the Jacobian-like pose interaction matrix given
by

Ryc 033 }
L, = . 13
P |: 03><3 vaLw ( )

In (13), Ry(t) € SO(3) is the rotation matrix from the frame in which
&(t) is measured to the camera frame. R,(t) is identity if the camera
frame and input velocity frame are the same. The matrix
L,(t) € R*** maps angular velocity to 4 (u@). As shown in [5],
L, (t) is given by

L(I):I_ﬂux"" ‘l_Sle(q)) uis
2 sinc®(2)

where [ is the 3 x 3 identity matrix, u,(t) € R? is the skew symmet-
ric matrix form of the vector u(t), sinc(¢p) = # and sinc(0) = 1.

When the Euclidean Homography in (9) is used to provide pose
estimation, only the scaled translation vector x,(t) is obtained. The
depth d* must be known to recover x(t)=d*x4(t). However, the
depth is not generally known, so an estimate &*(t) (which will be
designed subsequently) is used. The estimated pose error can be
expressed as

ép = Aepd,

where A(t) = {3*6013 ‘H and epq(t) = [xa(t)", u(t) @(t)]".
3 3

3.2. Image based visual servoing

With IBVS control, the control law is a function of an error that
is measured in the image [1,3,36]. Given k feature points, the im-
age-space error e;(t) € R* is defined

ei(t) = [ (), v1(8), ..., w(t), we(O)]" = [y, w5, up, vy]". (14)
The time derivative of ej(t) is given as a function of the camera
velocity &(t) by

e = Li& = Lyq, (15)
where L;(t) € R?**® is the image interaction matrix (often referred to
as the image Jacobian [1,3]) and is composed of k matrices

L;(t) € R?*® corresponding to each feature point, concatenated
above each other, where

—Uy;

1+u2 -y
f w. (16)

2 ;i .
-1-v yy oy

D=

%

The matrix L(t) depends on the feature point depths z;(t), which are
generally unknown. If the feature points lie in a plane 7, in front of
the camera, the homography H(t) can be used to give the ratios
o(t) = ZJZ—{[),j €{1,...,k}, as in (8). Define a constant parameter
0; =1, then % = o;(t)6; can be substituted into (16). Define the con-
1
stant feature vector
1 177
0:[01,...,0,(]2[—*,.‘.,—*} : (17)
Zl Zk
The estimated image interaction matrix, Li(t) € R?*5, is com-
posed of k matrices L;(t) € R**® defined by
~ {ajéj 0
ij = A N
0 OC]'OJ' —Ole/jOj -1- sz u;v; u;

0 2
—OCjUjgj —U;v; 1+ Uj 4

where §;(t) € RYj € {1,...,k} are subsequently designed adaptive
estimates of the unknown constant parameters. The submatrix esti-
mation error Ly(t) € R**® is defined as

Lij(t) = Ly(t) — Ly (t).

The matrix L;(t) can be written as

~  |w6 0 —uoyf; 0 0 O
Ll] — i) 8 ) }~} (18)
0 OCjOj —7/]'0(]'0]' 0 0O
— O Ly, (19)

where 0;(t) € R, Oy,(t) € R*2, and Lyy;(t) € R*Vj € {1,... .k} are
defined as

L - 0 0

= 0;— 0y @%[6 é} (20)
f)

o o 0 —U;0 0 0O

LzMJ o |:0 o —vid 0 0 0] (21)
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Based on (20) and (21), the matrix estimation error fi(t) € R%**6 can
be written as

Li = OuLim,

where @y(t) € R?** is a diagonal matrix composed of blocks
O (t), and Liy(t) € R?**® is composed of stacked Liy(t) matrices.
Finally, el (t)©y(t) Lim(t) can be rewritten in terms of the adaptive

estimation error vector 6(t) € R as
e/ OmLiv = 0"eiLin,

where e (t) € R e,(t) € R and e,;(t) € RYj € {1...k} are given
by

eq en 0 o o 0
0 0 ep e, O - - O

€im =
0 0 eur €k
* k.

euj:uj—uj E’Uj:Uj—l/j.

