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Traditionally, a visual servo control problem is formulated in the teach by showing framework with an
objective to regulate a camera based on a reference (or desired) image obtained by a priori positioning
the same camera at the desired task-space location. A new strategy is essential for a variety of applica-
tions where it may not be possible to position the camera a priori at the desired position/orientation.
In this paper, a visual servo control approach, called ‘‘teach by zooming’’, is formulated where the objec-
tive is to position/orient a camera based on a reference image obtained by another camera. For example, a
fixed camera providing a wide area view of the scene can zoom in on an object and record a desired image
for another camera. A non-linear Lyapunov-based controller is designed to regulate the image features
acquired by an on-board camera to the corresponding image feature coordinates in the desired image
acquired by the fixed camera in the presence of uncertain camera calibration parameters. The proposed
control formulation becomes identical to the well-known teach by showing controller when the camera-
in-hand can be located a priori to the desired position/orientation; thus enabling control in a wide range
of applications. Experimental results for regulation control of a 7 degrees-of-freedom robotic manipulator
are provided to demonstrate the performance of the proposed visual servo controller.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Exact knowledge of the camera calibration parameters is
required to relate the pixelized image-space information to the
task-space. Inevitable discrepancies in the calibration matrix may
result in an erroneous relationship between the image-space and
task-space. In addition, an acquired image is a function of both
the task-space position of a camera and the intrinsic calibration
parameters; hence, perfect knowledge of the intrinsic camera
parameters is also required to relate the relative position of a cam-
era through respective images as it moves. A typical visual servo
control problem is constructed as ‘‘teach by showing’’ (TBS) prob-
lem, in which a camera is a priori positioned at the desired location
to acquire a reference image and then the camera is repositioned at
the same desired location by means of visual servo control. TBS con-
trol formulation requires that the calibration parameters do not
change in order to reposition the camera to the same task-space
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location given a matching image. See [1–4] for further explanation
and an overview of the TBS problem formulation.

A variety of applications may prohibit the use of TBS controller,
i.e., it may not be possible to acquire a reference image by a priori
positioning an on-board camera at the desired location. As stated
in [5], TBS problem formulation is ‘‘camera-dependent’’ due to the
assumption that intrinsic camera parameters remain unchanged be-
tween the teaching stage and servo control. In [5,6], projective
invariance is used to construct an error function that is invariant
of the intrinsic parameters meeting the control objective despite
variations in the intrinsic parameters. A camera can be repositioned
with respect to a non-planar target, requiring at least 6 feature
points, where local asymptotic stability of the equilibrium point is
achieved, i.e., the transformed points in an invariant space must be
in the neighborhood of the desired features. However, the goal is
to construct an error system in an invariant space, and unfortu-
nately, as stated in [5,6], several control issues and rigorous stability
analysis of the invariant space approach have been left unresolved.

The contribution of presented work is in the development of a
new visual servo control approach, called ‘‘teach by zooming’’
(TBZ) control [7,8], to position/orient a camera based on a reference
image obtained by another camera. The presented controller is uni-
fied in the sense that the underlying mathematical framework
remains unchanged even when the problem is formulated as TBS
control, i.e., when the same camera is used to acquired a reference
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Fig. 1. Camera coordinate frame relationships, where frame F is attached to an on-
board camera, F f is attached to a fixed camera, and F� represents a virtual camera.
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image and perform servo control. TBZ problem can be envisioned as
a fixed camera providing a wide area view of the scene that can be
used to zoom in on an object of interest and record the desired im-
age for another camera. Camera independent TBZ control strategy
can be attractive to applications such as navigating ground or air
vehicles based on desired images taken by other ground or air vehi-
cles (e.g., a satellite captures a ‘‘zoomed in’’ desired image that is
used to navigate a camera on-board an unmanned aerial vehicle
or smart-munition, a camera can view the entire tree canopy and
zoom in to acquire a desired image of a fruit product for high speed
robotic harvesting). The advantage of TBZ control formulation is
that the fixed camera can be mounted so that the complete task-
space is visible, can selectively zoom in on objects of interest, and
can acquire a desired image that corresponds to a desired position
and orientation for an on-board camera.