4. Simultaneous image and position visual servoing

Efforts in this paper seek to design a controller which can
asymptotically reduce the image error and pose error simulta-
neously. In this way, the system will not encounter unbounded im-
age space errors or unbounded camera motions. Furthermore, we
seek a controller that is stable with no knowledge of the 3D depths
of the feature points. We refer to this control method as Simulta-
neous Image/Pose Visual Servoing (SIPVS).

4.1. Controller development

After using (4), (15) and (12), the time derivatives of the image
and pose errors are given as functions of the joint velocities as

& = Li¢ = LjJq and &, = L,¢ = L,Jq.

Motivated by the desire to include the robot dynamics, a desired
camera velocity & (t) € R® is injected into the open-loop image
and pose error system as

e = Li& + Li¢g and e, = L& + L,¢y, (22)
where (t) € RS is the backstepping error defined as
E=14-J4a =19 . (23)

Based on the open-loop error systems in (22), the desired veloc-
ity is designed as

&y = —kLTe; — kL] Aeyg, (24)

where k is a positive scalar control gain. Substituting (24) into (22)
gives the closed-loop error system

éi = 7I<L,»fi7ei — kL,»LIT,Kepd + L,‘E (25)

& = —kLyL) Aeyg — KL,LTe; + L, Z. (26)

The open-loop system for the backstepping error &(t) can be
developed as

E=Jq+]d— aleiep) =Jq +Ju — Eqler, ep). (27)
Based on (27), the controller t(t) is designed as
=] (,jq &g — (ke +k,)E—2k,Eq — LTe; — L;Kepd>, (28)

where J*(q) is the general inverse of J(q) such that J(q)/"(q) =1, and
k:, k, € R are positive, constant, scalar control gains. In (28), &(t)
can be expanded as

lg=—kLTe;— kLT e — kLZ(Zepd + Aépg) — kL;Zepd
= kZ,T (kL,i,Te, + kL,-L;Kepd — Lé) — kZIT e — I(L;Kepd
— KL Aepy — kLT Aéy. (29)

The term é,4(t) is measured through discrete methods such as back-
wards differencing. Numerical differentiation will inject measure-
ment noise, and the development of an output feedback controller
is an open topic for future work. The matrices Z,.T(t) and_A(t) are
functions of the adaptive estimate signals 6(t) and d-(t) and
bounded, measurable signals, as shown in Appendix B.

The first row of (28) is based on feedback linearization methods
to remove unwanted nonlinear terms. The second row of (28) is
used to cancel out cross terms in the subsequent stability analysis.
Based on the subsequent stability analysis, the adaptive estimation
update laws are designed as

0 = TemLiy (& —kLTe; — kLZKepd> (30)

ds = y(fg — kd*x] — k(eiTLi)3Ryc)xd, (31)
where &;(t) € R® and (elL;),(
the vectors &(t) and el (t)L(t
are constant gains.

After substituting (28) into (27), the closed-loop error system
for £(t) can be obtained as

t) € R"3 are the first three elements of
), respectively, and y € R and I' € R**3

E = —kgé — k,,g — ZI(Véd — ziTei — L;Kepd
= —(k: + ky)& + (2kyk — 1)LTe; + (2k,k — 1)L) Aeyg. (32)

4.2. Closed-loop analysis

To demonstrate the stability properties of the closed loop sys-
tem, two standard assumptions are made.

Assumption 1. Lj(t) is full rank at the goal pose.

Assumption 2. The control gains satisfy the conditions

1

k, < T (33)

Remark 1. If Ly(t) and A(t) are both full rank for all t, then
A(t)Ly(t)ep(t) = 0 if and only if e,(t) = 0.

Lemma 1. If L(t) is full rank, and no element of 6(t) = 0, then Z,-(t) is
full rank.

Proof. The proof is given in Appendix C. O

Remark 2. If L;(t) is full rank for all t, then f,T(t)e,v(t) = 0if and only
if el-( t) =0.

Theorem 2. Under Assumptions 1 and 2, the controller in (28), along
with the depth estimation laws in (30) and (31), stabilizes the system
such that e,(t) and e;(t) are bounded and either e,(t) — 0 and e;(t) - 0
or the system converges to an equilibrium point such that
Ly (t)A(t)epa(t) + LT ()ei(t) — 0 as t — oo.



414 N.R. Gans et al./Mechatronics 22 (2012) 410-422

Proof. Consider the positive definite Lyapunov function
1

1 *.
V=5 ,e,+2 pep+ Tf+ 0'r- 9+yd2 (34)
with derivative
V= ele;tel,Ae, + 56— 07T 0 - %a*&*. (35)

As shown in Appendix A, V(t) in (35) can be written as
~ PR SN ~
V= (k- Kk, (L;Aep,, + LiTe,») (L;Ae,,d + L{e,-) — kETE ke
(36)

Based on (36) and the gain condition in (33), V(t) < 0. From these
results, and the boundedness properties given in Appendix B, the
Corollary to Barbalat’s Lemma [37] can be used to conclude that
&(t) — 0 and Ly (£)A(t)epa(t) + LT (t)ei(t) — 0 as ¢ — cc.

Within the domain 6 € [-7, 1), Ly(t) is full rank. By using the
well-known projection operator in the adaptive law (31), we can
ensure that d*(t) > 0 for all t.This implies that A(t) is full rank for
all t. From Remark 1, then K(t)Lp(t)ep(t) = 0if and only if e,(t) = 0.

From Assumption 1, L{t) is full rank at the origin implies Lj(t)
full rank in some neighborhood of the origin. The projection
operation can be used on 0(t) to ensure that its elements are
nonzero. Therefore, from Lemma 1 and Remark 2, there exists
neighborhood of the origin where ZiT(t)el—(t) =0 if and only if
eft) =

The fact that L](t)A(f)eyq(t) + L ()ei(t) — 0 and &(t) — 0
implies that &4(t) — 0 and &(t) — 0, so the system converges to an
equilibrium point. There are three possibilities concerning this
equilibrium point:

Case 1: An equilibrium point exists at the goal (i.e., e{t) — 0 and
ey(t) - 0).
An equilibrium point can exist if ey(t) =
LT (t)ei(t)0.
An equilibrium point can exist if e(t) is in the nullspace
of ZT( t), and ey(t) is in the nullspace of LT( t)A(t) at the
same time. That is, LT o(t YA(t Jepa = 0 and LT( )ei(t) = 0.

Case 2:

Case 3:

However, it was shown that LT( £)A(t) is full rank in the domain
0 € [-m,m). If e(t) is in the nullspace of LT( ), then LT( YA(t t)epa+
LT( )ei(t) — 0 implies e,(t) — 0. Therefore, there is no equ111br1um
point where LT(t)A(r)epd =0 and LT( )e;(t) = 0 except the goal
position. Thus, case 3 is impossible. This leaves the two possible
equilibrium points described in the theorem. O

4.3. Discussion of stability analysis

Let D;  SE(3) be the region where IBVS is asymptotically sta-
ble for ej(t). IBVS can also be shown to be asymptotically stable
for both e(t) and e,(t) simultaneously in a neighborhood of
ep(t) =0 denoted Dy, C D;. This neighborhood includes the space
of pure translations and translations with suitably small rota-
tions [12]. Let D, C SE(3) be the region where PBVS is asymptot-
ically stable for ey(t). In a neighborhood of ey(t)=0, denoted
Dyi C Dy, PBVS can be shown to be asymptotically stable for
e(t) and ey(t) simultaneously. This neighborhood includes the
space of pure translations and translations with suitably small
rotations. Define D* = Dj, N Dy D* is nonempty, and includes
the space of pure translations and translations with suitably
small rotations. The relationships between stability regions is
illustrated in Fig. 1.