TBZ controller in this paper is designed to regulate image
features acquired by an on-board camera to the corresponding im-
age feature coordinates in a reference image acquired by a zooming
fixed camera. The challenge lies in developing a meaningful task-
space relationship using images acquired from different cameras
to achieve not only the image-space regulation but also the desired
task-space control objective. As stated in [5], since the reference
and current images are obtained using different cameras, irrespec-
tive of the visual servo control method, even if the image coordi-
nates match it can not be guaranteed that the task-space
objective of positioning a camera at the desired pose with respect
to a target is achieved. Also, it is assumed that parametric uncer-
tainty exists in the camera calibration, and hence, the ability to
construct a meaningful relationship between the estimated and ac-
tual rotation matrix is problematic as the estimated rotation ma-
trix may not lie on SO3. Generally, image-based visual servo
(IBVS) control methods are considered to be computationally inex-
pensive and robust to camera calibration errors [4,9] than homog-
raphy-based methods since the control objective is written in
terms of image coordinates regulation. For the proposed problem,
IBVS control objective can be established in terms of regulation
of the current image coordinates to the ‘virtual’ image coordinates
that achieve the desired task-space positioning objective. The vir-
tual image coordinates can be obtained by expressing the desired
image coordinates from a reference image captured by a fixed cam-
era in terms of an on-board camera. It can be shown that the
resulting virtual image coordinates are functions of the calibration
parameters of both the on-board and fixed camera, and therefore
IBVS methods may not demonstrate robustness with respect to
uncertainties in the intrinsic camera parameters. In addition, it is
well known that IBVS control may result in unrealizable and sub-
optimal task-space trajectories, the interaction matrix or image
Jacobian J may become singular during servoing thus resulting in
system instability, a local minima may be reached for certain im-
age-space trajectories, and the solution of J (or J+) requires time-
varying depth measurements [10,11]. To overcome these chal-
lenges, the control objective is formulated in terms of normalized
Euclidean coordinates that are invariant to changes in the calibra-
tion parameters by defining a virtual camera at the desired task
space location and by expressing the desired normalized Euclidean
coordinates as a function of the mismatch in the camera calibra-
tion. This is a physically motivated relationship, since an image is
a function of both the Euclidean camera position and the camera
calibration. Since the estimates of only the static camera calibra-
tion parameters, e.g., corresponding to the minimum zoom setting,
are required, it is not necessary to calibrate the fixed camera for
different focal lengths. The main contribution of the presented
TBZ problem formulation is that it guarantees global exponential
stability of the equilibrium point while servoing with cameras
having different intrinsic calibration matrices with an uncertainty
in the parameters.
This paper builds on our previous efforts that have investigated
the advantages of multiple cameras working in a non-stereo pair.
Specifically, in [12,13], a new cooperative visual servoing approach
was developed and experimentally demonstrated that using infor-
mation from both an uncalibrated fixed camera and an uncali-
brated on-board camera enables the on-board camera to track an
object moving in the task-space with an unknown trajectory. A
crucial assumption in [12,13] is that the camera and the object mo-
tion is constrained to a plane so that the unknown distance from
the camera to the target remains constant. However, in contrast
to [12,13], an on-board camera motion in this paper is not re-
stricted to a plane. In our previous work [14], exponential regula-
tion of an on-board camera is achieved despite uncertainty in the
calibration parameters in contrast to asymptotic stability result
in [15] by formulating a model-free rotation and composite trans-
lation controller. The proposed controller differs from [14,15] in
the sense that the reference image need not be obtained using
the same camera, i.e., it does not rely on the TBS paradigm. Further,
TBZ control objective is formulated so that we can leverage the
control development and stability analysis in [14] to achieve expo-
nential regulation of an on-board camera in contrast to local
asymptotic stability result proved in [5]. The developed controller
is also invariant to the time-varying camera calibration parameters
of a fixed camera since only constant parameter estimates are uti-
lized in the control development, thus allowing the desired trajec-
tory to be encoded using a stationary zooming-camera with e.g.,
time-varying focal length. Experimental results for regulation con-
trol of a 7 degrees-of-freedom (DOF) robotic manipulator are pro-
vided to demonstrate the performance of TBZ control.
2. Model development

Consider the orthogonal coordinate systems F ; F f , and F� as
depicted in Fig. 1. Coordinate system F is attached to an on-board
camera (e.g., a camera held by a robot end-effector, a camera
mounted on a vehicle) and F f is attached to a fixed camera that
has an adjustable focal length to zoom in on an object. A captured
image is defined by both the camera calibration parameters and
the Euclidean position of the camera; therefore, the feature points
of an object as seen in an image acquired by the fixed camera after
zooming in on the object can be expressed in terms of F f in one of
two ways: a different calibration matrix can be used due to the
change in the focal length, or the calibration matrix can be held
constant and the Euclidean position of the camera is changed to
a virtual camera position and orientation. The position and orien-
tation of the virtual camera is described by the coordinate system
F�. A reference plane p is defined by four target points Oi "i = 1, 2,
3, 4 where the three dimensional (3D) coordinates of Oi expressed
in terms of F ; F f , and F� are defined as elements of �miðtÞ; �mfi and
�m�i 2 R3 as
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�mi ¼ Xi Yi Zi½ �T

�mfi ¼ Xfi Yfi Zfi½ �T

�m�i ¼ Xfi Yfi Z�i
� �T

:

ð1Þ

The Euclidean-space is projected onto the image-space, so the
normalized coordinates of the targets points �miðtÞ; �mfi, and �m�i
can be defined as

mi ¼
�mi

Zi
¼ Xi

Zi

Yi
Zi

1
h iT

mfi ¼
�mfi

Zfi
¼ Xfi

Zfi

Yfi

Zfi
1

h iT

m�i ¼
�m�i
Z�i
¼ Xfi

Z�i

Yfi

Z�i
1

h iT

ð2Þ
1 The estimates bA and bAf can be obtained by approximate camera calibration or by
referring to the manufacturer specifications.
Assumption 1. The unknown target depth ZiðtÞ; Z�i , and Zfi > e, where
e 2 R denotes a positive definite constant. It represents a standard
assumption for vision-based systems that is consistent with the fact that
a camera can view objects in front of the image plane.

Based on (2) the normalized Euclidean coordinates of mfi can be
related to m�i as

mfi ¼ diag
Z�i
Zfi
;
Z�i
Zfi
;1

� �
m�i ð3Þ

where diag { �} denotes a diagonal matrix of given arguments.
In addition to having normalized task-space coordinates, each

target point will also have pixel coordinates that are acquired from
an on-board camera, expressed in terms of F , denoted by
uiðtÞ;v iðtÞ 2 R, and are defined as elements of piðtÞ 2 R3 as

pi , ui v i 1½ �T : ð4Þ

The pixel coordinates pi(t) and the normalized task-space coordi-
nates mi(t) are related by the following global invertible transfor-
mation (i.e., the pinhole model):

pi ¼ Ami: ð5Þ

Constant pixel coordinates, expressed in terms of F f (denoted
ufi;v fi 2 R) and F� (denoted u�i ;v�i 2 R) are respectively defined as
elements of pfi 2 R3 and p�i 2 R3 as

pfi , ufi v fi 1½ �T p�i , u�i v�i 1½ �T : ð6Þ

The pinhole model can also be used to relate the pixel coordinates pfi

and p�i ðtÞ to the normalized task-space coordinates mfi and m�i ðtÞ as
pfi ¼ Af mfi ð7Þ
p�i ¼ A�mfi or p�i ¼ Af m�i : ð8Þ

In (8), the first expression is where the Euclidean position and orien-
tation of the camera remains constant and the camera calibration
matrix changes, and the second expression is where the calibration
matrix remains the same and the Euclidean position and orientation
is changed. In (5) and (8), the intrinsic calibration matrices A, Af, and
A� 2 R3�3 denote the following constant invertible intrinsic camera
calibration matrices:

A ,

k1 �k1 cot / u0

0 k2
sin / v0

0 0 1

264
375

Af ,

kf 1 �kf 1 cot /f u0f

0 kf 2
sin /f

v0f

0 0 1

2664
3775

A� ,

k�1 �k�1 cot /f u0f

0 k�2
sin /f

v0f

0 0 1

2664
3775:

ð9Þ
In (9), u0; v0 2 R and u0f ; v0f 2 R are the pixel coordinates of the
principal point of an on-board camera and fixed camera, respec-
tively. Constants k1; kf 1; k�1; k2; kf 2; k�2 2 R represent the product
of camera scaling factors and focal length, and /, /f 2 R are the
skew angles between the camera axes for an on-board camera
and fixed camera, respectively.