For SIPVS, we have proven that the pose error and image error
simultaneously converge to zero, or the system converges to
some equilibrium point where LZ(t)K(t)ePd+fiT(t)ei(t) =0. The

Fig. 1. Relation between stability regions.

existence of such an equilibrium cannot, at this time, be proven
or disproven, but no such equilibrium point has been encountered
in simulations and experiments. The future efforts will focus on
investigating the existence of the equilibrium point, particularly
in the set D",

The SIPVS method has several strengths compared to IBVS,
PBVS, and methods such as 2.5D VS. The entire pose error vector
and entire image error vector for all points are included in the con-
trol law. This means that all terms are stabilized, not just a subset.
The adaptive depth estimation enables the system to regulate the
error with no depth measurements or knowledge of the object.
The SIPVS approach also does not require a matrix inverse, reduc-
ing computational complexity and eliminating singularities issues
that can plague IBVS approaches.

Errors in the calibration matrix A are known to affect the
accuracy of the estimation of H and affect stability of the control
system [5]. Research has been performed to address an unknown
calibration matrix, including adaptive control approaches [10].
The SIPVS could likely be extended to include these additional
adaptive control parameters. Measurement noise is also known
to affect accuracy of VS, particularly methods that use the
homography. The experimental results of Section 6 show that
the method works well, even when faced with noise in feature
point tracking. The computational complexity of SIPVS is of the
same order as other methods that use the homography matrix
(e.g., PBVS and 2.5D). Since no matrix inversion is needed, com-
putational complexity is lighter than IBVS for large number of
points.

5. Simulation results

This section presents simulation results for the developed SIPVS
system. Typical IBVS and PBVS systems are simulated for the same
task for comparison, with PBVS using the Euclidean Homography.
2.5D VS is included as well, for comparison with a well-regarded
mixed VS approach [5].

IBVS, PBVS and 2.5D methods are extended to a second order
regulation problem, since SIPVS is a second order system. Further-
more, perfect knowledge of depth is given to the IBVS, PBVS and
2.5D systems, while SIPVS uses adaptive depth compensation.
Gains for all systems were chosen such that the presented task fin-
ished in approximately 9.5 s. The task presented is an initial pose
error of
[X'u'p] =[0.12,-0.27,-0.16,1.16, —0.54, —2.44]
in meters and radians, and a desired pose error of a zero vector.
Large rotations are known to be problematic for both IBVS and
PBVS, so this is a difficult task.
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Fig. 2. Simulation results for PBVS - The features points leave the field of view, which would likely cause failure in implementation. The corresponding increase in image

error can be seen, though the pose error decrease monotonically.

The feature point trajectory and error norms over time for PBVS
are given in Fig. 2a and b, respectively. The same data for IBVS are
given in Fig. 3a and b. PBVS shows a large increase in the image er-
ror, such that the features leave the field of view. IBVS shows a
large increase in the pose error, such that the system could
encounter task space limits or joint limits. The results for 2.5D
VS are given in Fig. 4. 2.5D performs well, with strictly decreasing
errors in both ||e;|| and | ep||. We note that in this result, neither IBVS
nor 2.5D VS show the characteristic straight line trajectories for
one or more feature points, due to the large initial error and possi-
bly the extension to second order systems. The controlled feature
point in 2.5D VS is the one starting closest to the top of the image
in Fig. 4a, which does follow a fairly straight path. All systems per-
form as expected in terms of image and pose error.
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The trajectory of the feature points under SIPVS is shown in
Fig. 53, and the norms of the errors over time are given in
Fig. 5b. The pose error monotonically decreases, and image error
decreases but not monotonically.