Since the intrinsic calibration matrix of a camera is difficult to
accurately obtain, the development in this paper is based on the
assumption that the intrinsic calibration matrices are unknown.
Since Af is unknown, the normalized Euclidean coordinates mfi can-
not be determined from pfi using Eq. (7). Since mfi cannot be deter-
mined, then the intrinsic calibration matrix A⁄ cannot be computed
from (8). For the TBZ problem formulation, p�i defines the desired
image-space coordinates. Since the normalized Euclidean coordi-
nates m�i are unknown, the control objective is defined in terms
of servoing an on-board camera so that the images correspond. If
the image from an on-board camera and the zoomed image from
a fixed camera correspond, then the following expression can be
developed from (5) and (8):

mi ¼ mdi , A�1Af m�i ð10Þ

where mdi 2 R3 denotes the normalized Euclidean coordinates of
the object feature points expressed in F d. F d denotes the coordinate
system attached to an on-board camera when the image taken from
an on-board camera corresponds to the image acquired from a fixed
camera after zooming in on an object. Hence, the control objective
for uncalibrated TBZ problem can be formulated as the desire to
force mi(t) to mdi. Given that miðtÞ; m�i , and mdi are unknown, the
estimates m̂iðtÞ; m̂�i , and m̂di 2 R3 are defined to facilitate the subse-
quent control development [15]

m̂i ¼ bA�1pi ¼ eAmi ð11Þ

m̂�i ¼ bA�1
f p�i ¼ eAf m�i ð12Þ

m̂di ¼ bA�1p�i ¼ eAmdi ð13Þ

where bA; bAf 2 R3�3 are constant, best-guess estimates of the intrin-
sic camera calibration matrices1 A and Af, respectively. The calibra-
tion error matrices eA; eAf 2 R3�3 are defined as

eA , bA�1A ¼
eA11

eA12
eA13

0 eA22
eA23

0 0 1

264
375 ð14Þ

eAf ,
bA�1

f Af ¼
eAf 11

eAf 12
eAf 13

0 eAf 22
eAf 23

0 0 1

264
375: ð15Þ
Remark 1. For the standard TBS visual servo control problem

where the camera calibration parameters do not change between
the teaching phase and the servo phase, i.e., A = Af, the coordinate
frames F d and F� are identical.
3. Homography development

The following expression can be obtained based on the relation-
ship between coordinate frames F and F� (see Fig. 1):

�mi ¼ R �m�i þ xf ð16Þ
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where RðtÞ 2 R3�3 and xf ðtÞ 2 R3 denote the rotation and transla-
tion, respectively, between F and F�. By utilizing (1) and (2), the
expression in (16) can be expressed as

mi ¼
Z�i
Zi

� �
|fflffl{zfflffl}

ai

ðRþ xhn�
T Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

H

m�i ð17Þ

where xhðtÞ ,
xf ðtÞ

d� 2 R3 and d� 2 R denotes an unknown constant
distance from F� to p along the unit normal n⁄. The following rela-
tionship can be developed by substituting (17) and (8) into (5) for
mi(t) and m�i , respectively:

pi ¼ aiGp�i ð18Þ

where G 2 R3�3 is the projective homography matrix defined as
GðtÞ , AHðtÞA�1

f . The expressions in (5) and (8) can be used to re-
write (18) as

mi ¼ aiA
�1GAf m�i : ð19Þ

The following expression can be obtained by substituting (10) into
(19):

mi ¼ aiHdmdi ð20Þ

where Hd(t) , A�1G(t)A denotes the Euclidean homography matrix
that can be expressed as

Hd ¼ Rd þ xhdnT
d where xhd ¼

xfd

dd
: ð21Þ

In (21), RdðtÞ 2 R3�3 and xfdðtÞ 2 R3 denote the rotation and transla-
tion, respectively, from F to F d. The constant dd 2 R in (21) denotes
the distance from F d to p along the unit normal nd 2 R3. Since mi(t)
and m�i cannot be determined because the intrinsic camera calibra-
tion matrices and Af are uncertain, the estimates m̂iðtÞ and m̂di de-
fined in (11) and (12), respectively, can be utilized to obtain the
following:

m̂i ¼ ai
bHdm̂di: ð22Þ

In (22), bHdðtÞ 2 R3�3 denotes the following estimated Euclidean
homography [15]:bHd ¼ eAHd