Clearly, the SIPVS outperforms IBVS and PBVS in this difficult
task, and compares favorably with 2.5D VS. This is especially
strong when considering that the first three systems had perfect
depth knowledge, while SIPVS used the proposed depth estima-
tion. While overall convergence time is the same for all systems,
the 2.5D VS rate of decrease is somewhat less steep than for SIP-
VS. For this particular task, 2.5D also brings a feature point clo-
ser to the edge of the image. It should be noted that this is not
the controlled feature point, which follows a short path to its
goal.
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Fig. 3. Simulation results for IBVS - All features remain in view, but the camera must retreat four meters to achieve this. The increase in pose error is clearly seen.
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Fig. 4. Simulation results for 2.5D VS - All features remain in view, and there is no apparent camera retreat.
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Fig. 5. Simulation results for SIPVS - Feature points remain in view, and both image and pose error decrease to zero. There is a small increase in image error, likely due to the

depth estimate not yet having converged.

6. Experiment results

This section presents experiment results of the proposed SIPVS
system. The Experiment setup is shown in Fig. 6. A six degree of free-
dom Staubli TX90 robot arm and a calibrated camera with fixed focal
length are used. The extrinsic (eye-to-hand) calibration of the cam-
era is done using the method of Tsai et al. [38]. The same task is per-
formed with IBVS, PBVS and SIPVS. The initial pose error (shown in
Fig. 6a) is [x",u"¢] =[-250,—200,—100,0.5749,0.0859,1.0954] in
millimeters and radians, measured in the goal camera frame. The
goal pose is shown in Fig. 6b). The Lucas-Kanade method is used
to track feature points on a planar target. PBVS and SIPVS use the

Euclidean Homography matrix. The constant depth at the goal d* is
given as known a condition for PBVS. Adaptive estimation is per-
formed for IBVS and SIPVS using the estimates detailed in this paper.

Figs. 7 and 8 give the experiment results using PBVS and IBVS.
The feature point trajectory, pose error and image error norms
for PBVS are given in Figs. 7a-c, respectively. It can be seen that
pose error decreases rapidly at the beginning. However, instead
of going to zero, the position error converge to about 20 mm after
a small increase. On the other hand, the image error increases by
almost 100 pixels at the beginning. The feature point trajectories
also show a large curve, which agrees with the simulation results
for PBVS. The relatively large residue error for PBVS is probably
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(a)Initial pose (b)Goal pose

Fig. 6. The experiment setup — The camera is mounted to the robot wrist and looks
at a planar target in the initial and goal configurations.

due to the fact that PBVS is sensitive to both intrinsic and extrinsic
calibration errors. Also, since motion reconstruction using the
homography matrix can be effected by image noise, the error tra-
jectories for PBVS include the effects of noise.

Image trajectory and error norms for IBVS are given in Fig. 8.
Note that the IBVS experiment stops after about 12 s because the
robot arm hits its joint limit due to camera retreat. Pose error in-
creases after 4s until hitting the joint limit. Unlike in the
simulation, where the image error decreases monotonically, the
image error increases initially. This is likely due to the fact that

the adaptive depth estimates had not yet converged. Fig. 10a
shows the depth estimates for IBVS over time. As expected, the
depth estimates converge to constant values such that the system
is stable. Note that the adaptive estimation methods can stabilize
the system, though the estimate is not guaranteed to converge to
the true depth in the absence of a persistently exciting camera
motion.

Experimental results of proposed SIPVS method are presented
in Figs. 9 and 10. Image trajectory and error norms for SIPVS are
given in Fig. 9. Depth estimation is shown in Fig. 10b. It can be
seen that the pose error decreases monotonically, and image er-
ror decreases quickly but experiences a small increase between 8
and 12 s of operation. A possible reason is that the chosen gains
cause the image error converge faster than the pose error. The
larger pose error may dominate the velocity at around 8 s, com-
pelling the camera to the direction that increases the image error.
The final error residue is much smaller than PBVS and IBVS.
Overall, the experiments for all three systems agree with our
expectations and the simulation results. SIPVS shows better per-
formance than PBVS and IBVS, and the adaptive depth estimate
works well.