eA�1: ð23Þ

Since m̂iðtÞ and m̂di can be determined from (11) and (13), a set of
linear equations can be developed to solve for bHdðtÞ (see [16] for
additional details regarding the set of linear equations). The expres-
sion in (23) can also be expressed as [16]bHd ¼ bRd þ x̂hdn̂T

d : ð24Þ

In (24), the estimated rotation matrix, denoted bRdðtÞ 2 R3�3, is re-
lated to Rd(t) as belowbRd ¼ eARd

eA�1; ð25Þ

and x̂hdðtÞ 2 R3; n̂T
d 2 R3 denote the estimate of xhd(t) and nd, respec-

tively, and are defined as

x̂hd ¼ ceAxhd ð26Þ

n̂d ¼
1
c
eA�T nd ð27Þ

where c 2 R denotes the following positive constant

c ¼ keA�T ndk: ð28Þ

Although bHdðtÞ can be computed, standard techniques cannot
be used to decompose bHdðtÞ into the rotation and translation com-
ponents in (24). Specifically, from (25) bRdðtÞ is not a true rotation
matrix, and hence, it is not clear how standard decomposition
algorithms (e.g., the Faugeras algorithm [17,18]) can be applied.
To address this issue, additional information (e.g., at least four van-
ishing points) can be used. For example, as the reference plane p
approaches infinity, the scaling term d⁄ also approaches infinity,
and xhðtÞ; x̂hðtÞ approach zero. Hence, (24) can be used to conclude
that bHdðtÞ ¼ bRdðtÞ on the plane at infinity, and the four vanishing
point pairs can be used along with (22) to determine bRdðtÞ. OncebRdðtÞ has been determined, various techniques (e.g., see [17,19])
can be used along with the original four image point pairs to deter-
mine x̂hdðtÞ and n̂dðtÞ.

4. Control objective

The control objective is to ensure that the position and orienta-
tion of the camera coordinate frame F is regulated to F d. Based on
Section 3, the control objective is achieved if

RdðtÞ ! I3 ð29Þ

and one target point is regulated to its desired location in the sense
that

miðtÞ ! mdi and ZiðtÞ ! Zdi: ð30Þ

To control the position and orientation of F , a relationship is re-
quired to relate the linear and angular camera velocities to the lin-
ear and angular velocities of the vehicle/robot (i.e., the actual
kinematic control inputs) that enables an on-board camera motion.
This relationship is dependent on the extrinsic calibration param-
eters as [15]

vc

xc

	 

¼

Rr tr½ ��Rr

0 Rr

	 
 v r

xr

	 

ð31Þ

where vcðtÞ; xcðtÞ 2 R3 denote the linear and angular velocity of
the camera, v rðtÞ; xrðtÞ 2 R3 denote the linear and angular velocity
of the vehicle/robot, Rr 2 R3�3 denotes the unknown constant rota-
tion between an on-board camera and robot end-effector frames,
and ½tr�� 2 R3�3 is a skew symmetric form of tr 2 R3, which denotes
the unknown constant translation vector between an on-board
camera and vehicle/robot frames.

5. Control development

5.1. Rotation controller

To quantify the rotation between F and F d (i.e., Rd(t) given in
(21)), a rotation error-like signal, denoted by exðtÞ 2 R3, is defined
by the angle axis representation as

ex ¼ uh ð32Þ

where uðtÞ 2 R3 represents a unit rotation axis, and hðtÞ 2 R denotes
the rotation angle about u(t) that is assumed to be constrained to
the region

0 6 hðtÞ 6 p: ð33Þ

The parameterization u(t)h(t) is related to the rotation matrix Rd(t)
as

Rd ¼ I3 þ sin h½u�� þ 2 sin2 h
2
½u�2� ð34Þ

where [u]� denotes the 3 � 3 skew-symmetric matrix associated
with u(t). The open-loop error dynamics for ex(t) can be expressed
as

_ex ¼ �LxRrxr ð35Þ

where LxðtÞ 2 R3�3 is defined as

Lx ¼ I3 �
h
2
½u�� þ 1� sincðhÞ

sinc2 h
2

� � !
½u�2�: ð36Þ
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In Eq. (36) the sinc (h) term is given by (37) as,

sincðhÞ ¼ sinðhÞ
h

ð37Þ

Since the rotation matrix Rd(t) and the rotation error ex(t) de-
fined in (32) are unmeasurable, an estimated rotation error
êxðtÞ 2 R3 is defined as