Similar to other visual servo methods that use the Euclidean
Homography, SIPVS is sensitive to noise. If the image noise is high,
the final pose and image error may not converge to zero, since pose
information cannot be perfectly recovered. Nevertheless, the pro-
posed system appears to work well in experiments that include
feature noise. Methods have been proposed in recent years to esti-
mate the homography matrix that are robust to noise, such as the
direct visual servoing in [39].
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Fig. 7. Experiment results for PBVS - The pose error decreases nicely, but the image error initially increases by almost 100 pixels. This is seen in large feature point motions in

the image.
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Fig. 8. Experiment results for IBVS - The image error undergoes an overall decrease, though there is an initial increase, possibly due to the adaptive depth estimates taking
some time to converge. The position error increases until the robot reaches its joint limits and the experiment fails.

7. Conclusions and future work

We have presented a novel visual servo controller that incorpo-
rates nonlinear control techniques to regulate both the pose error
and image error simultaneously while estimating unknown depth
parameters. This work was inspired by the well known weaknesses
of IBVS and PBVS methods, which have fueled much previous work.
The contribution here is that the entire image error and pose error
are simultaneously stabilized, rather than partitioning the control-
ler such that only parts of the image error or pose error are explic-
itly regulated. Furthermore, this controller uses adaptive depth
estimation such that no measurement of the depth or knowledge
of the scene is needed. There is also no matrix inversion necessary
for the vision-based control.

There are several avenues for future work. The system can
only be proven stable at this point, as there may be equilibrium
points other than the origin. If these equilibrium points can be
proven to not exist, or proven to be unstable, then the system
must converge to the origin. Additional attention can also be gi-
ven to the specific IBVS and PBVS methods utilized. Different im-
age features, image error measurements, pose reconstruction
techniques, and representations of the pose errors could all give
different results.

Appendix A. Closed-loop stability analysis details

Substituting (26), (25) and (32) into (35) gives
V = —ke[LiL]e; — kep AL, L] Aepq — (k: +k,)ETE
- ke;dALpZ,-Te,» - I<e;dZLpLiTei + &LTe; + (2k,k — 1)ELTe;
~ - ~ ~ A 1 ~*,\'
+ &Ly Aepq + (2kyk — 1)ETLy Aeyg — 0'T 0 — §d d-. (A1)

After substituting Li(t) = Li(t) + Li(t), A(t) = A(t) + A(t), grouping
quadratic terms, and canceling common terms, (A.1) can be rewrit-
ten as

V =—keLiLTe; ke;dZLpL;Zepd — (ks +k,)EE - o
- %ad — ke[ LiLTe; — kel AL,L] Aenq — kel AL, LTe;
— kel ALyLTe; + ELTe; + 2k, k&Ll e; — 2kel, AL LTe;
+ &Ly Aepq + 2k kETL) Aep. (A2)

By adding and subtracting kylczeffifei,kykzegdKLpL;Kepd and
2k kkpel, ALyLTe;, (A.2) can be expressed as
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V =—(k—k,k*)elLiLTe; — k.E& — (k — I<,,I<2)e;dKLpL;3epd
0T - 373*&* — ke[ LiLTe; — ke, AL L} Ae,q — kep, AL, LTe;
— ke yALyLTe; + E'LT Aepq + ETLTe; + 2k(kyk — 1)el AL, LTe;

—k,&"e,

where &(t) =& — kZiTe,- - kL;Kepd. Using the fact that A(f) = A—

At) = {d*g)h 83 } the following substitutions can be made
3 3
eﬁ,- = eiT@ML,M = éTeiML,'M
el AL, Ll Aeyy = d"d"XTxg
%TL;ZEW = a*gxd
e,-TZinKepd = a* (e,-TZi>3vaxd
to yield
V=—(k—kJ*eLiLTe; — k.E"& — (k — k,,kz)egdZLpL;Eepd
ke 0T — 378*3* — k0" e LiyLTe; — kd*d*x}xq
— kEI* (ez-z,‘>3R1/ch + (N)TeiMLng - ’((N)TeiMLimL;Kepd
+d Exq + 2k(kok — 1)el ALy LTe;. (A3)
After substituting the definitions for é(t), a*(t) in (30) and (31) and
eliminating terms, (A.3) can be reduced as
V=—(k—kJk*eLiLTe; — k.E"& — (k — k,,kz)edeLpL;Kepd