êx ¼ ûĥ ð38Þ

where ûðtÞ 2 R3; ĥðtÞ 2 R represent estimates of u(t) and h(t),
respectively. Since bRdðtÞ is similar to Rd(t) (i.e., bRdðtÞ has the same
trace and eigenvalues as Rd(t)), the estimates ûðtÞ and ĥðtÞ can be
related to u(t) and h(t) as [15]

ĥ ¼ h û ¼ leAu ð39Þ

where lðtÞ 2 R denotes the following unknown function

l ¼ 1

keAuk
: ð40Þ

The relationship in (39) allows êxðtÞ to be expressed in terms of the
unmeasurable error ex(t) as

êx ¼ leAex: ð41Þ

Given the open-loop rotation error dynamics in (35), the control
input xr(t) is designed as

xr ¼ kx
bRT

r êx ð42Þ

where kx 2 R denotes a positive control gain, and bRr 2 R3�3 denotes
a constant best-guess estimate of Rr. Substituting (41) into (42) and
substituting the resulting expression into (35) gives the following
expression for the closed-loop error dynamics [15]:
_ex ¼ �kxlLx

eRr
eAex ð43Þ

where the extrinsic rotation estimation error eRr 2 R3�3 is defined aseRr ¼ Rr
bRT

r : ð44Þ
Property 1. The kinematic control input given in (42) ensures that
ex(t) defined in (32) is exponentially regulated in the sense that [14]

kexðtÞk 6 kexð0Þk expð�kxlb0tÞ ð45Þ

provided the following inequality is satisfied:

xTðeRr
eAÞx P b0kxk

2 for 8x 2 R3 ð46Þ

where

xT eRr
eA
 �

x ¼ xT eRr
eA
 �T

x ¼ xT
eRr
eA þ ðeRr

eAÞT
2

 !
x ð47Þ

for 8x 2 R3; and b0 2 R denotes the minimum eigenvalue as below

b0 ¼ kmin

eRr
eA þ ðeRr

eAÞT
2

( )
: ð48Þ
5.2. Translation controller

The difference between the actual and desired 3D Euclidean
camera position, denoted by the translation error signal
ev ðtÞ 2 R3, is defined as

ev ,me �mde ð49Þ
2 To develop the translation controller a single feature point can be utilized.
Without loss of generality, the subsequent development will be based on the image
point O1, and hence, the subscript 1 will be utilized in lieu of i.
where meðtÞ 2 R3 denotes the extended coordinates of an image
point on p expressed in terms of F and is defined as2

me , me1ðtÞ me2ðtÞ me3ðtÞ½ �T ¼ X1
Z1

Y1
Z1

lnðZ1Þ
h iT

ð50Þ

and mde 2 R3 denotes the extended coordinates of the correspond-
ing desired image point on p in terms of F d as

mde , mde1 mde2 mde3½ �T ¼ Xd1
Z�1

Yd1
Z�1

ln Z�1
� �h iT

ð51Þ

where ln (�) denotes the natural logarithm. Substituting (50) and
(51) into (49) yields

ev ¼ X1
Z1
� Xd1

Z�1

Y1
Z1
� Yd1

Z�1
ln Z1

Z�1


 �h iT
ð52Þ

where the ratio Z1
Z�1

can be computed from (17) and the decomposi-
tion of the estimated Euclidean homography in (22). Since m1(t)
and md are unknown (since the intrinsic calibration matrices are
unknown), ev(t) is not measurable. Therefore, the estimate of the
translation error system given in (52) is defined as

êv , m̂e1 � m̂de1 m̂e2 � m̂de2 ln Z1
Z�1


 �h iT
ð53Þ

where m̂e1ðtÞ; m̂e2ðtÞ; m̂de1; m̂de2 2 R denote estimates of me1(t),
me2(t), mde1, mde2, respectively.

To develop the closed-loop error system for ev(t), we take the
time derivative of (52) and then substitute (42) into the resulting
expression for xr(t) to obtain

_ev ¼ LvRrv r þ kwðLv ½tr�� þ LvxÞeRrêx ð54Þ

where LvðtÞ; LvxðtÞ 2 R3x3 are defined as

Lv ,
1
Z1

�1 0 me1

0 �1 me2

0 0 �1

264
375 ð55Þ

Lvx ,

me1me2 �1�m2
e1 me2

1þm2
e2 �me1me2 �me1

�me2 me1 0

264
375: ð56Þ

To facilitate the control development, the unknown depth Z1(t) in
(55) can be expressed as

Z1 ¼
1
a1

Z�1 ð57Þ

where a1 is given by the homography decomposition.
An estimate for Lv(t) can be designed as

bLv ¼
1bZ1

�1 0 m̂e1

0 �1 m̂e2

0 0 �1

264
375; ð58Þ

where m̂e1ðtÞ; m̂e2ðtÞ were introduced in (53), and bZ1ðtÞ 2 R is devel-
oped based on (57) as

bZ1 ¼
1
a1

bZ�1: ð59Þ
Remark 2. In (59), bZ�1 is an estimate of the constant unknown
depth Z�1 and is assumed to be known with an uncertainty.
However, the constant parameter Z�1 can also be estimated online
in a direct adaptive framework [16].

Based on the structure of an error system in (54) and subse-
quent stability analysis, the following composite translation con-
troller can be developed



Fig. 2. (A) Robotics Research K-1607 manipulator in a camera-in-hand configuration; (B) initial and (C) final position of the feature points as viewed by the camera-in-hand
(green points) and the overlaid desired feature points captured by the fixed camera (red points). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 3. Rotation error plot indicating angular error about x-axis (ex1(t)), y-axis
(ex2(t)), and z-axis (ex3(t)) of the camera coordinate frame.
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Fig. 4. Linear error plot indicating discrepancy between the extended normalized
Euclidean coordinates of the target between the current and desired configurations.
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Fig. 5. Rotation velocity control input about x-axis (x1(t)), y-axis (x2(t)), and z-axis
(x3(t)) of the camera coordinate frame.
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v rðtÞ ¼ �kv bRT
r
bLT

v êv � kn1
bZ2

1 þ kn2
bZ2

1kêvk2

 �bRT

r
bLT

v êv ð60Þ
where bRT
r ; êvðtÞ, and bLvðtÞ are introduced in (42), (53), and (58),

respectively, kn1; kn2 2 R denote positive constant control gains,
and bZ1ðtÞ is defined in (59). In (60), kvðtÞ 2 R denotes a positive gain
function defined as

kv ¼ kn0 þ
bZ2

1

f ðm̂e1; m̂e2Þ
ð61Þ

where kn0 2 R is a positive constant, and f ðm̂e1; m̂e2Þ is a positive
function of m̂e1 and m̂e2.

Property 2. The kinematic control input given in (60) ensures that
the composite translation error signal ev(t) defined in (52) is
exponentially regulated in the sense that [14]
kevðtÞk 6
ffiffiffiffiffiffiffi
2f0

p
kB�1k exp � f1

2
t

� �
ð62Þ

provided (46) is satisfied, where B 2 R3x3 is a constant invertible ma-
trix, and f0; f1 2 R denote positive constants.
6. Experimental results

An experiment was performed using a Robotics Research K-
1607 7-DOF robotic manipulator, as shown in Fig. 2A, to demon-
strate the performance of the TBZ controller given in (42) and
(60). The robot end-effector was equipped with a SONY CCD block
camera and a mvBlueFox CCD camera fitted with a variable focal
length lens served as a fixed camera. Location of the camera-in-
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Fig. 6. Linear velocity control input along x-axis (v1(t)), y-axis (v2(t)), and z-axis
(v3(t)) of the camera coordinate frame.
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Fig. 7. Image space error ep(t) showing the difference in pixel coordinates between
the current and reference images along the image x- and y-axes.
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hand and fixed camera was selected such that a set of four coplanar
features can be viewed by both the cameras. The focal length of the
fixed camera was varied (zoomed in) to obtain the feature points p�i
corresponding to the desired position/orientation, while a pyrami-
dal implementation of the Lucas Kanade (KLT) feature tracker pro-
vided the time-varying feature points pi(t) for the camera-in-hand.

In an event where the camera-in-hand can be located a priori to
the desired position/orientation of a robotic manipulator, the fea-
ture points p�i as well as pi(t) are obtained by the camera-in-hand
and the TBZ control law presented in (42) and (60) becomes iden-
tical to TBS controller.