— ko&"E+ 2k(kyk — 1)l AL, LTe;. (A4)

Completing squares for the terms in (A.4) yields (36).
Taking (A.4) and using the triangle inequality on the cross term

~ o~ ~ 2 ~ 2
2el,ALyLTe; < ‘ L,.TeiH + HL;AepH yields

V< —(k—kok*)elLiLTe; — kETE — (k — k,k*)elyAL,L) Aeyg

~ 2 ~ 2
- Icykz)("LiTei’ + HL;Ae,,H ) (A5)
Appendix B. Boundedness properties of; L,, L, L and i,-
The matrix Z(t) is given by
Z _ d**lg 03 ) (AG)
0; 03

If d*(t) € L., then A(t) € Lo..

The matrix L,(t) € R®*® is given in (13). A rotation matrix has a
fixed norm, so R,.(t) € £... The vector u,(t) has a unit norm, so
u,(t) € L. Exploiting the nonuniqueness of rotations, we map
all values of ¢(t) to the range ¢ (t) € (—mn,x]. Thus ¢(t) € £.. and
the singularity due to the sinc? (%) term in the denominator is
never encountered. Thus Ly(t) € L.

d(jéj + O(jéj 0

ujochj + Lle(j@j + OCjUjHj yree

§h>.
|

0 dj(}j + OCij I/jd(j()j + Z/jOCj(A)j + 0 Z‘/j(A)j

— Uity = U7

—2Uj1/j

The matrix L,(t) € R® is given by

R v 03 x3
03 %3 vaLu) + vaLw

N w;L'RVC 03><3
O3><3 w;chch +vaLcu ’

where w’ (t) € s0(3) is the skew symmetric matrix form of the
angular acceleration of the camera frame in the frame in which
&(t) is measured. Note that w}. = 03,5 if the camera frame and input
velocity frame are rigidly attached. The matrix L, (t) € R*** is given

by

Q- pu? sinc(@) \ .
—— 42 1- Uy Uy,
2 1 —cos(¢) ( sinc”(2)

which is singular at ¢(t) = 2kn, Vk € Z/0. If ¢(t) # 2kn, and é,(t) €
L., then (u@)(t) € Lo, and @(t),U(t), Lo (t) € Loo. If 3 () € L, then
L,(t) € L. If the velocity is defined in the camera frame, then
w;. =0 and is clearly bounded. The image interaction matrix,
Li(t) € R**® is given in (16). In (16), z{(t) is the depth of the 3D point
j in the camera frame and is assumed to be greater than some posi-
tive constant.

The derivative of f,-j(t) from (16) is given in (A.7). The fact that
ei(t) € L, implies that u;(t), 7(t) € L. Furthermore, &;(t) =

-

—z(¢) zf_](n and é,(t) € L., implies z(t) € L. By assumption zj(t) >

€>0. Thus ei(t),ep(t),é,z(t),él,(t),(A9,»(t).,éj(t)elloo is sufficient to
show that Li(t) € £.. Based on (34) and (36), et),0(t),
ep(t),d(t),&(t) € L, and (L;Kepd-i-ifei),g(t),q”(t)eﬁz. Since

d*(t) € £.. and d* is constant, it is clear that d*(t), A(t) € L... Simi-
larly, 0(t) € L., implies (t) € £... As shown in above analysis,
Ly(t) € L. By assumption, o;(t) = ﬁ is bounded since z(t) is low-
er bounded by the physical size of the lens. So e;(t), 0(t), %(t) € Lo
imply L; € £... The above results also show that Eq4(t) € Lo

The above analysis, along with (25) and (26) implies that
ey(t),é(t) € L, and ey(t), eft) are uniformly continuous. The
above, analysis and (30) and (31) imply that 0(t),
3*(t), K(t) € L., which implies K(t) is uniformly continuous. Since
ey(t) € Lo and w}(t) € L, by assumption, Appendix B can be
used to conclude that L,,(t) € L, and Ly(t) is uniformly continu-
ous. If ey(t), A(t) and Ly(t) are uniformly continuous, then
K(t)Lp(t)A’lep(t) is uniformly continuous. The fact that
e,(t),&i(t),0(t),0(t) € L., implies that L;(t) € £,, , which in turn
implies that Li(t) and Z,T(t)e,-(t) is uniformly continuous. By
assumption in Section 2, j(t), 4(t) € L. The previous results then
show that u(t),&(t) € L., which means that &(t) is uniformly
continuous.

Appendix C. Proofthat L; is full rank if and only if L; is full rank

Lemma 1. If a vector v is in the nullspace of Zi(t), and Ly(t) is full rank,
then v+ [0,0,0,a,b,c]", a,b,c € R

2itjuj *Z./j (A7)
i/jllj + L.Ij v; ilj
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Proof. Proceed with proof by contradiction. Assume L{t) is full
rank, Z,-(t) is not full rank and »=1[0,0,0,a,b,c|" is in the nullspace
of f,-(t). Then v is in the nullspace of Li(t), because they have the
same right three columns. However, L(t) is full rank which is a con-
tradiction so »#[0, 0, 0, a, b, C]T, a,b,ceR. O

Lemma 2. If a vector v is in the nullspace of Li(t), and Zi(t) is full rank,
then v#[0,0,0,a,b,c]",a,b,c € R.

Proof. See the proof for Lemma 1. O

Theorem. :If Li(t) is full rank, and no 0;=0, j € {1,2,3}, then Zi(t) is
full rank. Similarly, if L;(t) is full rank, and no 0;=0,j € {1,2,3}, then
Li(t) is full rank.

Proof. Proceed with proof by contradiction. Assume L{(t) is full
rank, 20;=0, j €{1,2,3}, and L;(t) is not full rank. Taking SVD of
Li(t) gives

LusV =L - L;
UL =LV - LV,

wherg U and V are full rank, orthonormal matrices.
If L;(t) is not full rank, the sixth singular value is 0, i.e., the (6,6)
element of X is 0. This implies that the sixth column of UX = 0, and

LiVe = LiVs,

where V is the sixth column of V, and by assumption Ly(t) is full
rank. Furthermore, since the right three columns of L;(t) are all
zeros, we can rewrite this as

Li3Ves = Li3Ve3,

where L;3(t) is the first three columns of L;(t), f,;g(t) is the first three
columns of Li(t) and Vg3 is the first elements of Vg.

If L;(t) is not full rank, then Vg is in the nullspace of L;(t). Since
L{t) is full rank Vi3 #[0,0,0]" by Lemma 1, i.e., at least one
element of Vg3 is nonzero. If Vg3 = [a,b,c],a,b € R/0,c € R (i.e,
the first and/or second elements of V3 are not 0), then it is seen
from (16)-(18) and (A.8) that

> %0 =" b
j j

Z O(j@j =0.
j

The facts that o(t) > 0, and (A.9) is true if and only if V;6;(t) = 0 lead

to a contradiction the assumptions. If Vg3 = [0,0,c],c € R/0 (i.e., the
first and second elements are 0), then

Z(Uj + T/j)OCjéj =0.

J

(A8)

(A.9)

(A.10)

By assumption it is not true that Vj(u; + ;) =0, so (A.10) is true if
and only if V;6;(t) = 0, which contradicts the assumptions. By fol-
lowing the above argument, it can be proven that if fi(t) is full rank,
and no 0;=0, € {1,2,3}, then L(t) is full rank. O
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