Caltech camera calibration toolbox for Matlab was used to obtain
the estimates of intrinsic calibration parameters for both the cam-
eras. The principal point image coordinates for the camera-in-hand
and fixed camera are considered to be u0 = 345, v0 = 245 and
u0f = 302, v0f = 272, respectively; k1 ¼ 868; k2 ¼ 878; kf 1 ¼ 571;
kf 2 ¼ 571; k�1 ¼ 1596; k�2 ¼ 1597 denote the product of focal length
and scaling factors for an on-board camera, fixed camera, and fixed
camera after zooming, respectively; and / = /f = 1.53 (rad) is the
skew angle for each camera. The intrinsic parameters k�1 and k�2, cor-
responding to the zoomed-in position of the lens, were computed to
evaluate the correctness of servo control and were not used in the
control formulation. The constant rotation and translation between
the camera-in-hand and end-effector frame, i.e., the extrinsic cam-
era calibration parameters bRr and t̂r defined in (31), are measured
to be

bRr ¼
1 0 0
0 0:9974 0:0724
0 �0:0724 0:9974

264
375; ð63Þ

t̂r ¼ �100:3 48:0 �48:0½ �T : ð64Þ

The estimates bRr and t̂r are obtained using the commercial grade
digital level and laser range finder, respectively, within the accuracy
of the sensors. Since the z-axis of camera frame F is parallel to the
x-axis of robot end-effector frame there exists a rotation Rx(n) about
the x-axis of end-effector frame by an angle n 2 R that will align
camera frame to the end-effector frame. The extrinsic calibration
matrix bRr 2 R3�3 in (63) is then obtained as Rx(n) by measuring
the constant angle n. The translation estimate t̂r given in (64) is
obtained by measuring the components of position vector corre-
sponding to the origin of the camera coordinate frame F in the
end-effector frame using a laser range finder.

The control objective is to regulate the camera-in-hand to the
position/orientation of the virtual camera coordinate frame repre-
senting the zoomed in position/orientation of the fixed camera.
The control gains kn0, kn1, kn2, and kw were adjusted to the follow-
ing values to yield the best performance

kn0 ¼ 40 kn1 ¼ 26:6 kn2 ¼ 26:6 kw ¼ 6:0: ð65Þ

The feature points viewed by the camera-in-hand before and at the
end of the servo control are shown in Figs. 2B and 2C, respectively,
along with the location of desired feature points captured by the
fixed camera. The resulting rotation and unitless translation errors
are depicted in Figs. 3 and 4, respectively. The angular and linear
control input velocities xr(t) and tr(t) defined in (42) and (60),
respectively, are shown in Figs. 5 and 6. It can be observed from
Figs. 3 and 4 that the rotation and translation error between camera
coordinate frames F and F� vanishes exponentially, thus regulating
the camera-in-hand to the position/orientation of the virtual cam-
era coordinate frame representing the zoomed in position/orienta-
tion of the fixed camera; Figs. 5 and 6 show that the linear and
angular velocity control inputs remain bounded during the
closed-loop operation. The image-space error epðtÞ 2 R3 between
the desired and current image coordinates of the target point O1

is defined as

epðtÞ ¼ ep1 ep2 ep3½ �T ¼ p1ðtÞ � p�1: ð66Þ

Fig. 7 shows the plot of the image error ep(t) defined in (66) to dem-
onstrate the regulation result in an image-space.

7. Conclusion

A unified visual servo control approach – teach by zooming – is
presented to address the control problem in applications where the
camera cannot be a priori positioned to the desired position/orien-
tation to acquire a reference image. Specifically, the TBZ control
objective is formulated to position/orient an on-board camera
based on a reference image obtained by another camera. In addi-
tion to formulating the TBZ control problem, another contribution
of this paper is to illustrate how to preserve a symmetric transfor-
mation from the projective homography to the Euclidean homog-
raphy for problems when the corresponding images are taken
from different cameras with calibration uncertainty. To this end,
a desired camera position/orientation is defined where the images
correspond, but the Euclidean position differs as a function of the
mismatch in the calibration of the cameras. Applications of this



S.S. Mehta et al. / Mechatronics 22 (2012) 436–443 443
strategy could include navigating ground or air vehicles based on
the desired images taken by other ground or air vehicles (e.g., a sa-
tellite captures a ‘‘zoomed in desired image that is used to navigate
an unmanned aerial vehicle (UAV), a camera can view the entire
tree canopy and zoom in to acquire a desired image of a fruit prod-
uct for high speed robotic harvesting). Experimental results are
provided to demonstrate the performance of the developed
controller.
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